
Universidade Federal do Paraná

Departamento de Informática

Roberto A Hexsel

Do flying cars need wheels?

Relatório Técnico
RT DINF 001/2015

Curitiba, PR
2015



Do flying cars need wheels?

Roberto A. Hexsel
Universidade Federal do Paraná
Departamento de Informática

roberto@inf.ufpr.br

Abstract

Until fairly recently (circa 2015), the design of the current desktop operating
systems was premised on the use of slow magnetic disks. The introduction of non-
volatile memory provides an opportunity for a complete re-design of operating systems.
This text presents some of the issues an provides a few suggestions for areas that may
benefit from a different perspective.

1 Introduction

If one is to design a flying car, does it have to be equipped with wheels, or three downward
facing spikes would be enough? What of the wheel and tire industry? I’m thinking of Star
Wars rather than Blade Runner.

If one is presented with a new device that improves on a pair of fundamental metrics
by two to three orders of magnitude, at a reasonable price, would a radical new way of
thinking be necessary?

If the promises come true, the “system people” are about to face the Mother of the Operat-
ing Systems Revolutions, triggered by the advent of non-volatile RAM (NVRAM). If these
devices come into widespread use, the way we think about OS design and implementation
must change rather dramatically.

This paper does not present any original results nor measurements. Rather it is a loose
collection of ideas, most of them incomplete, that the author believes should be discussed
in the community, specially amongst those involved in Education, as we are training the
people who will implement the new breed of Flying Operating Systems.

Organizing the text is somewhat difficult because changes in one aspect of the system
impact on others. The following sections contextualize NVRAM from an OS designer’s
point of view and discuss some implications of removing rotating magnetic media from the
system. With secondary memory gone, the conceptual changes regarding files, processes,
and security are discussed next.

Throughout, the discussion considers an Unix-like operating system, with processes, with
virtual, and physical memory split into secondary and primary storage. The text was
written with the intention of being processor agnostic, yet the author really likes the
clean, lean and symmetric instruction set, plus the elegant application binary interfaces
of MIPS processors.



UFPR, Depto. de Informática, RT DINF 2015/001 2

2 NVRAM in context

“Tape is Dead. Disk is Tape. Flash is Disk, RAM Locality is King”. Jim Gray

Flash memories have been around for some time, and commercial flash ‘disk’ drives are be-
coming affordable (in 2015). Solid state drives (SSD) are fast as there are no moving parts
in them, their capacity is quite reasonable, and prices will fall, eventually. The durability
problem has been solved and drives can be expected to be functional for several years,
depending on usage patterns. SSDs are less power hungry than their electro-mechanical
counterparts.

There are a few classes of devices that may be used to implement NVRAM, the most
promising of these being phase change memory (PCM) [17][18]. PCM is faster than flash
memory and has a longer endurance. PCM memory is slower than DRAM, less dense, and
wears out faster, yet there are ways to compensate for these less attractive characteristics
and employ PCM devices as a replacement for DRAM [15]. Surely, non-volatility is what
makes NVRAM a Flying Memory.

Table 1 shows a (very) rough comparison of the characteristics of the storage technologies
that are of interest to OS designers. These numbers are intended solely to provide ap-
proximations to the orders of magnitude for comparison. For simplicity, we take processor
cycle time to be 0,5ns (2 GHz).

Table 1: Access time for storage technologies.

medium disks SSD NVRAM DRAM
access time 10ms 10µs 200ns 100ns
access time [cycles] 5× 106 5× 103 100 50

3 Do we need a scheduler?

“This is the short and the long of it”. Shakespeare

A large part of what an operating system does is predicated on a storage technology that
is some [12][9], to several [11], orders of magnitude slower than the processor, as shown
in Table 1. If an access to secondary storage takes 105 to 106 processor cycles, it is well
worth to switch the processor to another process, to hide the disk access latency. The
OS enqueues the request, and the disk controller posts an interrupt to the processor when
the requested block is sitting in DRAM. Having several processes performing concurrent
accesses to disk is a clever trick to hide latency.

Consider how long it takes to save an execution context for a Unix process on a MIPS
processor, which includes the PC, 31 general purpose registers (GPRs), and HI and LO
registers. Saving state through non-cache-able memory needs 34 stores, at 50 cycles/store,
adding up to 1,700 cycles. This is only half the time for a switch as the same number
of registers must be restored for the incoming process. Thus far, 3,400 cycles, and not
counting the 33 floating point/status registers. This is the minimum time it takes to
save and restore state on a MIPS processor. As for lightweight threads, not the full
set of registers may need be saved/restored, but unless there is hardware support for
multiple contexts1, many memory references are needed on each thread switch. Even for

1Multiple sets of registers/contexts is a feature found in MIPS32r2 and beyond.



UFPR, Depto. de Informática, RT DINF 2015/001 3

x86 processors, with 8 integer and a plethora of vector/media dedicated registers, context
switches cost anything but a trifle.

The interrupt service routine for the disk drive causes two mini-context switches, to save
and then restore the processor registers which are needed to execute the handler, plus
some more cycles to empty and then fill up the pipeline with instructions. Deeper and
wider pipelines may take more than a couple of cycles to drain and fill up.

Under the far from innocent assumptions implied by Table 1, a fair proportion of the
cycles needed to access a magnetic disk are spent on context switches. For the switch to
be worthwhile, there better be several threads/processes vying for the processor. Unfortu-
nately, current desktop users don’t often have use for more than two to three concurrent
threads/processes [5].

Thus far the status quo is this: it takes a very long time to access data on magnetic disks,
the OS switches processes whenever there is a disk request in order to hide the disk latency,
there are just a couple of processes to hide said latency. As an additional twist, most of
the lap/desktop systems sold in 2015 have at least two processor cores, and at least one
of them is idle most of the time. Much ado about little. Not so good.

The sequence of events in a request for a magnetic disk block includes (i) a context switch
to another (often non-existing [5]) waiting process – to hide the disk latency; (ii) two
mini-context switches for the disk interrupt service routine – to allow for the concurrent
operation of disk driver and interrupted process(es).

If our desktop system were equipped with storage as fast as flash based SSDs, things would
look very different [2][19]. If an access to an SSD block costs 5.000 cycles, there is no point
in performing a context switch, which itself costs, almost the same number of cycles. Thus,
whenever a process requests a block from an SSD, it is more efficient to synchronize the
processor to the device by polling rather than by an interrupt. If the processor performs
the copy from/to the device to/from memory, not making use of DMA, the block transfer
may take less time than “the traditional way” – DMA transfer plus an interrupt to signal
the end of transfer.

By using a storage medium that is three orders of magnitude faster, a large section of an
OS can be done away with: (i) there is no need for a two-layer disk driver; (ii) there is
no need for a queue of disk requests; (iii) there is no need for a context switch to hide the
latency; and (iv) there is no need for the interrupt service routine and all the attending
priority and timing complexities. The car is barely touching the ground.

Regarding the section title: do we need a scheduler? The answer is yes, but we need a
simpler mechanism than the traditional one. There will be need for a scheduler to stop
processes from hogging the processor since starvation is a evil thing and must be avoided.
The scheduling of I/O requests changes radically when the secondary storage is so fast
that there is no point in trying to hide its latency.

Space intentionally left blank.



UFPR, Depto. de Informática, RT DINF 2015/001 4

4 Do we need paged virtual memory?

“Roads? Where we’re going, we don’t need roads”. Dr. Emmett Brown

Paging is one large part of the mechanism responsible for hiding the latency of the sec-
ondary storage [12]. Paging participates in the automatic allocation of physical memory
to processes, and is one of the protection mechanisms which is closer to the hardware.

The page table is a function that maps virtual addresses (VAs) onto physical addresses
(PAs), or more specifically, the function maps virtual page numbers (VPNs) onto physical
page numbers (PPNs). This function is logically implemented as the page table (PT)
and each element of the PT holds one mapping (VPN 7→PPN). Each PT element also
holds protection and accounting information, viz. the page is/is-not writable, the page
has/has-not been referenced recently.

There is one PT per process and protection is enforced by managing the contents of the
PTs only in kernel mode – in well designed systems, user processes do not even know there
exists such a thing as a PT or even physical memory. The translation buffer (TB or TLB)
is a fast, small, associative memory that sits near the processor and very quickly translates
VPNs to PPNs. TBs hold translations for a small set of pages used in the near past.

Most desktop/server processors in current use are 64 bits wide, thus capable of referencing
16 exabytes (or the terrible name 16 exbibytes). The width of the physical address bus
is slowly moving towards 60 bits, and an exabyte is a large memory indeed, by today’s
standards for primary memory.

Paging was invented to hide the latency of disc accesses and to amortize the cost of trans-
ferring a block of storage between primary and secondary storage. In essence, virtual
memory was meant to give the programmer the impression of working with “infinite mem-
ory”. The size of the address spaces referenced by ordinary programs used to grow at
approximately 1/2 to 1 address bit per year, according to the first edition of [11] – pro-
grams roughly double in size every year.

What would be the use of paging if the primary memory were large and non-volatile?
There are proposals for making the interface to persistent data byte addressable rather
than block addressable [8][4]. This alone would bring a radical change in the way persistent
information is stored and managed [1].

First, the easy part. If the adapter interface of SSDs were to allow byte/word transfers,
many applications would benefit from the reduced traffic between memory and disk, but
greater benefits would stem from the finer granularity of units of storage that ought to be
kept consistent. Consider the complex machinery in data base systems which is necessary
in order to keep consistency in records that are stored in a full disk block. Remove the
‘block’ from the system and locking may become a thing of the past. The result will be
simpler, faster, and more reliable systems. The “block device interface” is an idea that
percolates through several layers of the OS, and implementing a “character interface” for
storage may imply the removal of a great deal of complexity [4].

Now for the revolutionary part. If, for instance, one half of the physical memory were
populated with non-volatile RAM [6], then what would change in the OS? Let’s take it
a bit further, and assume that the capacity of DRAM+NVRAM is somewhere near the
exabyte, on a machine with a 60 bit wide memory bus. Take pause. Ponder. . .



UFPR, Depto. de Informática, RT DINF 2015/001 5

Harizopoulos et alli., in [10], report that over 90% of the instructions – or processor cycles –
spent on processing queries on an OLTP ‘operating system’ can be optimized away if the
machinery added to cope with slow disks were removed. More than 90% is needless work.

The availability of a large non-volatile RAM would warrant a complete redesign of a large
chunk of the OS. Look! No wheels.

5 Do we need a buffer cache?

“Defer no time, delays have dangerous ends”. Shakespeare

With plentiful NVRAM, the magnetic disk becomes a third class citizen, not unlike a pen-
drive, with a driver that is loaded only on demand, when the user must save or restore
a copy of long term data, such as a movie or last year’s income revenue forms. All the
interesting action is now on the memory bus.

Some fast, volatile, RAM will always be needed to support the stack and some non-
persistent data structures. NVRAM’s access is 2–3× times slower than DRAM’s. The
time needed for NVRAM block updates can be effectively hidden [15] and there is no need
for refresh cycles. Plus, NVRAM is naturally byte addressable.

Recall the discussion of fast SSDs in Section 3. If the secondary memory is so fast that
polling is more efficient than rescheduling plus an interrupt, what is needed when the
persistent primary memory is so fast that not even polling is needed, but just twice as
many cycles as when waiting for a DRAM reference?

Under last paragraph’s assumption there is no need for the buffer cache as a staging post
between the slow disk and the fast RAM, since the (very large) NVRAM holds the needed
files. Of course, some memory allocation mechanism is necessary, but it will probably not
be on the critical path, as does the buffer cache, sitting between DRAM and disk.

The buffer cache interacts closely with paging in order to minimize the memory–disk
traffic. With no disk, and no buffer cache, paging becomes a mechanism that performs
memory allocation, and provides security through the separation of page tables and the
bits of status of each individual page. These two functions may very well be implemented
with Multics style segmentation [3].

Segmentation is closer to the way we think and program than paging is. Each program is
split into a code segment, a data/heap segment and a stack segment, and these last two
may grow to accommodate the program’s dynamics. The OS maintains a small segment
table for each process. A translation buffer keeps, near the processor, the base and limit
‘registers’, plus access rights information.

The hardware technology available in the late 1960s and early 70s was insufficient to
implement an ambitious system such as Multics. The landscape looks very different now,
and the hardware to efficiently support segmentation can be implemented without too
much effort – essentially an adaptation of the paging TB, mapping variable size segments
rather than pages.

Space intentionally left blank.



UFPR, Depto. de Informática, RT DINF 2015/001 6

6 Do we need files?

“Memory is the mother of all wisdom”. Aeschylus

File systems are also build on the premise that secondary storage is implemented with
slow and unreliable magnetic disks. I-nodes, complex indexing structures, journaling, et
alli. are all artifacts of the sluggish magnetic disk. If, as suggested earlier, disks become
lowly I/O devices, the implementation of the file abstraction can also change dramatically.

If our system has ‘infinite’ non-volatile memory, and is segmented, why not turn files into
segments that remain in memory for a very long time? When a process opens a file, the
system would add a new segment descriptor to the process’ segment table. To close a file,
the corresponding segment goes into the limbo of temporarily unused files. If a file is just
another segment, that can be inexpensively added or removed from a program’s address
space, several premises that underpin file system design cease to hold.

Obviously, this discussion is glossing over many complex implementation details. The
intention is to provoke and to present an alternative to the designs we grew accustomed
to use and to think of as a ‘file’ and a “file system”. The one thing that ought not to be
lost is the clean abstraction for a file as being just a sequence of bytes.

7 Do we need processes?

“We will perform in measure, time and place”. Shakespeare

This is one question I have no answers to offer. If the multiplexing of the processor is not
as important as it once was, because the nature of the interactions with secondary storage
changed in the ways suggested, does it make sense to think of computation as a set of
processes competing for time on the processor? Do we need a new abstraction [16] for a
‘process’?

8 Do we need security?

Surely! Flying cars come with seat belts, airbags, and parachutes.

Of course we need security. Security can be provided by the devices associated with
the page table, and perhaps at less expense with the devices provided by segmentation,
because less bits of state are needed to define the protection level of one segment than for
a set of pages.

Complications do arise with non-volatile memory, and they are caused by the very non-
volatility. If all the computation state is permanently kept on NVRAM, the cost of putting
the computer to sleep/hibernate, and then waking it up is very small. Entire processes do
not need to be copied to secondary storage; only the (smallish) fractions kept in DRAM
need to be safely stored onto NVRAM – this operation is a copy from fast DRAM to
not-so-fast NVRAM, and state is later copied back onto DRAM.

Now, what happens if there was a pointer in volatile memory pointing to a chunk of
memory in non-volatile memory? Can that pointer be correctly recovered? Coburn et
alli. [7] provide a solution with a data structure for a heap implementation that forbids
dangling pointers.



UFPR, Depto. de Informática, RT DINF 2015/001 7

For mobile devices, it would seem reasonable for all the user data to be stored in non-
volatile memory. Only some small amount of DRAM would be needed to hold the stack
and heap for the execution of applications. For security reasons, the user data must be
encrypted before being stored; otherwise, if one were to lose his or her mobile device, all
the personal records could be retrieved by accessing the device’s NVRAM [1].

9 In conclusion

“The beginning is the most important part of the work”. Plato

For over half a century the design of operating systems was predicated on fast primary
memory (RAM) and slow secondary memory (magnetic disks). With the arrival of non-
volatile RAM, this premise no longer holds and large sections of the OS can be eliminated
or much simplified.

An arbitrarily ordered and non-exhaustive list includes the following changes. First, fast
solid state drives eliminate the need for interrupts since polling is more efficient than a
context switch plus interrupt service routine. Second, if the data interface of SSDs is
re-designed so the transfer unit is one byte or one word, then the block interfaces that
percolate through several layers of the OS may also be simplified away. Third, as there
is no need to hide the long access latencies of disks by time multiplexing the processor,
the scheduler can be re-designed. Fourth, as the secondary memory is replaced by non-
volatile RAM (NVRAM) primary memory, the function of paging reduces to a mechanism
for memory allocation and another for providing security, and both of these can just as
well be provided by Multics-style segmentation. Fifth, file systems are conceived to match
the organization magnetic disks and without these, files may just be segments that stay in
memory for a long time. Sixth, the process abstraction may need to be re-thought as time
multiplexing the processor loses importance. Seventh, non-volatility introduces its own
artifacts such as non-volatile dangling pointers and the very persistence of sensitive data.

Acknowledgments

Some of the ideas presented here arose in discussions with PhD candidates Tiago Kepe
and Ivan L Picoli and my colleagues Eduardo C de Almeida. Daniel Weingartner, Luis
C E de Bona, Renato Carmo. The students enrolled in CI312 also provided invaluable
input. Lauri P Laux Jr measured the memory spaces of several large applications and his
work reinforces the idea that the time is ripe for segmentation [13, 14]. My first contact
with the idea of “infinite memory” was in fruitful dialogue with Rodolfo Azevedo. The
outrageous proposals in the text are all my own.

References

[1] Anirudh Badam. How persistent memory will change software systems. IEEE Computer,
46(8):45–51, Ago 2013.

[2] K Bailey, L Ceze, S D Gribble, and H M Levy. Operating system implications of fast, cheap,
non-volatile memory. In Proc USENIX Conf on Hot Topics in Operating Systems, pages 2–2,
2011.

[3] A Bensoussan, C T Clingen, and R C Daley. The Multics virtual memory: Concepts and
design. Comm of the ACM, 15(5):308–318, Mai 1972.



UFPR, Depto. de Informática, RT DINF 2015/001 8

[4] M Bjørling, P Bonnet, L Bouganim, and N Dayan. The necessary death of the block device
interface. In Proc 6th Biennial Conf on Innovative Data Systems Research (CIDR13), 2013.

[5] G Blake, R G Dreslinski, T Mudge, and K Flautner. Evolution of thread-level parallelism in
desktop applications. In ISCA’10: 37th Intl Symp on Computer Arch, pages 302–313, Jun
2010.

[6] A M Caulfield, A De, J Coburn, T I Mollow, R K Gupta, and S Swanson. Moneta: a high-
performance storage array architecture for next-generation, non-volatile memories. In Proc
43rd IEEE/ACM Int Symp on Microarchitecture (MICRO’10), pages 385–395, 2010.

[7] J Coburn, A M Caulfield, A Akel, L M Grupp, R K Gupta, R Jhala, and S Swanson. NV-
Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories.
SIGPLAN Not., 46(3):105–118, Mar 2011.

[8] J Condit, E B Nightingale, C Frost, E Ipek, B Lee, D Burger, and D Coetzee. Better I/O
through byte-addressable, persistent memory. In Proc ACM 22nd Symp Operating Systems
Principles (SIGOPS), pages 133–146, 2009.

[9] Edsger W Dijkstra. The structure of the THE-multiprogramming system. Comm of the ACM,
11(5):341–346, Mai 1968.

[10] S Harizopoulos, D J Abadi, S Madden, and M Stonebraker. OLTP through the looking glass,
and what we found there. In Proc ACM Int Conf on Management of Data (SIGMOD’08),
pages 981–992, 2008.

[11] John L Hennessy and David A Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 5th edition, 2012.

[12] T Kilburn, D B G Edwards, M J Lanigan, and F H Sumner. One-level storage system. In
IRE Trans on Electronic Computers, EC-11, pages 223–235, 1962.

[13] Lauri P Laux Jr and R A Hexsel. Back to the past: Segmentation with infinite and non-
volatile memory. In WSCAD-SSC’16: XVII Workshop em Sistemas Computacionais de Alto
Desempenho, pages 278–289, Out 2016.

[14] Lauri P Laux Jr and R A Hexsel. Back to the past: When segmentation is more efficient than
paging. In wperformance’18: XVII Workshop em Desempenho de Sistemas Computacionais
e de Comunicação, pages 278–289, Ago 2018.

[15] B C Lee, P Zhou, J Yang, Y Zhang, B Zhao, E Ipek, O Mutlu, and D Burger. Phase-change
technology and the future of main memory. IEEE Micro, 30(1):143–143, Jan 2010.

[16] Edward A Lee. The problem with threads. IEEE Computer, 39(5):33–42, Mai 2006.

[17] S Raoux., G W Burr, M J Breitwisch, C T Rettner, Y-C Chen, R M Shelby, M Salinga,
D Krebs, S-H Chen, H-L Lung, and C H Lam. Phase-change random access memory: a
scalable technology. IBM J. Res. Dev., 52(4):465–479, Jul 2008.

[18] Kosuke Suzuki and Steven Swanson. The non-volatile memory technology database (nvmdb).
Technical Report CS2015-1011, Dept of Computer Science & Engineering, Univ of California,
San Diego, Mai 2015.

[19] J Yang, D B Minturn, and F Hady. When poll is better than interrupt. In Proc 10th USENIX
Conf on File and Storage Technologies, pages 1–7, 2012.


