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Abstract

This paper presents a simulation-based performance evaluation of a shared-memory mul-

tiprocessor using the Scalable Coherent Interface (IEEE 1596). The machines are assembled

with one to 16 processors connected in a ring. The multiprocessor's memory hierarchy con-

sists of split primary caches, coherent secondary caches and memory. For a workload of two

parallel loops and three thread-based programs, secondary cache latency has the strongest

impact on performance. For programs with high miss ratios, 16-node rings exhibit high net-

work congestion whereas 4- and 8-node rings perform better. With these same programs,

doubling the processor speed yields between 20 and 70% speed gains with higher gains on

the smaller rings.

1 Introduction

The Scalable Coherent Interface (SCI) is an IEEE standard for high performance interconnects

supporting a physically distributed logically shared memory [18]. SCI consists of physical in-

terfaces, a logical communication protocol, and a distributed cache coherence protocol. The

�rst silicon implementation of the protocols by Dolphin Technology, Norway, has been com-

pleted recently and some companies are already made public that SCI is part of forthcoming

systems [15].

This paper presents the results of simulation experiments on a shared-memory multiprocessor

based on SCI. The experiments investigate the two main components of SCI: the distributed

cache coherence protocol and the packet based communication protocol. The impact of coherent

cache size and latency, and processor clock speed on performance is assessed. The 90/10 locality

rule states that \a program spends about 90% of its run time in 10% of its code"[16]. For a

large number of parallel programs, the 10% are parallel loops that, for instance, solve a system

of linear equations. Thus, the workload selected for the simulations consists of two programs

based on parallel loops { Gaussian elimination and all-to-all minimum cost paths { and three

thread based programs from Stanford's SPLASH suite [27], namely Cholesky, MP3D and Water.

The paper is organised as follows. Section 2 examines related work on both SCI and other

shared-memory multiprocessors. Section 3 describes the simulator. Section 4 describes the

workload and the simulation results are presented and discussed. Finally, conclusions are drawn

in Section 5. The Appendix gives a brief introduction to SCI.
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2 Related Work

The quest for scalable cache coherent shared-memory multiprocessors has produced several cache

coherence protocols and machine architectures [17]. To date, the KSR1 [9] is the only commer-

cially available ring-based shared-memory multiprocessor. It is built as a hierarchy of rings and

cache coherence is maintained by a snooping write-invalidate protocol. An important feature of

the KSR1 is its memory hierarchy, composed only of primary and secondary caches, in what is

called a Cache Only Memory Hierarchy (COMA). The KSR1 can scale up to 1088 processors in

a two-level hierarchy of rings. The ring:0 can accommodate 32 processors; the ring:1 supports

up to 34 ring:0's. The remote access latency on a 32-node ring is under 7�s and, to reduce its

e�ects, the KSR1 supports the software mechanisms prefetch and poststore.

Barroso and Dubois, in [5], present the design and simulation results for a slotted ring multipro-

cessor. They investigate two cache coherence protocols, one based on snooping and the other on

a full-map directory. Their results indicate that the snooping protocol yields better performance.

The maximumnumber of nodes that can be assembled on a slotted ring is limited to between 32

and 64. The directory based protocol yields miss latencies between 280 and 320ns on an 8-node

ring, and between 310 and 380ns on an 16-node ring, for MP3D, Water and Cholesky [27].

Stanford's DASH is another example of a cache coherent shared memory multiprocessor [21, 22].

It consists of clusters of processors interconnected by a wormhole routed 2-D mesh. The memory

coherence is maintained by a distributed invalidation directory-based protocol. The DASH, like

SCI-based machines, is called a Cache Coherent Non-Uniform Memory Access Machine (CC-

NUMA) because of the di�erence in access times for local and remote references.

The cache coherence protocol in SCI is a directory-based write-invalidate protocol. The directory

implemented with doubly linked lists and allows for scaling up to 64K nodes. Communication

is via unidirectional links and the basic topology is the ring. Higher dimensionality networks

are implemented by having more than one SCI interface on each node. Scalability to 64K nodes

comes at the price of added complexity in the communication and coherence protocols. For

instance, a write to a shared datum needs a larger number of network messages for its completion

than needed by the same operation in DASH [21]. Johnson, in [20], proposes additions to the

cache coherence protocol to alleviate this problem. Additional links can be used in the linked

lists, thus turning them into trees, and signi�cantly improving the performance of invalidations

when there is global sharing. Aboulenein et.al, in [1], examine SCI's hardware synchronisation

primitive Queue On Lock Bit (QOLB). Its e�ciency comes from it �tting in neatly with the

linked-lists: waiting processes are naturally enqueued when they join the lock's sharing-list.

Data transport in SCI is based on pipelining data onto the network links. Scott and Goodman,

in [25], investigate the performance of pipelined k-ary n-cube networks. In such a network,

multiple bits may be traversing the same wire simultaneously. This makes the network's cycle

time independent of wire length. When compared to synchronous networks (see [10, 2]), the

pipelined networks yield lower latency and higher bandwidth, especially for high dimensional

networks. The optimal dimensionality of pipelined networks is higher than that of synchronous

networks and they should be grown by increasing the dimensionality while keeping the radix

unchanged.

Scott et.al, in [24], and Scott in [26], present an analytical model of the SCI logical communication

protocol. The model is based on M/G/1 queues and the ring is modeled as an open system.

Their results indicate that the ow control mechanism is e�ective in preventing starvation and in

reducing the e�ects of a hot transmitter on the ring. This mechanism is not as e�ective for non-

uniform routing distributions. The maximum ring throughput is reduced by up to 30%, larger

rings being more adversely a�ected. Read-request/read-response data-only ring throughput,

for 64 byte data blocks, is around 800Mbytes/s (600Mbytes/s) on a 16 (4) node ring, fairly

distributed among the nodes. They show that an SCI ring compares favourably to a bus.
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3 The Simulator

The multiprocessor consists of processing elements (PE's) interconnected in a ring by SCI links.

Each PE contains a processor, a split primary cache, a coherent secondary cache, memory and

an SCI interface. The CPU is a 32-bit scalar Harvard processor that performs an instruction

fetch and possibly a data read/write access on every clock cycle. The processor clock frequency

is a simulation parameter and the values investigated are 100 and 200MHz. The size of the

instruction cache (i-cache) and data cache (d-cache) is 8 Kbytes each, both being direct mapped.

The data cache is write-through with no allocation of block on write misses. The secondary

cache is direct mapped and, for private data references it is copy-back with no block allocation.

The secondary cache size is a simulation parameter. Sizes investigated are 64, 128, 256 and,

512 Kbytes. Memory is simulated as if implemented with DRAMs. On all three levels of the

memory hierarchy, cache and memory lines (blocks) are 64 bytes wide.

The internal buses are 64 bits wide, except the processor-primary caches which are 32 bits wide.

The access latency for the secondary caches is 3 processor cycles. Loading a line from the

secondary cache into the primary caches or SCI controller costs 3 processor cycles plus 2ns per

64 bit word (16ns). Loading a line from/to memory costs 120ns of access latency plus 10 ns per

64 bit word (80ns). Thus, a cache-to-memory read-line transaction costs 246ns for a 100MHz

processor. To that, the network latency must be added if one of the ends of the transaction,

cache or memory, is at another node.

The memory model is sequential consistency [12]. The memory hierarchy satis�es the multilevel

inclusion property [3]. So, the SCI coherency protocol actions a�ect only the secondary caches,

thus called coherent caches. Coherency between primary and secondary caches is maintained by

the cache controller. In order to simplify the simulator, it is assumed that on data accesses the

concurrent instruction fetch hits in the primary cache and, accesses to local data and instructions

do not cause any tra�c on the ring. It is also assumed that page faults have zero cost. Allocation

of pages to nodes is naive: the �rst node that references a given page becomes its home memory.

References to pages mapped to memory on other nodes are called remote references.

Simulation Methodology The simulator consists of an approximate model of the SCI link

interfaces and of a detailed model of the distributed cache coherence protocol. The model of the

ring interfaces is similar to those in [25, 24, 23] but rather than using statistical analysis, tra�c

related values are measured and directly inuence the behaviour of the simulated system. The

model of the cache coherence protocol mimics the \typical set protocol" as de�ned in [18].

The address sequences used to drive the simulator are generated by instrumenting the programs

(described in Section 4) with Symbolic Parallel Abstract Execution (SPAE) [13]. SPAE is

based on the GNU gcc compiler and allows for tracing parallel programs at any desired level

of detail. The resolution of the simulator is at instruction/data reference level. The cost of

each memory reference is computed from the state of the system { level of network tra�c

and coherence actions performed { and those values are used to schedule the execution of the

simulated processes/processors. Thus, the global interleaving of memory references is simulated

with better accuracy than is possible with the method proposed in [23], at a higher computational

cost however. Typically, a simulation run takes from 2 to 30 cpu hours on a lightly loaded

Sparcstation2, depending on the data set size.

Model of the Ring Interface For the description that follows, please refer to Figure 1. The

network clock cycle is 2ns (500MHz) and the physical links are 16 bits wide, in accordance with

the SCI standard. The delay faced by a packet waiting to be transmitted (Twait ) depends on

the number and size of packets passing through the node. Likewise, the delay faced by packets

at the bypass bu�er (Tpass ) depends on the frequency and size of packets inserted by the node.

Wire propagation delay (Twire ) is 2ns. The time to parse an incoming packet (Tstrip ) and, the

time to gate an outgoing symbol onto the output link (Tout ) are also 2ns each. Thus, the delay
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involved in sending a packet from Node

A

to Node

B

and waiting for its echo can be computed by

L

AB

. To simplify the expressions, we omitted the modulus operations on summation indexes.

L

AB;type

= Twait

A

+ Tout + 2 size(type)

+

B�1

X

i=A+1

(Twire +Tstrip + Tpass

i

+Tout )

+ Twire + Tstrip +Tpass

B

+ Tout

+

A�1

X

i=B+1

(Twire + Tstrip +Tpass

i

+ Tout )

+ Twire + Tstrip

Where type can be one of Pcmd8 , Pcmd16, Pdata , PdataX , Pecho and, their sizes are 8, 16, 40,

48 and 4 symbols, respectively (1 symbol = 2 bytes). An idle symbol must precede each packet

thus making the sizes 9, 17, 41, 49 and 5 in the throughput calculations. The term 2 size(type)

is the time, in nanoseconds, needed to insert a packet into the ring. The peak bandwidth of a

link or bu�er is the maximumnumber of symbols that can pass through it per time unit. In the

absence of tra�c, peak bandwidth of the output or bypass bu�er is 500 Msymbols/s (1Gbyte/s).

The average packet size through a link or bu�er is (Pavg =

P

p

f

p

size(p) =

P

p

f

p

) where

p 2 fPcmd8, Pcmd16, Pdata, PdataX, Pecho g and f

p

is the frequency of packet type p. The

throughput S of a bu�er is the number of symbols that pass through it per unit of time:

(Sbu�er =

P

p

f

p

size(p)): The utilisation of a link or bu�er is given by the throughput di-

vided by the bandwidth available, times the average packet size. Thus, Twait is given by

Twait = Pavg

tx

Stx =(BWmax � Spass )

and, Tpass is

Tpass = Pavg

pass

Spass =(BWmax � Stx )

where Spass and Stx are the throughputs of the bypass and output bu�ers respectively,

(BWmax � Spass ) is the bandwidth available at the output bu�er, and (BWmax � Stx ) is

the bandwidth available at the bypass bu�er.

In the equation for the latency above, by making Tpass and Twait zero, the resulting equation

yields the static latency of the ring, that is, it depends solely on propagation delays and is, in

nanoseconds, (6N + size (p)) for N processors and packet p. Conversely, the dynamic compon-

ent of the latency is obtained by considering only Tpass and Twait . The dynamic latency is
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estimated from the measured tra�c. Bu�er utilisation and average packet size are measured at

10�s intervals. Values from interval i are used to compute latencies during interval i+ 1.

The ring interface model assumes in�nite input queues and does not account for the retrans-

mission of packets dropped at their destinations. Since the memory is sequentially consistent,

processors stall on remote references. However, cache or memory controllers may attempt to

transmit response packets to complete outstanding transactions. The e�ect of more than one

source of packets on a node is easily minimised by implementing at least two active bu�ers [24].

The model also ignores intranode contention, that is, the processor of a hot spot node does not

see any contention for the internal buses and its local cache or memory.

The accuracy of this method lies between that of detailed simulation of the SCI communication

protocol, where the simulator keeps track of every symbol travelling on the ring [8, 7, 24] and,

that of trace postprocessing [23] or statistical analysis, where the network simulator is driven by

random access patterns [6].

4 Simulation Results

The results of the experiments are presented in this section. First, the workload is presented and

the behaviour of the programs discussed. Then, the following are examined in turn: inuence of

coherent cache size and latency, bandwidth and round-trip delay and, generation scalability.

Workload Input data was scaled up with ring size to keep the number of references to shared

data per processor roughly constant. The simulations cause a minimum of 10

6

references to

shared data. See Table 1 for the data-set sizes and Table 2 for the reference counts of each

program. In all cases, tracing starts after initialisation.

Ring size 1 2 4 8 16

chol() �xed size input

ge() (rows) 136 171 216 272 343

mp3d() (molecules) 3000 4500 6750 10125 15187

paths() (vertices) 70 88 111 140 176

water() (molecules) 54 78 113 163 237

Table 1: Input data-set sizes.

Figure 2 shows the shared data hit ratio of all the programs for cache sizes of 64 and 256

Kbytes. Figure 3 shows the fraction of the execution time due to network latency, as computed

by Equation 1. In those �gures, `Ch' stands for Cholesky, `Ge' for Gaussian elimination, `Mp'

for MP3D, `P' for all-to-all paths and `W' for Water. A program is said to be processor bound

if the largest proportion of the execution time is spent performing instructions. Conversely, a

program is memory bound when the largest fraction of the time is spent on data references.
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Ring size 1 2 4 8 16

Cholesky { chol()

shared refs 10

6

(% wr) 10.3 (18) 12.7 (23) 8.9 (22) 5.9 (20) 2.2 (14)

private refs 10

6

(% wr) 31.0 (27) 8.4 (26) 3.3 (21) 1.3 (14) 1.9 (21)

instructions 10

6

71.7 37.0 23.0 14.4 8.9

Gaussian elimination { ge()

shared refs 10

6

(% wr) 2.6 (33) 2.6 (33) 2.6 (33) 2.5 (33) 2.5 (33)

private refs 10

6

(% wr) 12.9 (6.9) 12.8 (6.9) 12.8 (6.8) 12.7 (6.8) 12.7 (6.8)

instructions 10

6

33.7 33.2 33.4 33.2 33.2

MP3D { mp3d()

shared refs 10

6

(% wr) 5.4 (39) 6.7 (24) 5.4 (22) 4.9 (18) 6.5 (10)

private refs 10

6

(% wr) 12.1 (17) 9.0 (18) 6.8 (18) 5.1 (18) 3.7 (18)

instructions 10

6

32.7 29.5 23.0 18.8 19.7

All-to-all minimum cost paths { paths()

shared refs 10

6

(% wr) 1.0 (0.8) 1.0 (0.6) 1.0 (0.5) 1.0 (0.3) 1.0 (0.3)

private refs 10

6

(% wr) 5.6 (6.3) 5.5 (6.3) 5.5 (6.3) 5.5 (6.3) 5.5 (6.3)

instructions 10

6

15.1 14.9 14.9 14.9 14.7

Water { water()

shared refs 10

6

(% wr) 1.4 (16) 1.6 (14) 2.0 (12) 2.8 (8) 5.5 (4)

private refs 10

6

(% wr) 14.3 (18) 14.2 (19) 15.2 (19) 15.3 (19) 15.1 (19)

instructions 10

6

28.4 28.5 30.1 32.6 37.6

Table 2: Per processor reference counts for the workload. 64K caches, 100 MHz.

chol() performs parallel Cholesky factorisation of a sparse matrix using supernodal elimina-

tion [27]. The scheduling of parallel work is done by a task queue and granularity of work is

large. Cache size is one of the parameters used by the scheduler to allocate work to processors.

The input data used is bcsstk14. For all ring sizes, chol() spends over 50% of the time executing

instructions and, for ring sizes 2-8, over 20% of the time accessing shared data at the local cache

and memory. For the 16-node ring, that falls to about 10%. Shared data hit ratios are always

above 90%. So, for all ring sizes investigated, chol() is processor bound.
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Figure 2: Shared data hit ratio, with cache sizes of 64 (left) and 256Kbytes (right).

ge() solves a system of linear equations by Gaussian elimination and backwards substitution. In

this implementation, it is assumed that the system of equations has some property that makes

Gaussian elimination without pivoting numerically stable (e.g. diagonal dominance). The al-

gorithm consists of several elimination stages. Each stage consists of a vector scale operation of
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the form (x = cx) followed by a rank�1 update of the matrix (A = A+ dxy) where x and y are

vectors, c and d are scalars. At the k-th stage, matrix A has dimension (n� k)� (n � k + 1).

Input data set size grows as 1:26� nodes . ge() spends over 67% of the time executing instruc-

tions, and 15% on shared data references. For all ring sizes (1-16), secondary cache hit ratios

are above 97%. Thus, ge() is processor bound.
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Figure 3: Fraction of execution time due to network latency, with cache sizes of 64 (left) and 256Kbytes

(right).

mp3d() is a rare�ed uid ow simulator based on Monte Carlo methods [27]. The scheduling

is static, synchronisation is based on barriers and granularity of work is large. The data set is

scaled as 1:5� nodes . The simulation lasts 50 time steps. The uniprocessor spends 50% of the

time at instructions, 30% on data that would be shared on a multiprocessor, and 23% of the

time on private data. These �gures, on a 16-node ring, fall to 10%, 5% and 5%, respectively {

see Figure 5. The percentage of time spent on network latency climbs steadily from 0% to just

over 50%. Thus, mp3d() is memory bound.

paths() is an instance of the class of transitive closure algorithms. For a graph with N nodes,

paths() �nds the lowest cost path from each node to every other node [11]. The vertices are

labelled with the distance between the nodes they join and are stored in the matrix D. Thus,

D[i,j] is the distance between nodes i and j and absence of a vertex is represented by in�nite

cost. The simulated graph is a random graph with outdegree 6. Input data set size is scaled as

1:26�nodes . The code fragment below is the parallel loop where all of the work is done. paths(),

on rings of up to 8 nodes, spends over 75% of execution time performing instructions, and about

10% on each of private and shared data references. For the 16-node ring and 256Kbytes cache,

the shared data hit ratio is about 7 percentage points lower than on smaller rings and this in

turn causes the time spend on communication latency to jump from under 5% to 28%. For a

64Kbytes cache, this last value is 47% { see Figure 2. For the data sets used here, paths() is

weakly processor bound. If the shared data hit ratio falls to under 90%, it can easily become

memory bound.

forall (t = 0; t < numProc; t++)

for (k = start(t); k < end(t); k++)

for (j = 0; j < rows; j++)

for (i = 0; i < rows; i++)

if (D[i,j] > (D[i,k] + D[k,j]))

D[i,j] = D[i,k] + D[k,j];

water() is an n-body molecular dynamics program that evaluates forces and potentials in a

system of water molecules in the liquid state [27]. The scheduling is static, synchronisation
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is based on barriers and granularity of work is large. The data set is scaled as 1:45 � nodes .

The system of molecules is simulated for 4 time steps. water() spends over 50% of the time

performing instructions and over 25% referencing private data. Even though shared data hit

ratios aren't very high, less than 15% of the time is spent on shared data references. Thus,

water() is processor bound.

Sharing-list length is de�ned as the number of copies that have to be purged when a line is

updated. Because of the serialisation imposed by the coherence protocol, the cost of purging

grows linearly with the length of the sharing-list. The sharing-list length reects the level of

interference between processors on each other's computation. paths() has an average sharing-

list length that grows as P=2, for P processors. The other four programs have sharing-list

lengths of one or less for ring sizes 2-8 and under 1:2 for 16-node rings. Sharing-list length is

fairly independent of cache size.

Cache size and latency. Coherent cache size and latency can have a serious impact on

performance. The e�ect of cache size is examined next. Figure 4 displays the execution time

as a function of ring and cache size for chol() and ge(). For chol(), on a 4-node ring,

the 128Kbytes cache is about 50% slower than the two larger sizes. The di�erence is not as

pronounced for the other ring sizes. The 64Kbytes cache being faster than the 128Kbytes is due

to an optimisation in chol(), by which the supernodes are chosen to �t the coherent caches.

For ge(), the di�erences in run time are below 4% and this agrees with the rather small changes

in shared data hit ratio with cache size.
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Figure 4: Execution time as a function of cache size, for chol() (left) and ge() (right).

Since mp3d() is memory bound, Figure 5 shows both the e�ects of cache size on speed, and the

breakdown of the execution time by activity. For all cache sizes (64-512Kbytes) and ring sizes

2-16, the shared data hit ratios are within one percentage point. The same is true of the fraction

of run time due to network latency, except that the interval is under 4%. The rings with smaller

caches perform better because the distribution of page faults per node is less skewed than for

the larger caches. If a more sophisticated mapping of pages to nodes were employed, the larger

caches would be faster.

8



0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1 2 4 8 16

E
xe

cu
tio

n 
tim

e 
(s

)

Ring size

Files: Mpf100

64k
128k
256k
512k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

E
xe

cu
tio

n 
tim

e 
br

ea
kd

ow
n

Ring size

Files: Mpf100c256

ins
prv
syn
shd
rem
sci

Figure 5: Execution time as a function of cache size, for mp3d() (left) and execution time breakdown

(right). `ins' stands for instructions, `prv' for private data references, `syn' for synchronisation (waiting

at barriers and locks), `shd' for local shared data references, `rem' to cache and memory latencies on

remote references and, `sci' for network latency. The cost of remote references is (`rem'+`sci').

The inuence of cache size on the performance of paths() and water() is shown in Figure 6.

As discussed earlier, paths() is a borderline program: if the caches cannot accommodate the

working set, the program speed is bound by the speed of the memory and ultimately by the net-

work latency. For the 64Kbytes cache, the impact of the network latency increases dramatically

with ring and data set sizes { see Fig. 3. water() is less dependent on cache size. On a 16-node

ring, the di�erence in execution time between the 64Kbytes and 256/512Kbytes is caused by an

increase in the miss ratio.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 4 8 16

E
xe

cu
tio

n 
tim

e 
(s

)

Ring size

Files: Pf100

64k
128k
256k
512k

0.44
0.46
0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62
0.64
0.66

1 2 4 8 16

E
xe

cu
tio

n 
tim

e 
(s

)

Ring size

Files: Wf100

64k
128k
256k
512k

Figure 6: Execution time as a function of cache size for paths() (left), and water() (right).

Table 3 shows the e�ects on execution time of changing one of the major design parameters while

keeping the other two constant. The basis for comparison is a system with 256Kbytes coherent

caches with 3 processor cycles of access latency and memory access latency of 120ns. The factor

that has the most inuence is the cache access latency (between �12% and +14%) while memory

access latency has the least inuence (between �6% and +6%). The small e�ect of increasing

cache size to 512Kbytes is related to the already high hit ratios attained with the 256Kbytes

caches. For the workload studied here, caches with 2 processor cycles of access latency yield

an average 8:5% speed improvement while, on average, the speed loss can be 9:1% (8:6%) on

the 4-node (8-node) ring with a 4-cycle latency coherent cache. The system designers have to
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weight the cost increase against the speed gains. The plots in Figures 4 and 6 provide evidence

against the use of 64Kbytes secondary caches. The more conservative cache latency of 3 cycles

was adhered to for the experiments.

Nodes 4 8

change: c size c latency m latency c size c latency m latency

128 512 2 cy 4 cy 80 160 128 512 2 cy 4 cy 80 160

chol() 1.15 1.01 0.88 1.14 0.98 1.00 1.06 0.99 0.87 1.13 0.97 1.04

ge() 1.01 1.00 0.93 1.07 1.00 1.00 1.01 1.00 0.93 1.07 1.00 1.00

mp3d() 1.02 0.98 0.92 1.08 0.94 1.06 1.00 1.02 0.95 1.08 0.96 1.05

paths() 1.03 1.00 0.94 1.07 0.99 1.01 1.04 1.00 0.94 1.06 1.00 1.01

water() 1.00 1.00 0.91 1.10 0.99 1.01 1.03 1.00 0.90 1.09 0.99 1.01

average 1.04 1.00 0.92 1.09 0.98 1.02 1.03 1.00 0.92 1.09 0.98 1.02

Table 3: Sensitivity of execution time to variations in cache size, cache latency and memory latency.

The basis is 256Kbytes, 3 processor cycles and 120ns, respectively.

Bugge et.al, in [8], compare the performance of three uniprocessor memory architectures, two of

which based on a 32- and on a 64-bits wide Futurebus

+

. The third employs SCI links between sec-

ondary cache and memory. Their trace-driven simulation results indicate that with a time-shared

multiprogramming workload, secondary cache size has the largest impact on the performance of

the memory hierarchy whereas the inuence of tag access latency is small.

Throughput and round-trip delay. The behaviour of SCI's transport mechanism is invest-

igated next. Figure 7 shows the throughput per node, that is, the number of bytes per time

unit inserted in the output bu�er by the processor and cache/memory controller. The average

packet size varies from 36:0 to 43:4 bytes, smaller rings carrying larger packets. Also, smaller

caches generate more of the smaller packets that carry the coherency commands.
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Figure 7: Throughput per node, with cache sizes of 64 (left) and 256Kbytes (right).

Figure 8 displays the e�ective throughput as a fraction of the throughput o�ered. If the band-

width were in�nite, the e�ective throughput would be limited only by static delays on the network

whereas on the actual interconnect it is limited by network congestion. mp3d() on a 16-node

ring and 256Kbytes cache has a shared-data hit ratio of 77% which makes its throughput high.

It would be even higher were the network not in saturation.
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Figure 8: Per node e�ective throughput as a fraction of throughput o�ered, with cache sizes of 64 (left)

and 256Kbytes (right).

Figure 9 shows the average round trip delay as a function of ring size. This delay is the time

elapsed from inserting a packet in the output queue until its echo is stripped by the sender. Note

that latencies experienced accessing memory and caches are not included. The static latency for

a 16-node ring is 136ns, for an average packet size of 20 symbols. chol(), ge() and water()

generate low network tra�c and enjoy low latencies. mp3d() and paths() endure much higher

latencies because of their higher throughputs and increased network congestion.
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Figure 9: Average round-trip latency, with cache sizes of 64 (left) and 256Kbytes (right).

The throughput and round-trip delay for mp3d() are in agreement with those predicted in [24].

There are some di�erences in the underlying models and assumptions though. Here, the simulator

uses 5 packet sizes rather than 3 and the proportion of 80 byte packets (mp3d(), 16 nodes) is

25% rather than 40%. The machines simulated here do not behave like an open system since

the processor stalls on remote references. However, cache and memory controllers can and do

transmit while the processor is idle.

In order to compute the cost of a remote transaction, memory and cache tag access latencies

must be added to the round trip delay. The worst case is a cache-to-memory transaction: ring

latency+246ns (30ns+ 16ns plus 120ns+ 80ns). The best case is a cache-to-cache transaction,

such as an invalidate transaction, costing ring latency+60ns (2 � 30ns). Barroso and Dubois,

in [4], present simulation results of a full directory coherence scheme based on a slotted ring. On

a ring with 8 nodes, the shared data miss latency for chol(), mp3d() and water() is between
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280 and 320ns. On a 16-node ring, between 320 and 380ns and, on a 32-node ring, between 390

and 440ns. On 8-node rings, the shared data miss latencies of an SCI ring are comparable to

those of a slotted ring. On 16- and 32-node rings, the SCI ring would have higher latencies.

Figure 10 shows the tra�c per link as a function of ring size. The tra�c consists of the packets

inserted by a node and the packets passing through that node addressed to downstream nodes.

mp3d() and paths() produce high levels of tra�c and su�er higher latencies. The plots in

Figures 7, 9, and 10 provide evidence that SCI rings do not scale well past 8 nodes for programs

that have poor locality or high levels of data sharing.
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Figure 10: Tra�c per link, with cache sizes of 64K (left) and 256Kbytes (right).

Bogaerts et.al, in [7], present simulation results for 10-node rings and a multi-ring system with

1083 nodes for data acquisition applications in particle physics. They concentrate on the band-

width consumed by SCI moveXX transactions for DMA and ignore coherence related events.

For DMA move256 transactions (move 256 bytes with no acknowledgement), the bandwidth is

about 175 Mbytes/s per node. When fair bandwidth allocation is employed, that �gure is 125

Mbytes/s. Also, in the context of bulk real-time data acquisition and preprocessing, the largest

adequate ring size is 10 nodes.

Processor clock speed. Microprocessor technology is evolving at such a pace that the speed

of processors, and indeed of workstations, doubles roughly every two or three years. What can

be said about the performance of SCI, when the next generation of processors is introduced?

Figure 11 shows the speedup attained by doubling the processor clock speed while keeping the

other parameters unchanged. Note that coherent cache access latency is 3 processor clock cycles

in both cases.

Some of the loss in speedup can be attributed to the relatively slower memory and intranode

buses and its inuence of this can be gauged from the values for the uniprocessor. As discussed

earlier, for a 100MHz clock, an increase of 30% in memory latency slows execution down by up

to 6%, chol() and mp3d() being the worst a�ected. Most of the loss in speedup for chol(),

mp3d() and paths() is caused by saturation of the network. Plots of the ratio of link tra�c for

100 and 200MHz processors are almost identical to those in Figure 11. Programs that use little

bandwidth can use a lot more whereas programs that nearly saturate the ring su�er even higher

round-trip delays with a faster clock.

12



1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Sp
ee

du
p 

20
0M

H
z/

10
0M

H
z

Ring size

Files: A64.clk

Ch
Ge
Mp

P
W

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Sp
ee

du
p 

20
0M

H
z/

10
0M

H
z

Ring size

Files: A256.clk

Ch
Ge
Mp

P
W

Figure 11: Speedup achieved by doubling processor clock frequency, with cache sizes of 64 (left) and

256Kbytes (right).

5 Conclusion

This paper presents the results of detailed simulation of multiprocessors based on SCI rings. The

simulator was driven with address traces produced on-the-y from �ve scienti�c applications.

These consist of two parallel loops, Gaussian elimination and all-to-all minimumcost paths, and

three thread based programs from the SPLASH suite: Cholesky, MP3D and Water.

The inuence of secondary cache size and latency and of memory latency were investigated. For

the workload chosen, rings with 2 to 16 processors and cache sizes of 64, 128, 256 and 512Kbytes,

it was found that secondary cache latency has a stronger impact on performance than cache size.

64Kbytes caches proved to be too small for the data set sizes employed. Memory latency has

the smallest, but non-negligible, impact on execution time.

Of the �ve programs, only MP3D and all-to-all paths needed high bandwidths, `paths' only

achieving high throughputs with 64Kbytes of cache and its lower hit ratios. The throughputs

achieved by MP3D on 4- and 8-node rings were between 80 and 90Mbytes/s. On 16-node rings,

its throughput fell to about 55Mbytes/s because of the high network tra�c (over 600Mbytes/s

per link). Its round-trip delays were about 50% higher than the other programs. Rings with

16 nodes seem to saturate at the load levels caused by MP3D. All programs except Water show

poorer performance on a 16-node ring when compared to 4- or 8-node rings. This indicates that,

for the workload used, the maximum e�cient ring size is 8 nodes.

The clock frequency of microprocessors roughly doubles every two or three years. The use of

faster processors increases the throughputs of the programs and their demands on the network.

The experiments shown that, with a processor clock and secondary cache twice as fast, rings that

are saturated with slow processors will be even more saturated with faster processors. Programs

that are not near to saturating the network achieve high speedups.

The continuation of the work described here comprises of the simulation of higher dimensional

networks. These will consist of rings of 4 or 8 nodes interconnected by switches. It is anticipated

that the high computational costs will limit the scope of investigation somewhat.
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Appendix: The Scalable Coherent Interface

The description that follows concentrates on those features of SCI that are of relevance in this

paper. For more details, please see [18, 19, 14]. SCI consists of three parts, the physical-level

interfaces, the packet-based logical communication protocol, and the distributed cache coherence

protocol. The physical interfaces are high speed unidirectional point-to-point links. One of the

versions prescribes links 16 bits wide which can transfer data at peak speed of 1 Gbyte/s. The

standard supports a general interconnect, providing a coherent shared-memory model, scalable

up to 64K nodes. An SCI node can be a memory module, a processor-cache pair, an IO module

or any combination of these. The number of nodes on a ring can range from two to a few

tens. For most applications, a multiprocessor will consist of several rings, connected together by

switches, i.e. nodes with more than one pair of link interfaces.

Logical Protocol The logical protocol comprises the speci�cation of the sizes and types of

packets and of the actions involved in the transference of information between nodes. A packet

consists of an unbroken sequence of 16-bit symbols. It contains address, command/control and

status information plus optional data and a check symbol. A command/control packet can be 8

or 16 symbols long, a data packet is 40 symbols long and an echo packet is 4 symbols in length.

A data packet carries 64 bytes of data.

The protocol supports two types of actions: requests and responses. A complete transaction, for

instance, a remote memory data read, starts with the requester sending a request-send packet to

the responder. The acceptance of the packet by the responder is acknowledged with a request-

echo. When the responder has executed the command, it generates a response-send packet

containing status information and possibly data. Upon receiving the response-send packet, the

requester completes the transaction by returning a response-echo packet. The communication

protocol ensures forward progress and contains deadlock and livelock avoidance mechanisms.

The network access mechanism used by SCI is the register insertion ring. Figure 1 shows a block

diagram of the ring interface. A node retains packets addressed to itself and forwards the other

packets to the downstream node. A request transaction starts with the sender node placing a

request-send packet, addressed to the receiver node, in the output bu�er. Transmission can start

if there are no packets at the bypass bu�er and no packet is being forwarded from the stripper

to the multiplexor. At the receiver, the stripper parses the incoming packet and diverts it to the

input bu�er. On recognising a packet addressed to itself, the stripper generates an echo packet

addressed to the sender and inserts it in place of the `stripped' packet. If there is space at the

input bu�er, the echo carries an ack (positive acknowledge) status. Otherwise, the packet is

dropped and a nack (negative acknowledge) is returned to the sender who will then retransmit

the packet.

It is likely that during the transmission of a packet, the bypass bu�er will be �lled with packets

not addressed to the node. Once transmission stops, the node enters the recovery phase during
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which no packets can be inserted by the node. Each packet stripped creates spaces in the symbol

stream. These spaces, called idle symbols, eventually allow the bypass bu�er to drain, when new

transmissions are then possible. The protocol also ensures that the downstream nodes cannot

insert new packets until the recovery phase is complete. This will cause a reduction in overall

tra�c and create enough idles to drain the bypass bu�er { for details see [18, 24].

When a packet is output, a copy of it is kept in an active bu�er. If the status of its echo is

ack, the original packet is dropped from the active bu�er and the node can transmit another

packet. If the echo carries a nack, the packet is retransmitted. This allows for one or more

packets to be active simultaneously, e.g. one transaction initiated by the processor and other(s)

initiated by the cache or memory controller(s). The number of active bu�ers depends on the

type of the \pass transmission protocol" implemented. The options are: only one outstanding

packet, one request-send and one response-send outstanding or, several outstanding request- or

response-send packets.

Coherence Protocol The SCI coherence protocol is a write-invalidate chained directory

scheme. Each cache line tag contains pointers to the next and previous nodes in the doubly-

linked sharing list. A line's address consists of a 16-bit node-id and 48-bit address o�set. The

storage overhead for the memory directory and the cache tags is a �xed percentage of the total

storage capacity. For a 64-byte cache block, the overhead at memory is 4% and at the cache

tags 7%.
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Figure 12: Sharing list setup (left) and purge sequence (right). Solid lines represent sharing list links,

dotted lines represent messages.

Consider processors A, B and C, read-sharing a memory line L that resides at node M { see
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Figure 12. Initially, the state of the memory lines is `home' and the cache blocks are `invalid'. A

read-cached transaction is directed from processor A to the memory controller M (1). The state

of line L changes from `home' to `gone' and the requested line is returned (2). The requester's

cache block state changes to the `head' state, i.e. head of the sharing list. When processor B

requests a copy of line L (3), it receives a pointer to A from M (4). A cache-to-cache transaction,

called prepend, is directed from B to A (5). On receiving the request, A sets its backward pointer

to B and returns the requested line (6). Node C then requests a copy of L fromM (7) and receives

a pointer to node B (8). Node C requests a copy from B (9). The state of the line at B changes

from `head' to `mid' and B sends a copy of L to C (10). In SCI, rather than having several

request transactions blocked at the memory controller, all requests are immediately prepended

to the respective sharing lists. When a block has to be replaced, the processor detaches itself

from the sharing list before ushing the line from the cache.

Before writing to a shared line, the processor at the head of the sharing-list must purge the

other entries in the list to obtain exclusive ownership of the line { see Figure 12. Node A, in

the `head' state, sends an invalidate command to node B (1). Node B invalidates its copy of L

and returns its forward pointer (pointing to C) to A (2). Node A sends an invalidate command

to C (3) which responds with a null pointer, indicating it is the tail node of the sharing list(4).

The state of line L, at node A, changes to `exclusive' and the write completes. When a node

other then the `head' needs to write to a shared line, that node has to interrogate the memory

directory for the head of the list, acquire head status and then purge the other entries. If the

writer is at the middle or tail, it �rst has to detach itself from the sharing list before attempting

to become the new head.
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