
Back to the Past:
When Segmentation Is More Efficient Than Paging

Lauri P Laux Jr, Roberto A Hexsel

Departamento de Informática, UFPR
lauripaulo@gmail.com, roberto@inf.ufpr.br

Abstract. Virtual Memory was devised in a time of scarce resources. In
the coming decade we expect to see physical memory systems populated with
264 bytes of RAM, a fraction of which may be non-volatile. Demand paging
is inefficient in such large memories because space (Page Tables) and time
(Page Table walks) overheads are too high. We collected execution traces
from six applications and characterized their virtual memory behavior with
respect to miss rates in references to Translation Buffers (TLBs) and Seg-
ment Buffers (SBs). Our measurements indicate that the miss rates for
SBs are 2-3 orders of magnitude smaller than for TLBs. In light of these
results, we discuss some of the design implications of segmented systems
and of SBs.

1. Introduction
The first edition of “Computer Architecture, A Quantitative Approach” [HP90],
stated, as a rule of thumb, that the memory needed by the average program grows
from 1/2 to 1 address bit per year. The book was published in 1990, and around
1995 we saw the introduction of 64 bit microprocessors with memory buses that were
32-36 bits wide. A decade later, memory buses widened to 40 bits, and in the mid
2010’s 50+ bit buses are available. If this trend continues, in the next decade we can
expect to see processors which may reference the full 264 byte address space, all of it
populated with RAM, with possibly a large fraction comprised of non-volatile RAM.

The memory systems of the next decade will be rather different from those
of the early 2000s, when Intel discontinued support for segmentation. We believe
it might be convenient to reconsider the design of the virtual memory system, as
the premises that held since the early 1960s are no longer valid. Some of the recent
trends include (i) slow magnetic disks are being replaced by > 100× faster solid
state disks (SSDs); (ii) installed RAM capacity is so large, and inexpensive, that
swapping may become unnecessary; (iii) when the promise of non-volatile RAM
is fulfilled, magnetic disks will become “second-class peripherals” and a complete
redesign of file systems may be worthwhile, and this may entail the elimination of
buffer caches, for instance [LH16].

Managing such gigantic address spaces with demand paging becomes rather
expensive, both in terms of space – one huge page table per process – and time
– paging traffic between the translation buffer and primary memory. For these large
physical memories, we believe Multics style segmentation to be a better memory
management model that demand paging [DD68].

WPerformance 2018 2

This paper presents the characterization of the virtual memory behavior in
terms of the miss rates when accessing the buffer that hold virtual-to-physical ad-
dress mappings. We simulated translation buffers for demand paging and for seg-
mented virtual memory. The simulated buffer organizations are not meant to repre-
sent what one may find in current products as we are interested in counting memory
references rather than measuring the simulated performance of said buffers. As we
are interested in characterizing memory behavior of systems which will be available
ten years hence, we do not try to guess what will be the specific design parameters
of the translation buffers, as the design space is rather large.

We performed measurements to assess the effectiveness of a segmented virtual
memory system and compared that to a demand paging system, for translation
buffers of similar complexity. Our results indicate that miss rates of the segmentation
address translation buffer is 100 to 1000× smaller than its demand paging equivalent.
This, plus the gains achievable in handling the smaller data structures, indicate that
segmentation may be a worthy alternative to demand paging when one considers
physical memories with 264 bytes.

Traces were collected from the execution of six real programs, and with these
traces we compare the performance of address translation with Translation Looka-
side Buffers (TLB) for paging, and Segmentation Buffers (SB) for segmentation. Our
tracing tool builds a Segment Table for the executing process and rewrites the linear
addresses into segmentID-displacement tuples. These are then used to compute the
TLB and SB hit rates. In this paper we consider single processor systems.

In the next section we define both Demand Paging and Segmented virtual
memory systems. Section 3 describes our trace collection tools, and in Section 4
we present the simulation data collected. In Section 5 we compare the miss rates
measured for TLBs and SBs; and in Section 6 we discuss system design issues in
light of our results. Section 7 discusses related work, and Section 8 presents our
conclusions.

2. Paging and Segmentation
The need for virtualizing the memory system arose in the mid 1950’s as the programs
plus their data were becoming larger than the physical memories then available. The
earlier systems made use of segmentation because it was intuitive: as a program is
logically divided into three segments, text (code), data, and stack, portions of the
physical memory should be allocated to these segments [Den70]. Segmentation had
a serious drawback as the expensive physical memory could be underutilized because
of fragmentation. The holes between the segments residing in memory would be too
small for any new segment, whereas the scattered free space could accommodate one
or more segments. This was called “external fragmentation” because the available
spaces were external to the segments.

The computer architecture group at Manchester University designed the first
demand paging system [KELS62]. Memory was divided into small chunks (pages)
and the capacity of physical memory was augmented by “virtual memory”, obtained
by a clever combination of software and the use of secondary memory. This way, each
segment wasted, on average, half of a page (internal fragmentation), and the pages

WPerformance 2018 3

would be allocated onto physical memory only if the dynamics of program execution
so dictated. Primary memory held only a small-ish subset of the program’s address
spaces. Memory utilization was greatly improved at the cost of increased traffic
between primary and secondary memory. This memory management model has
been successfully employed for half a century.

The Multics [DD68, BCD72] operating system was a very ambitious design,
which combined the logic simplicity of segmentation while each segment was paged
in or out on demand. This design was much too complex for the hardware available
in the early 1970’s.

Figure 1 shows a conceptual model of a modern memory management sys-
tem [LH16]. Two address streams are generated by the processor, one from the
program counter (PC) and one from the address generation unit (AGU). These two
units generate virtual addresses vi and vd to reference instructions and data. For
each stream there is a “translation buffer” (TB) between the processor and primary
memory. These TBs are implemented with fast associative memory and hold a small
subset of the process’ memory map, which is represented by the function f() in the
diagram. The primary memory is referenced with physical addresses pi and pd.

......................

..

......................

..

......................

..

......................

..

.......

.......

..............
.

.......

.......

..............
.......
.......
.......
.......
.......
.......
.......
.......
.......
...................
.....

......................

..

......................

..

..
...

..........................
..........................

..........................
..........................

..........................
............................

.

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dTB

fetch

mem

PC

AGU

p = f(v)

i

d

& protection
translation

vi

vd pd

piiTB
RAM

processor

Figure 1: Conceptual model for the virtual memory system.

For a given process, its memory map holds all the valid associations be-
tween virtual and physical addresses. This map provides two important functions:
(i) physical memory allocation which decouples virtual addresses from physical ad-
dresses, so that a process may use any free memory available; and (ii) security to
stop a process from referencing addresses allocated to other processes. To improve
performance, these two functions must be performed near the processor and the
translations must be fast, hence the buffers are small.

When a process starts, its memory map is partially filled by the loader and a
small subset of the instructions and data are loaded from secondary memory. As the
execution progresses, a different subset of the address space may have to be loaded,
and the memory map is updated accordingly. The domain of the mapping f() is
the whole address space, typically 264 bytes in current processors, whereas the image
of f() is some subset of the address space. The main function of virtual memory
is to provide the programmer with access to, essentially, infinite memory – 264 is a
rather large number.

WPerformance 2018 4

2.1. Paging
The conceptual model in Figure 1 is valid for both, segmentation and demand pag-
ing. For paging, the chunks of memory are called pages, and the most popular page
size is 4K bytes. Some systems provide super-pages. with sizes ranging from 64K to
1G bytes depending on processor model and operating system design. The mapping
function is called “Page Table” (PT), and the size of its domain is, for pages with
2n bits, |f()| = 264/2n. For 4K bytes, the Page Table holds up to 252 elements; for
1G byte pages, the domain is a hefty 234 elements. As each PT element is encoded
in 8 or 16 bytes, these tables are very large. Clever hierarchical designs are used
to reduce table size. Yet for large processes such as database managers, the Page
Tables are proportionally large. At least some subset of the PT itself must always
be kept in primary memory.

A virtual address is split into two fields, a virtual page number (VPN) and
a displacement within the page. When the processor issues a reference, the TLB is
searched for the corresponding VPN. If the translation is found (a TLB hit), the
reference proceeds towards the primary memory (RAM), whence it then completes.
If the address mapping is not found in the TLB (a TLB miss), then the Page Table
is indexed with the VPN, and if the mapping is valid, then the mapping from the
VPN to the physical page number (PPN) is loaded into the TLB, possibly evicting
some other mapping. These actions may be performed by a state machine – in Intel
x86 processors – or by a short sequence of instructions – in MIPS processors.

If the mapping on the PT is not valid, it may be the case that the page
is not resident in memory and has to be fetched from secondary memory (a page
fault), or that the reference is to a non-mapped region of the address space (a
segmentation fault), or the reference is deemed illegal (a protection fault). In any
case, the operating system (OS) must take over and perform a series of operations
to either recover from the fault, or to terminate the process.

2.2. Segmentation
As a minimum, a process comprises three logical segments: text, data and stack.
Usually, the size of the text segment is fixed at compilation, whereas the size of
the data and stack segments may vary during execution. In addition, each library
dynamically linked to the process contributes with text and data segments which
must be included in its address space.

A Segment Table (ST) is much smaller than a Page Table. The number of
segments in a process is on the order of 100 to 1000. Even if the operating system
considers open files as process segments, as in Multics, the ST would need some 2000
elements. Managing these smaller tables is far more efficient than the gargantuan
Page Tables.

A virtual address is split into two fields, a virtual segment number (VSN)
and a displacement into that segment. Segments can be of arbitrary sizes, hence
both the VSN and the displacement are of arbitrary width. Usually, a certain
number of the most significant address bits are reserved for indexing the Segment
Table (or the segment buffer). The actions needed to translate a virtual address
into the corresponding physical address are similar to those with paging. If the

WPerformance 2018 5

mapping is found in the SB (a SB hit), the translated address is forwarded to
the primary memory. If there is a SB miss, the segment table is searched for the
physical segment number (PSN), and the mapping VSN 7→PSN is loaded onto the
SB, possibly evicting some other mapping.

If the mapping in the segment table is invalid, the three possibilities described
above also apply: it may be a segment fault and the missing segment must be loaded
from secondary memory, it can be a protection fault or a reference to an unmapped
address. In any of these cases, the OS must take over to rectify the problem.

3. Trace Collection
We collected the execution traces on an Intel x86-64 processor, running Linux. The
programs were instrumented with Valgrind 3.1.2 [NS07], and the traces generated
with the Lackey tool. We wrote a program, called TraceTool, to read Lackey’s
output and store it in compressed files. Only the execution of the ‘main’ process
is traced; the main process is the one that performs the bulk of the work for an
application. Some of the applications are invoked by a shell script which sets up
the environment, then starts the main process. If the main process spawns other
processes, the child processes are not traced because their address spaces are disjoint
from the main process’.

Our traces contain the addresses of all references to data, plus the addresses
of the load-store instructions. The traces contain enough information to reproduce
the memory behavior of the programs.

When the execution starts, most of the logical segments are mapped by
the loader onto the process’ address space: four segments for the program (text,
initialized data, uninitialized data (“block started by symbol”, or BSS) and the
stack, plus three more segments for each library linked into the process (text, data
and BSS). As the execution progresses, more segments may be added when the
process requests heap space, usually via a call to malloc. To capture this behavior,
we wrote a Python script that periodically scans the address space and records ‘new’
segments. The script makes use of pmap and takes a new snapshot every 100ms.
Trace collection can last for several hours, and taking 10 samples per second seems
to be a good compromise between precision and reduced interference on the process
being traced. When the Lackey process ends, the memory map is complete.

The original x86-64 traces are suitable for simulating the linear (flat) address
space of paged memory systems. To generate the two-dimensional addresses for
a hypothetical segmented machine, we use the process memory map to create a
Segment Table (ST). Each element of the Segment Table records the segment’s base
address (BaseAddr), top address (TopAddr), the segment size, access rights, and a
string with the segment name. Table 1 shows four lines of an ST. As a new segment
is added to the ST, if the topmost 16 address bits of the segment starting address are
all zero then it receives the next available segment number (VSN). If the topmost
16 address bits are non-zero, the VSN becomes the value of the topmost 16 bits. In
the table, the digits are grouped into quartets to improve readability.

Once the ST is populated, the two-dimensional addresses can be generated
for a linear address (LA). To find the segment to which a linear address belongs to,

WPerformance 2018 6

Table 1: Segment table (fragment).

VSN BaseAddr TopAddr Size Rights Name
0x0000 0x0040.0000 0x0061.0fff 2M r-x-- lsblk
0x0001 0x0061.1000 0x0061.1fff 4K r---- lsblk
0x0002 0x0061.2000 0x03ff.ffff 58M rw--- lsblk
0x0003 0x0400.0000 0x0402.5fff 152K r-x-- ld-2.23.so

the address is compared to the starting address and size of each ST element. If the
address is in range of a segment (BaseAddr6LA6TopAddr), then the VSN replaces
the topmost 16 address bits of the linear address, thus generating a segmented
address. For instance, if the linear address is 0x0061.10ff, then it belongs in
segment 0x0001 and the segmented address is 0x0001.0000.0061.10ff.

4. Reference Counts
We collected traces from six real applications. In what follows we briefly describe
the application, the data sets, and the reference counts obtained from the traces.
The programs were simulated for 10 billion instructions, and each simulation yields
traces with roughly 13-15 million memory references.
MySQL SysBench [Ubu17] performs random operations on a table with 1,000,000
lines, implemented as an MySQL database. The operations are distributed across
eight internal MySQL threads, and run during 480 seconds. Each thread’s stack is
held in a separate segment, and there is an anonymous segment below the bottom
of the stack to catch references outside of the allocated area.
Firefox The web browser was traced while opening a dynamic web page pointed to
by a command line argument. Most of the segments mapped are dynamic libraries
but just a few of them are used to display the (relatively simple) web page. There
are 91 segments labeled as ‘cache’, with sizes ranging from 1 to 256 pages.
Python Python was traced executing pip, to fetch and install tools used in the
development of Python programs.
Tomcat Tomcat is a Java Servlet Container and web server. The server was traced
while serving Tomcat’s initial web page, then shutting down. There are 319 segments
labeled as anon.
QEMU + FreeDOS QEMU is a hardware virtualization platform. The traces were
obtained while emulating an Intel x86 processor, with 32 Mbytes of RAM, hard
disk, and text console. FreeDOS was run on this virtual machine from the boot
sequence until the first prompt. At the prompt, FreeDOS was shutdown from the
text console. There are 242 segments labeled as anon.
LibreOffice The trace records the writer application reading a 314 Kbytes Microsoft
Word document. There are 91 segments labeled as ‘cache’, with sizes from 1 to
256 pages, and 163 anonymous segments.

Table 2 shows the number of libraries linked into the application, the seg-
ments mapped, and the segments actually referenced. Many segments, mostly from
libraries, are mapped but never referenced, as the libraries’ functions are not invoked.

WPerformance 2018 7

Table 2: Libraries, number of segments, usage ratio.

application libs segs used ratio
MySQL 75 310 151 48%
Firefox 485 979 633 64%
Python 111 162 115 71%
Tomcat 90 416 272 65%
QEMU 601 845 567 67%

LibreOffice 785 1,085 830 76%

All libraries, with two exceptions, map a 2 Mbytes segment with no ‘r,w,x’
permissions, between the executable and the read-only segment. This buffer zone
is used to catch any references to addresses below the segment with initialized vari-
ables, which is copy-on-write and remains untouched unless its contents are changed
by the process. The two exceptions are the loader ld-2.23.so, and the locale’s ta-
bles libc.mo – these libraries do not make use of the 2 Mbyte buffers.

Memory allocated as heap is mapped on segments labeled anon, and have
r,w permissions. Some anon segments have no permission bits set, and probably
are heap regions that were allocated but never touched during execution – the traces
show no references to these segments.

Figure 2 shows a plot of segment frequency versus segment size for the ap-
plications, and the average for the six programs. The most popular segment is a
single 4 Kbytes page; the second most popular size is 2 Mbytes. Segment sizes were
rounded up to the nearest power of two. The numbers shown are for allocated seg-
ments, and not for segments actually referenced – Table 2 indicates that some 20 to
50% of the segments are allocated yet never touched during execution.

5. A Comparison of Paging and Segmentation
Three TLB/SB configurations were simulated, with 32, 64 and 128 entries.
All buffers are fully associative and were simulated with perfect least-recently
used(LRU) replacement. Except for the LRU replacement, the buffers are of a
complexity similar to those available on current x86-64 processors. By ‘similar’ we
mean the simulated buffers are of similar capacity to the last level TLB of x86-64
processors. As we are merely counting references, it is unnecessary to simulate the
rather complex TLB hierarchies of existing processors.

Table 3 displays the number of references on each trace (refs). The columns
under the heading TLB show the miss rates for the three TLB organizations, while
those under the heading SB show the miss rates for the three SBs. Some of the
applications encounter a number of misses that are less than one in 10,000 references
– typically, these are buffers that accommodate all the active segments referenced
during execution, and the few misses observed are compulsory misses.

The miss rates shown in Table 3 are not surprising. For the demand paging
systems, the 32 entry TLB covers just 32 × 4096 = 128 Kbytes, and the 128 entry
covers 512 Kbytes. Given that the applications have working sets larger than the
TLB reach, high miss rates are to be expected.

WPerformance 2018 8

Figure 2: Segment size distribution.

Suppose that a RAM reference takes 200 cycles (this is optimistic), that the
PT is organized in four levels (realistic), and that the PT lines are never present in
the L2 or L3 TLBs (pessimistic). Under these assumptions, each TLB miss costs
some 800 cycles. Hornyack, Basu, et al. [HCG+15, BGC+13] present measurements
for the percentage of execution cycles spent walking the Page Table on TLB misses
for large scale applications. They found that the applications spend from 2 to 10%
of the execution cycles filling the TLB from the PT. One graph application with
bad locality spends 50% of its cycles on PT walks to refill the TLB.

The miss rates for the segmented memory are 100–1000× smaller then those
for TLBs of similar organization, and this is also not surprising. As the number of
segments is much smaller than the number of virtual pages, the miss ratios are bound
to be better. Furthermore, all processes have at least one segment of 8–128 Mbytes
that holds a large portion of the actively referenced addresses.

Table 3: TLB and SB reference counts and miss rates (#refs×106).

TLB SB
applic. refs 32 64 128 32 64 128
MySQL 15,272 0.718 0.152 0.058 0.0033 0.0006 1 · 10−8

Firefox 14,649 0,354 0.137 0.053 0.0251 0.0178 0.0129
Python 14,499 0.855 0.193 0.032 0.0001 2 · 10−8 8 · 10−9

Tomcat 14,512 0.258 0.066 0.018 0.0011 3 · 10−7 3 · 10−8

QEMU 13,618 0.278 0.036 0.004 0.0146 0.0137 0.0033
LibreOf 13,509 0.216 0.073 0.029 0.0529 0.0353 0.0267

WPerformance 2018 9

For some applications, such as Firefox, LibreOffice and QEMU, dozens of
libraries are linked into the address map yet their segments are never referenced,
thus improving locality, hence yielding better miss ratios. In a segmented system,
these libraries would be mapped on the Segment Table but allocation of physical
memory would be postponed until the segment is referenced, further improving
performance.

6. Design Considerations
The diagram in Figure 3 shows a ‘traditional’ organization for a segment buffer
[LH16]. The virtual address is split into the virtual segment number (VSN) and a
displacement. The VSN is associatively compared the virtual tags in the SB; in case
of a hit, the displacement is added to the physical address of the segment base, and
the physical address is posted to memory. This completes the translation phase.

.......
............

..
.......

.......
............

..
.......

.......
............

..
.......

qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq

.......

.......
.........
...
.........
.......
.............

.......
.........
...
.........
.......
......

.......

.......
.........
...
.........
.......
......

....................

...................
........................

.....

...................
.....

.......................

.

.......................

.

...................
.....

...................
.....

...................
.....

...

.......................

.

...................
........................

.....

..........
..........

................
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.............................
.....

....................

....................

...................

.

...................

.

...................

.

status (physical) base (physical) limit

≤

physical addr

base+displ

&

+

PSbase

ASID, perms

(virtual) tag
SB

hit

virtual addr

displ
VSN

PSlimit
VSN

Figure 3: Segment Buffer.

The resulting physical address is then compared to the segment limit; if the
comparison results in a segment violation, the exception is signaled to the processor.
Some form of process, or address space, identification is kept in the ASID field, and
ASID is also checked for illegal references. This completes the reference validation
phase, or the protection phase.

Notice that all addresses are 64 bits wide, hence the programming model does
not need to change [LH16]. The segmented memory is hidden from the programmer,
as it should. The management of logical segments is performed by the linker, the
segment table is setup by the loader and is maintained by the OS. To improve
physical memory utilization, the compiler could allow the programmer to give an
estimate for segment size, or to declare a segment as ‘elastic’ if it is known that it
can grow or shrink during execution.

WPerformance 2018 10

The address translation (VA 7→PA) must be performed as early as possible
so the memory reference may complete without delay. With demand paging, the
translation is obtained by simply indexing the TLB, whereas with segmentation two
additions must be performed, the first to compute the PA (PSbase + displ), and the
second to compare the PA to the segment limit. The first addition must be performed
early and the adder is on the critical path. As a first approximation, the average
memory access time could be elongated by 1–2% without significant performance
loss when compared to a paging system. Recall that TLB-page table walks may cost
2-10% additional execution cycles, according to Hornyack’s measurements.

Any additional delay introduced by translation may be compensated by the
reduction in traffic at the processor-RAM interface: as the SB miss ratios are 100-
1000× smaller, there is less demand for RAM bandwidth. Also, the smaller segment
tables incur in less management overhead, which translates into thousands of in-
structions, and secondary memory accesses, not performed to manage a hierarchical
memory mapping table.

The adder that compares the PA to the segment limit can be taken off the
critical path because addressing/protection exceptions do not need to be signaled
until the instruction is about to commit, and that is late in the pipeline. The same
applies to access permissions.

There is one additional condition that must be verified. If the programming
model is to remain unchanged, then the the PA must also be checked against the
segment base. A programming error (or malice) could generate a ‘negative’ VA,
which when added to the segment base could result in a PA that is smaller than
the physical segment base, thus generating an addressing fault. This comparison
can also be performed late in the pipeline and kept off the critical path. The third
adder is not shown in Figure 3.

External fragmentation may be a problem, albeit not so serious because mem-
ory is ‘infinite’. Trading physical memory utilization for shorter execution time may
be worthwhile for time-critical applications. Internal fragmentation is a problem
in systems that use super-pages as their sizes are either too large for the small-
ish segments (libraries), or too small for the large heap areas or in-memory ta-
bles [HCG+15]. In systems which support long running applications, the cost of
relocating segments in order to free physical memory may be a small fraction of the
total execution time. There is a relatively inexpensive solution to the relocation
dilemma: a DMA-like engine can steal bus cycles to move inactive segments onto
more crowded regions in physical memory, thus freeing unused space [LH16].

7. Related Work
Single address space systems [KCE92] are an alternative to segmentation: all pro-
cesses are mapped on a single virtual address space. If the physical memory is large
enough, address translation may be unnecessary. Protection is enforced at the level
of logical segments, or with paging. In either case, a structure similar to a TLB or
an SB must be used to capture the illegal references.

Basu et al. [BGC+13] introduce the “direct segment” to support one arbi-
trarily large segment while retaining demand paging for the rest of the memory

WPerformance 2018 11

space. Their solution is justified by the way large-scale applications use memory:
one very large chunk of memory is allocated at initialization, then the application
itself manages the allocation of smaller chunks for buffers, tables, etc. The direct
segments imply in changes the programming model, by adding one programmer
visible segment, yet is less disruptive than variable size super-pages, from the micro-
architecture point of view.

Pham et al. [PBEL14] states that applications typically exhibit ‘contiguous’
spatial locality in which tens of consecutive virtual pages are mapped to consec-
utive physical pages. This behavior generates many instances of contiguous page
table entries (PTE), though typically not enough for large page generation. Pham
proposes a low-overhead, multi-granular TLB organization that exploits PTE clus-
tering on a hierarchical TLB architecture with enhancements regarding replacement
policies and prefetching to eliminate 46% of L2 TLB misses. Our results show that
segmentation may provide the same benefits in exploiting spatial locality, with less
complex hardware and software implementation.

Hornyack et al. [HCG+15] present strong evidence that several large-scale
applications would perform better if the memory allocation were segment-based in-
stead of the current paging systems. These applications spend a great deal of time
handling TLB misses and the performance loss ranges from a few percent of the
execution cycles to 58% for some workloads with poor locality. Hornyack also shows
that server-class memory-hungry applications use “virtual memory areas” which
represent an item of code (or data) in a contiguous region of memory that spans
from one to several contiguous virtual pages. They claim that, rather than using
fixed size pages, hence large page tables, a segmented system would substantially
reduce the amount of state needed to keep the protection and mapping informa-
tion. While our results are in agreement with their findings, we extend Hornyack’s
work by characterizing program behavior in terms of segmentation. Our work, and
theirs likewise, indicate that segmentation can bring substantial performance gains
in current systems, and specially for the systems of the coming decade.

Virtual memory was devised to hide the idiosyncrasies of primary and sec-
ondary memories from the programmer, by providing a flat address space, and a
programming model that abstracted away all details regarding the timing of memory
references, and the capacity of the installed memory. Large pages are an interesting
idea but represent an unwelcome break with the original, neat and tidy, program-
ming model provided by virtual memory. Large pages expose the physical memory
to the programmer and introduce more complexity to a rather intricate component
of the operating system.

Virtual memory systems were devised in an era of scarcity, and have served
us well since the late 1960s. Petabyte physical memories are becoming affordable
and the first products supporting non-volatile memory (NVRAM) are reaching the
market. In [LH16] we examine several changes to the way operating systems might
be designed and built, when one considers the effects of solid state disks (SSDs) and
NVRAM on system performance and complexity.

WPerformance 2018 12

8. Conclusion
In the next decade we may see systems equipped with 264 bytes of physical memory,
possibly with NVRAM comprising a large fraction of the primary memory. We
believe serious consideration should be given to a complete re-design of our long
serving and trusted demand paging virtual memory systems. To support such a
bold claim, we characterized the behavior of real applications with respect to the
virtual-to-physical translation buffers. We performed trace driven simulations of
translation buffers of similar complexity for demand paging systems (TLBs) and
segmented systems (SBs).

Our results indicate that the miss rates for SBs are two to three orders
of magnitude smaller than for TLBs. This is not surprising since the number of
logical segments is much less than the number of logical pages for any non-trivial
application1. The management of the smaller segment tables is bound to be less
expensive than the huge page tables, yielding further improvements in performance.
We show how the SBs can be designed so the segmented virtual memory remains
hidden from the programmer and compiler writer.

References
[BCD72] A Bensoussan, C T Clingen, and R C Daley. The Multics virtual memory:

Concepts and design. Comm of the ACM, 15(5):308–318, May 1972.
[BGC+13] A Basu, J Gandhi, J Chang, M D Hill, and M M Swift. Efficient vir-

tual memory for big memory servers. In ISCA’13: 40th Intl Symp on
Computer Arch, pages 237–248, 2013.

[DD68] Robert C Daley and Jack B Dennis. Virtual memory, processes, and
sharing in MULTICS. Comm of the ACM, 11(5):306–312, May 1968.

[Den70] Peter J Denning. Virtual memory. ACM Computing Surveys, 2(3):153–
189, Sep 1970.

[HCG+15] P Hornyack, L Ceze, S Gribble, D Ports, and H M Levy. A study of vir-
tual memory usage and implications for large memory. In Proc Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads,
2015.

[HP90] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1st edition, 1990. ISBN
1558600698.

[JNW08] B L Jacob, S W Ng, and D T Wang. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann, 2008. ISBN 0123797513.

[KCE92] E J Koldinger, J S Chase, and S J Eggers. Architecture support for single
address space operating systems. In ASPLOS’92: 5th Intl Conf on Arch
Support for Progr Lang and Oper Sys, pages 175–186, 1992.

[KELS62] T Kilburn, D B G Edwards, M J Lanigan, and F H Sumner. One-level
storage system. In IRE Trans on Electronic Computers, EC-11, pages
223–235, 1962.

1Hard data notwithstanding, our community has grown so accustomed to demand paging that
the simpler and more efficient alternative, segmentation, is commonly discarded offhand.

WPerformance 2018 13

[LH16] Lauri P Laux Jr and R A Hexsel. Back to the past: Segmentation with
infinite and non-volatile memory. In WSCAD-SSC’16: XVII Workshop
em Sistemas Computacionais de Alto Desempenho, pages 278–289, 2016.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI’07: Proc 28th
ACM SIGPLAN Conf on Programming Language Design and Implemen-
tation, pages 89–100, 2007.

[PBEL14] B Pham, A Bhattacharjee, Y Eckert, and G H Loh. Increasing TLB
reach by exploiting clustering in page translations. In HPCA’14: 20th
Int Symp on High-Performance Comp Arch, pages 558–567, 2014.

[Ubu17] Ubuntu. SysBench – a modular, cross-platform and multi-threaded
benchmark tool, Aug 2017.

