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Introduction

I have been teaching Computer Architecture for nearly twenty years on courses that make
heavy use of Patterson & Hennessy’s Computer Organization & Design: The Hardware/
Software Interface [PH09], and I always felt the need for some form of the processor for
the students to play with. In the last few years we introduced VHDL in the two courses
that precede CA and thus our students can now study and play with models for the
implementation of the MIPS instruction set.

Some months ago I started to write a model for the processor with the intention that the
model should resemble the design presented in the book as closely as possible. One of my
objectives was for the model to run code compiled by GCC – hence it is a complete imple-
mentation of the MIPS32r2 instruction set [MIPS05b], with all the attending complexities
of a real-life instruction set. The data path has all the interlocks and forwarding paths
needed for correct and efficient execution of compiled C code. All the user-level integer
instructions are supported.

The result of the development effort described here is shown in Figure 1, which is gtkwave’s
screen from a simulation run. The colored rectangles highlight the progress of one instruc-
tion down the pipeline stages. In our environment, the students are presented with the
simplest development tools: the ghdl VHDL compiler [ghdl12] and gtkwave to display the
timing diagrams that result from the simulations [gtkwave12]. C and assembly programs
are compiled/assembled with gcc and binutils [gcc99, binutils98].

The control processor, or the Coprocessor 0 (COP0) [MIPS05c] is partially implemented:
the six hardware interrupts, two software interrupts, and the non mask-able interrupts are
implemented, in Interrupt Compatibility Mode. The Memory Management Unit comprises
an 8 entry fully associative TLB. There is enough machinery to support a full blown
Unix-like operating system.

This space intentionally left blank.
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Figure 1: Sample simulation run displayed with gtkwave.
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The simulation version of the testbench is a “simple computer” with the processor core,
instruction and data caches, RAM and ROM and five ‘peripherals’. A block diagram of
the ‘computer’ is shown in Figure 2. The peripherals are: one to print on the simulator’s
standard output; one for reading from an input file; one for writing to an output file; a
counter that generates an interrupt after a specified number of clock cycles; and a simple
UART along with a remote UART it can communicate with, not shown in the diagram.
What appears on the diagram as a memory bus is a set of multiplexers.
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Figure 2: Block diagram of the “simple computer” in the testbench.

The diagram also shows the files needed for the model to run C/assembly programs. The
code is input into the simulation ROM as file prog.bin and the RAM may be initialized
with the contents of file data.bin. These two files are generated by the compilation and
assembly scripts, which are described later. The simulator can read data from a binary
input file (input.data) and can write binary results to output.data. The contents of the
RAM can be copied to file dump.data. These files are shown as dashed boxes.

The model was conceived primarily as an aid to teaching through simulation and was
later adapted for synthesis on a Altera Cyclone IV FPGA. The assembly/compilation
scripts generate the files ROM.mif and RAM.mif, as needed by Altera’s tools, and these
two are replacements for prog.bin and data.bin. The synthesis model does not provide
for input/output file operations; it supports a 12 key keypad, LCD display, and serial
interface (UART). The interfaces to the SDRAM controller, VGA output, microSD card
reader and Ethernet connection will be added soon.

The source code for the simulation version is available at https://gitub.com/rhexsel/
cmips. Some files for the synthesis version are missing from the repository – please do
request these from the author as needed.
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1 Pipeline Model – User Instructions

Figure 3 shows a block diagram of the processor core, with the user-level pipeline at the
top, and the control pipeline (Coprocessor 0) at the bottom. The user-level pipeline stages
are described in what follows, and the control, or system-level, pipestages are described
in Section 2.

The datapath for the user-level instructions has all the interlocks and forwarding paths
for the correct and efficient execution of assembly and C code.
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Figure 3: cMIPS user level (top) and Coprocessor 0 (bottom) pipeline.

Figure 4 shows a block diagram of the first two pipeline stages, instruction fetch (IF),
instruction decode and register fetch (RF), and Figure 5 shows a block diagram of the last
three pipe stages, Execution (EX), access to memory (MM) and write-back (WB). The
diagrams show the names of the ‘important’ signals, which are those needed for debugging,
or to follow an instruction as it progresses down the pipeline. Core interface signals are
shown in red. The diagram in Figure 7 shows the signals connecting pipeline and TLB.

Instruction Fetch – IF The memory interface stalls the pipeline if the cache/ROM
asserts the wait/ready signal (rdy). Access to instructions is aligned to word boundaries.

Instruction Decode and Register Fetch – RF The decoding logic employs three
tables and combinational logic. There is forwarding through the register bank; register
contents are read on the falling edge of the clock signal (phi2), and are updated on the
rising edge of the clock (phi0).

All branches and jumps are resolved in the second stage and there are forwarding paths
from the memory stage to the comparator inputs, and an interlock for values that should
come from the execution stage. There are interlocks for jump and branch delay-slots, and
for load delay-slots.
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Execution – EX There is a complete set of forwarding paths onto the Arithmetic and
Logic Unit (ALU) inputs, and a hazard detection unit stalls the pipeline until all data
dependencies are cleared.

The HI and LO registers are implemented inside the ALU and there is no need for interlock-
ing between mult/div and mflo or mfhi as the operations complete in one clock cycle – notice
that this is not the behavior specified by MIPS32r2. In the synthesis model division takes
four clock cycles and this instruction has not been implemented, as of May 21, 2021.

Memory – MM During reset, both the RAM and the ROM are initialized from the
files data.bin and prog.bin, respectively. These files are read from the current directory,
with respect to the GHDL simulator.

In the synthesis version, memory is initialized from files ROM.mif and RAM.mif, generated
with the compilation scripts.

The ROM is word-addressed and read-only. The RAM is byte-addressed and supports
partial-word writes. Partial-word reads are handled by the memory pipe-stage. The
signal byte_select defines, to the external interface, the width of the reference, as well as
which portion of the word is to be updated.

The RAM memory interface is similar to that of the IF stage and the pipeline is stalled
when the I-cache/ROM and/or D-cache/RAM assert their wait/ready signals.

Write Back – WB This stage is comprised by a multiplexer that selects the value to
be written to the register bank.

This space intentionally left blank.
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Figure 4: Block diagram of the front end: instruction fetch and decode.
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Figure 5: Block diagram of the back end: execution, memory and write-back.
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2 Coprocessor 0 – System Control Instructions

Figure 6 shows a block diagram of the four stages of the control pipeline, viz exception
instruction fetch (EXCP_IF), exception decode (EXCP_RF), exception execution. and
exception memory–result (EXCP_MM). The Coprocessor 0 (COP0) comprises several
registers and extensive control and interlocking logic.

Exception Instruction Fetch – EXCP_IF The control logic steers the appropriate
value to the PC input, which can be a ‘normal’ next instruction address, or an exceptional
address, which can be the Exception PC (EPC), or one of the exception entry addresses
EXPC_000 (TLBrefill), EXPC_100 (CacheError), EXPC_180 (general exception handler),
EXPC_200 (interrupt handler), or the non-mask-able interrupt/reset address, EXPC_BFC0.

The address generated by PC is used to probe the TLB. If there is a miss, the exception
is signalled and handled when the faulting instruction arrives at (EXCP_MM). The three
instructions that follow the faulting instruction are nullified.

Exception Decode – EXCP_RF The control instructions are decoded at this stage.

Exception Execution – EXCP_EX Overflow exceptions and the trap instruction are
evaluated at this stage. If an exception is taken, it is handled at EXCP_MM, and the
instructions at IF, RF and MM are nullified.

The virtual address for memory references is computed and the TLB is probed for a valid
mapping. If there is a TLB miss, the memory reference is nullified, as are the three
instructions that follow the faulting memory reference.

Exception Memory-Result – EXCP_MM The COP0 registers are updated at this
stage. If an exception or interrupt is taken, the pipeline is stalled for three cycles to clear
all control and instruction hazards, and the instructions at IF, RF and MM are nullified.

The six hardware interrupts, two software interrupts, and the non mask-able interrupt
are implemented in Interrupt Compatibility Mode. A software interrupt, generated with a
mtc0 instruction, takes effect 3 cycles after the mtc0.

2.1 COP0 resources

A subset of the Coprocessor 0 resources are implemented. The subset was implemented as
specified in [MIPS05c] and that document should be consulted for writing code to access
COP0 registers.

The control instructions break, syscall , trap, mfc0, mtc0, eret , ei , di, tlbr , tlbp, tlbwi , tlbwr,
and ehb are implemented. These provide enough functionality for executing a full-blown
Unix-like operating system on the processor model. The wait instruction is used to abort
the simulation, and is therefore not implemented as specified in [MIPS05c].

The COUNT register counts clock cycles, and the COMPARE register can be written with
a 32 bit number to generate a periodical interrupt (hardware interrupt level 5, int_req(7))
when the value in COUNT equals the value in COMPARE.
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The STATUS register determines the execution mode (user/kernel), whether interrupts are
enabled etc.

The CAUSE register indicates the cause of the exception or interrupt. Once an interrupt or
exception is taken, the CAUSE register is only updated after being read by an mfc0 $r,$13
instruction, thus holding information on the event which caused the disruption of the
normal execution flow.

The EPC register holds the address of the instruction that was not executed because of an
exception or interrupt.

The CONFIG register holds the configuration of the processor and caches.

The LLaddr holds the effective address of the last ll (load linked) instruction.

The MMU/TLB registers Index, Random, EntryHi, EntryLo0, EntryLo1, BadVAddr and Context
are implemented as part of the MMU.

See [MIPS05c] for examples of assembly code that references the COP0 registers. Simpler
code fragments can be found in tests/*.s – the files have fairly obvious names.

This space intentionally left blank.
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Figure 6: Block diagram of the control pipeline (COP0).
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2.2 Memory Management Unit and the TLB

The simulation model includes an 8 entry fully associative TLB that supports 4 Kbyte
pages. The MMU does not check the 3 most significant bits that divide the address space
into user/kernel mapped/unmapped regions. Thus, the address space is flat and user-to-
kernel protection violations are not checked. Figure 7 shows a block diagram of the signals
that comprise the virtual to physical translations.

The TLB entries are initialized to map 6 pages of ROM, 8 pages of RAM and 2 pages
for the peripherals. Table 1 shows the contents of the TLB after initialization. The
register Wired should be initialized to 2 to ensure that the first two pages of ROM and the
peripherals are always mapped and do not generate TLB misses. If these pages become
unmapped, the code at the bottom of the ROM addresses, which handles TLB and other
exceptions, will not be available to fix the faulting address maps, and an infinite loop
ensues: fault → fault ...

Table 1: Initial page mappings on the TLB.

Entry type contents addresses
0 ROM ROM pages 0,1 0x0000.0000–0x0000.1fff
1 I/O I/O pages 0,1 0x3c00.0000–0x3c00.1fff
2 ROM ROM pages 2,3 0x0000.2000–0x0000.3fff
3 ROM ROM pages 4,5 0x0000.4000–0x0000.5fff
4 RAM RAM pages 0,1 0x0004.0000–0x0004.1fff
5 RAM RAM pages 2,3 0x0004.2000–0x0004.3fff
6 RAM RAM pages 4,5 0x0004.4000–0x0004.5fff
7 RAM RAM pages 6,7 0x0004.6000–0x0004.7fff

The addresses shown in Table 1 are defined in file vhdl/packageMemory.vhd: the base
of the RAM pages is at x_DATA_BASE_ADDR, and the base of the I/O addresses is in
x_IO_BASE_ADDR. If these addresses are changed, the TLB will be initialized with the
new values once the VHDL code is recompiled.

The register Context has 16 bits to point to the top of the page table, rather than the 9
bits prescribed in [MIPS05c], pg. 67. This is needed to support address spaces smaller
than 4 Gbytes, so that the PageTable may reside in low(ish) addresses.

The initialization code at include/start.s sets the top of the stack at address
(x_DATA_BASE_ADDR + x_DATA_MEM_SZ − 16). The constants x_DATA_BASE_ADDR
and x_DATA_MEM_SZ are defined in file vhdl/packageMemory.vhd.

This space intentionally left blank.
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Figure 7: TLB–pipeline connections.

3 The Entities

In the comments, act={0,1} means that the signal is active in 0 or in 1, respectively. regN
is a width N std_logic_vector.
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Programa 1: Entity for the processor core.

en t i t y co r e i s
port (

r s t : i n s t d_ l o g i c ; −− r e s e t , a c t=0
c l k : i n s t d_ l o g i c ; −− p i p e l i n e c l o c k
ph i1 : i n s t d_ l o g i c ; −− 1/4 c y c l e out o f phase p i p e l i n e c l o c k
ph i2 : i n s t d_ l o g i c ; −− 2/4 c y c l e out o f phase p i p e l i n e c l o c k
ph i3 : i n s t d_ l o g i c ; −− 3/4 c y c l e out o f phase p i p e l i n e c l o c k
i_aVa l : out s t d_ l o g i c ; −− i n s t r u c t i o n a d d r e s s v a l i d , ac t=0
i_wa i t : i n s t d_ l o g i c ; −− i n s t r memory not ready , ac t=0
i_addr : out r eg32 ; −− i n s t r u c t i o n a d d r e s s
i n s t r : i n r eg32 ; −− the i n s t r u c t i o n p rope r
d_aVal : out s t d_ l o g i c ; −− data a d d r e s s v a l i d , ac t=0
d_wait : i n s t d_ l o g i c ; −− data memory not ready , ac t=0
d_addr : out r eg32 ; −− data a d d r e s s
data_inp : i n r eg32 ; −− data i n p u t
data_out : out r eg32 ; −− data output
wr : out s t d_ l o g i c ; −− wr i t e , a c t=0
b_se l : out r eg4 ; −− byte s e l e c t i o n , f o r LB , SB , LH ,SH
nmi : i n s t d_ l o g i c ; −− non mask−a b l e i n t e r r u p t
i r q : i n r eg6 ) ; −− 6 hardware i n t e r r u p t s

end co r e ;

Programa 2: Entity for the synchronous ROM.

ent i t y ROM i s
gener ic (LOAD_FILE_NAME : s t r i n g ) ; −− ROM i n i t i a l i z a t i o n f i l e
port ( r s t : i n s t d_ l o g i c ; −− r e s e t , a c t=0

c l k : i n s t d_ l o g i c ; −− wa i t s t a t e machine ’ s c l o c k
s e l : i n s t d_ l o g i c ; −− ch i p s e l e c t , a c t=0
rdy : out s t d_ l o g i c ; −− data not r eady ( w a i t i n g ) , ac t=0
ph i2 : i n s t d_ l o g i c ; −− a d d r e s s s t r o b e
addr : i n r eg32 ; −− a d d r e s s
data : out r eg32 ) ; −− i n s t r u c t i o n

end ROM;

Programa 3: Entity for the synchronous RAM.

ent i t y RAM i s
gener ic (LOAD_FILE_NAME : s t r i n g ) ; −− RAM i n i t i a l i z a t i o n f i l e
port ( r s t : i n s t d_ l o g i c ; −− r e s e t , a c t=0

c l k : i n s t d_ l o g i c ; −− wa i t s t a t e machine ’ s c l o c k
s e l : i n s t d_ l o g i c ; −− ch i p s e l e c t , a c t=0
rdy : out s t d_ l o g i c ; −− data not r eady ( w a i t i n g ) , ac t=0
wr : i n s t d_ l o g i c ; −− wr i t e , a c t=0
ph i2 : i n s t d_ l o g i c ; −− a d d r e s s s t r o b e
addr : i n r eg32 ; −− a d d r e s s
data_inp : i n r eg32 ;
data_out : out r eg32 ;
b y t e_ s e l : i n r eg4 ) ; −− byte / h a l f /word s e l e c t

end RAM;
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4 VHDL Sources

The VHDL source files are described below. The VHDL source files are stored in directory
vhdl.

packageWires.vhd Several constants and data types are defined in this file – the excep-
tion being cache/TLB parameters and values related to COP0. A few functions
to display std_logic_vectors on the terminal are provided to help in debugging.

packageMemory.vhd Defines the addresses for RAM, ROM, and peripherals, plus TLB
and cache design parameters.

packageExcp.vhd Defines the addresses and constants needed to access COP0 re-
sources.

altera.vhd Simulation models for Altera’s own components (PLLs and clock drivers).
aux.vhd Auxiliary models, such as adder, 32-bit register, ring-counter to generate the

four-phases clock, flip-flops.
core.vhd Processor core. The code attempts to follow “the book” [PH09]. Each

pipeline stage is delimited by a pair of pipeline registers and all the combi-
national circuits (and some state) are contained “within” the pipe-stage.

exception.vhd Contains the registers for the control pipeline. These carry the infor-
mation regarding the exceptions that arise as an instruction travels down the
pipeline. The entities and architecture are very large yet simple. These were
put on a separate file to ease the navigation though the code.

cache.vhd Contains models for the instruction and data caches. There are two “fake
caches” that just pass along all the signals.

memory.vhd Contains simulation models for ROM and RAM memory.
ram.vhd Contains a synthesizable model for RAM memory.
rom.vhd Contains a synthesizable model for ROM memory.
io.vhd Models for the peripherals, both simulation and synthesis.

For simulation the models are: one that writes an integer to the simulator’s
standard output, one that writes a character to the simulator’s standard output,
one that reads one integer from a file, and one that writes one integer to a file,
and one that displays hit/miss statistics from the caches.
For simulation and synthesis the models are: an external 30 bit counter that
generates an interrupt after a programmable number of clock cycles, a two-digit
seven-segment LED display, an LCD display controller interface, a keyboard-
/switches interface, and the UART’s bus interface.
See include/cMIPSio.c for the API to the peripherals.

pipestages.vhd The pipeline registers are defined in this file. The entities and archi-
tecture are very large yet simple. These were put on a separate file to ease the
navigation though the code of the processor core.

units.vhd Models for the main functional units are defined in this file, namely the
ALU and the register bank.

uart.vhd Models for the UART and for the “remote computer”. The “remote com-
puter” can read the file serial.inp and send its contents to the UART, or
write the file serial.out with characters received from the UART.
The UART model is synthesizable whereas the “remote computer” is for simu-
lation only.
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tb_cMIPS.vhd The testbench declares and instantiates all components of the system,
as well as reset and clock generator processes. The addresses for ROM, RAM
and I/O are decoded in the testbench.
There is a simulation version (vhdl/tb_cMIPS.vhd) and a synthesis version, in
altera/tb_cMIPS.vhd. The other files in the altera directory are those needed
for synthesis.

5 Scripts

Several scripts were written to build the cMIPS model, cross-compile the test programs
and run the simulations. Yes, maybe, one day these should all be merged into one big fat
Makefile. The scripts are in the bin directory.

If the command line argument -h is given to any of the scripts, an usage message is printed
on the screen, and the script exits.

Do not forget to add /path/to/cMIPS/bin:. to your $PATH variable.

You need mips-gcc and Binutils to compile your programs and run the test programs.
See docs/installCrosscompiler for instructions on building and installing the cross
compiler and toolchain.

build.sh (executable) Usage: build.sh
Compiles all VHDL sources and builds the simulator/model.
In case of trouble not caused by poor VHDL coding, remove the files vhdl/
.last_import and vhdl/work-obj93.cf, then run bin/build.sh again.

assemble.sh (executable) Usage: assemble.sh [-v] [-O 2] file.s
The path to GCC and binutils is (automagically) set at the top of the script.
Given an assembly source file, produces prog.bin and data.bin to be input by
the VHDL model. mips-objcopy is used to produce the binaries.
If the command line argument -v (verbose) is given, objdump prints the .text
and .data sections of the ELF, as well as the memory map produced by mips-ld
in a file with same prefix as source, and suffix .map. If the argument -O
{0,1,2,3} is given, mips-as uses that number as the optimization level, de-
faults to -O1.
The argument -mif generates the initialization files for synthesis.
Care must be exercised in assembling the test programs written in assembly:
if the assembly code is optimized, the instructions might be reordered by the
assembler and results may appear to be incorrect.

compile.sh (executable) Usage: compile.sh [-O 2] [-v] file.c
The path to GCC and binutils is (automagically) set at the top of the script.
Given a C source file, produces prog.bin and data.bin to be input by the
VHDL model. See below for a description of the compilation/linking process.
If the command line argument -v (verbose) is given, objdump prints the .text
and .data sections of the ELF, as well as the memory map produced by mips-ld
in a file with same prefix as source, and suffix .map. If the argument -O
{0,1,2,3} is given, mips-gcc uses that number as the optimization level, de-
faults to -O1.
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The argument -mif generates the initialization files for synthesis.
Care must be exercised in compiling test programs written in C that reference
the peripherals. If the source code is optimized, the C commands that reference
the I/O addresses might be optimized away, as for instance, a loop that contin-
uously tests the same address is deemed useless by the compiler and removed
from the executable. Not nice at all.

include/cMIPS.ld This ld script contains the definition of the memory map employed
by assemble.sh and compile.sh to link the executables. The address def-
initions must be kept consistent with those in packageMemory.vhd since the
addresses of memory are hardwired in the testbench. See edMemory.sh.

edMemory.sh (executable) Usage: edMemory.sh [-v]
This script modifies the header files so the address ranges defined in
packageMemory.vhd are propagated to all appropriate files which are thus kept
consistent. The script is not very intelligent: any changes to the address
range definitions must keep the spacing, and naming, exactly as they are in
packageMemory.vhd and in include/cMIPS.{ld,h,s}.
With argument -v prints the differences between new and old versions of
modified files. This script is invoked automatically by build.sh, run.sh,
assemble.sh and compile.sh, and normally there would be no need to invoke
it directly.

run.sh (executable) Usage: run.sh [-n] [-w] [-v v.sav]
Builds the model and then runs the simulation. If given the argument -n sends
the output of the simulator to /dev/null, discarding the (very large) file with
timing information that would be input to gtkwave. If given the argument -w,
it starts gtkwave. There is no (much) reason to supply -n and -w simultane-
ously. If given the arguments -w -v v.sav, then gtkwave is invoked with the
visualization definitions in v.sav.
Notice that the simulator produced by ghdl expects prog.bin, data.bin,
input.data and output.data to be in the current directory. The last two
may be empty files.

v.sav Contains definitions for visualization with gtkwave such as the timescale and
signals to be displayed. This can be a symbolic link to one of the save files
supplied: one to ‘watch’ the pipeline, one for COP0, one for the TLB, one each
for the transmission or reception by the UART.

tests/doTests.sh (executable) Usage: ./doTests.sh
Performs all functional tests on the cMIPS simulator/model. See Section 7.

5.1 What about compilation?

The run time support for cMIPS is rather small and primitive, and no libraries are pro-
vided with the code (yet). Thus, all the code to be compiled must be self contained.
bin/compile.sh takes a single file that must contain the function main() along with
everything else that might be needed.

The C code for the I/O functions (include/cMIPSio.c) is compiled and linked with your
“main” file. It contains functions to access the simulated peripherals such as for reading
and writing to the simulator’s standard input and output, reading and writing files, making
a dump of the RAM, and accessing the external counter. The code in this file cannot be
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optimized because GCC will happily eliminate all those meaningless references to ‘memory’
– memory is in quotes because the I/O registers are memory mapped.

All initialization code must go into include/start.s. As of now, this file initializes the
STATUS register, the stack pointer and pins down on the TLB the page with the stack.
It also contains some interrupt/exception dispatch code. The function exit() flushes the
pipeline and stops the simulation. The instruction wait is not implemented in the processor
and is used solely to stop the simulation in an orderly fashion.

The interrupt handlers must be collected into file include/handlers.s. See the defini-
tion of signal irq in vhdl/tb_cMIPS.vhd for what device interrupts on which interrupt
line/priority. Do a search for “ irq <=”.

The symbol _end marks the highest RAM address used by your code. This symbol/variable
is useful to determine the size of RAM. Of course, the top of the stack is allocated at the
topmost RAM address, which should be at a safe distance above _end.

The file include/cMIPS.ld is a simple ‘driver’ for mips-ld and maps the executable
sections into file prog.bin, and assorted data sections onto file data.bin.

6 File I/O from the VHDL model

The I/O address ranges are defined in packageMemory.vhd. Models for a few ‘peripherals’
are provided: one that writes an integer to VHDL’s simulator standard output, one that
reads from file input.data, and one that writes to file output.data. These two files
must be binary files, filled with 32-bit integers. To check the contents of input.data and
output.data try
od -tx4 output.data | cut -d’ ’ -f 2-5 | sed -e ’$d’.

The I/O functions should go into a library at some point; they are declared in include/
cMIPS.h and their behavior is briefly described below.
// o r d e r l y end o f s imu l a t i o n −− s t r i c t l y speak ing , not a p e r i p h e r a l
extern void exit(int );

// p r i n t s an i n t e g e r on VHDL ’ s s imu l a t o r s tandard output ( s tdou t )
extern void print(int );

// p r i n t s a c h a r a c t e r on s imu l a t o r ’ s s t andard output ( s tdou t )
// output i s on ly d i s p l a y e d a f t e r a ’ \0 ’ or an ’\ n ’ i s s e n t out
extern void to_stdout (char c);

// w r i t e s an i n t e g e r to f i l e output . data
extern void writeInt (int );

// c l o s e f i l e output . data
extern void writeClose (void)

// r e ad s an i n t e g e r from f i l e i nput . data ; r e t u r n s 1 at EOF, 0 otw
extern int readInt (int *);

// dumps the c on t e n t s o f the e n t i r e RAM to f i l e dump . data
extern void dumpRAM (void );
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7 Tests

The tests directory contains several assembly and C source files, some scripts to automate
the tests, and files with the expected results for the simulation runs.

Each assembly file tests some specific instructions or features of the processor, caches, or
memory. The C files are simple benchmarks that perform more extensive testing of the
processor/memory.

The script doTests.sh assembles (almost all) the assembly files and runs them on the
VHDL model. Then it compiles (almost all) the C files and also runs them on the VHDL
model. It should complete in a couple of minutes.

Each C file was compiled and run on a Linux desktop to generate the “correct” output.
For a C source file TST.c, a file TST.expected was produced and stored in directory tests.
Similarly for the assembly files. TST.c is then compiled with mips-gcc and run on cMIPS.
The output of the test programs is normally sent to the simulator’s standard output.

doTests.sh runs the VHDL simulator and compares the simulated output TST.simout to
the expected output TST.expected. If they are equal, the result is deemed to be correct;
otherwise, the script aborts and the diff between TST.simout and TST.expected is printed
on the screen.

The files include/cMIPS.{ld,s,h} contain the address ranges for instructions, data and
IO devices. These files must be kept consistent with packageMemory.vhd since these
addresses are hardwired in tb_cMIPS.vhd. All test files import one of cMIPS.{s,h}, and
assemble.sh and compile.sh import cMIPS.ld to link the cMIPS executables. The script
edMemory.sh automatically edits the pertinent files – do not mess with these files unless
you understand the risks and know what you are trying to do.

How to run a test To run a test you shall:

1. add /path/to/cMIPS/bin and /path/to/crosscompilers/bin to your PATH shell
variable – the scripts will do this automatically if the components of your pathnames
do not have any spaces or weird characters;

2. export the pathname to your cMIPS installation to the shell scripts:
cd /path/to/cMIPS ; export tree=$PWD
or edit all scripts in cMIPS/bin to change the installation directory.
If the components of your pathnames do not have any spaces or weird characters,
the scripts will do this automatically;

3. cd tests and pick a program to simulate/test, for instance, insert.s;
4. the source must be assembled and copied to the directory where the testbench will

execute:
assemble -v insert.s && mv prog.bin data.bin ..

5. return to the top directory (cd ..) and perform the simulation:
run.sh -w &
this command rebuilds the cMIPS simulator, and starts gtkwave because of the
-w argument;

6. if the model is correctly built, the simulation is run and gtkwave started. The
standard output shows the program’s output, which should be identical with
tests/insert.expected.
At the end of a (correct) simulation run the simulator prints a message similar to
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the one below to standard error output, after printing out any (potentially) correct
results to the standard output.
home/roberto/cMIPS/vhdl/core.vhd:808:7:@5387500ps:(assertion failure):
cMIPS BREAKPOINT at PC=0000011c opc=010000 fun=100000 brk=10000000000000000000
SIMULATION ENDED (correctly?) AT exit();
/home/roberto/cMIPS/tb_cmips:error: assertion failed
/home/roberto/cMIPS/tb_cmips:error: simulation failed

How to run all tests To perform all functional tests on the model you shall:

1. cd tests;
2. ./doTests.sh. If all the tests produce the expected results, the terminal shows a list

of the tests performed that produced “the expected results”. If any of the programs
yields an output that differs from the expected, the script stops and displays the
offending output on the simulator’s standard output.

8 Memory Interface

The timing of a memory access, both for ROM and RAM, is controlled by two signals,
aVal and wait. In what follows the ROM interface is described; the interface of the RAM
is similar. Figure 8 shows the timing diagram for a reference without wait-states, and a
reference with one wait-state.

i_aVal

rom_sel

rom_rdy

stop waitingno wait−states do wait

phi2

clk

Figure 8: ROM access timing diagram with wait-states.

On the rising edge of clk the processor asserts i_aVal to signal the start of a new reference,
while the content of the PC is output onto the address lines. During the first half of the
cycle the address decoder compares the address range, and if no wait-state is needed, the
signal rom_rdy must be deasserted – it must be deasserted prior to the rising edge of phi2.

When one or more wait-states are needed in order for the access to complete, the signal
rom_rdy must be asserted prior to the rising edge of phi2, and is kept asserted, for as many
processor cycles as necessary. The signal rom_rdy is sampled by the processor at the rising
edge of phi2, and when it is deasserted, the reference completes on the next rising edge
of clk.

On the ROM, the address is latched on the rising edge of phi2 and the instruction is
captured by the IF_RF pipeline register on the rising edge of clk.
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On the RAM, the address is latched on the rising edge of phi2. On a store, the memory
is updated on the rising edge of clk. On a read, the datum is captured by the MM_WB
pipeline register on the rising edge of clk.

The instruction memory port (ROM) state machine freezes while there is a wait-state
request to the data memory port (RAM); likewise, the data memory port also freezes
while there is a wait-state request to the ROM port. The pipeline is fully interlocked to
the memory ports, as well as to data and control dependencies.

The peripherals communicate with the processor through the data memory bus and the
addresses of RAM or peripherals must be decoded from the data address bus. See the
data_addr_decode and inst_addr_decode entities/architectures in the testbench.

8.1 Synthesis model

The model was conceived primarily as an aid to learning through simulation and was later
adapted for synthesis on an Altera Cyclone IV FPGA. The synthesis model runs at 50Mhz,
which is the rated clock speed of the Mercurio IV development kit [Macnica14].

The assembly and compilation scripts generate the files ROM.mif and RAM.mif, as needed
by Altera’s tools, and these two are replacements for prog.bin and data.bin, as described
earlier. The synthesis model does not provide for input/output file operations; it does
support a 12 key keypad, LCD display, and serial interface (UART). The interfaces to the
SDRAM controller, VGA output and microSD card reader are under development.

8.2 The road ahead

On the software front, the obvious “next step” in the development of any processor imple-
mentation is the porting of an operating system (OS). As cMIPS was primarily intended
as a tool for education, a fairly obvious OS choice would be XINU [Comer15]. Some may
argue that any of the embedded versions of Linux ought to be the porting choice1. A
production system, whatever technical merits it may possess, is far too complex for the
beginner and therefore not a conducive instructional medium.

On the hardware development front, at the top of the “to do list” is the synthesizable
memory hierarchy, which includes caches, an SDRAM controller, and a microSD controller.
These components make up a three-level memory hierarchy which can support a complete
virtual memory system on the development kit.

This space intentionally left blank.

1The susceptible reader can rest assured that the author has been a user and advocate for Linux for
nearly one quarter of a century.
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9 Ownership and Rights of Use

-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-- cMIPS, a VHDL model of classical the five stage MIPS pipeline.
-- Copyright (C) 2013-2016 Roberto André Hexsel
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, version 3.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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