
Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 1

A Generalized Model for Distributed
Comparison-Based System-Level Diagnosis
Luiz Carlos Pessoa Albini
Unicenp, Dept. Informatics
R. Prof. Pedro Viriato Parigot de Souza, 5300
81280-330, Curitiba, PR Brazil
albini@unicenp.br

Elias Procópio Duarte Jr.
Roverli Pereira Ziwich
Federal University of Paraná, Dept. Informatics
P.O.Box 19081 – Curitiba
81531-990, PR Brazil
{elias,roverli}@inf.ufpr.br

Abstract This work introduces a new system-level diagnosis model and an algorithm based on this

model: Hi-Comp (Hierarchical Comparison-based Adaptive Distributed System-Level
Diagnosis algorithm). This algorithm allows the diagnosis of systems that can be represented by
a complete graph. Hi-Comp is the first diagnosis algorithm that is, at the same time,
hierarchical, distributed and comparison-based. The algorithm is not limited to crash fault
diagnosis, because its tests are based on comparisons. To perform a test, a processor sends a
task to two processors of the system that, after executing the task, send their outputs back to the
tester. The tester compares the two outputs; if the comparison produces a match, the tester
considers the tested processors fault-free; on the other hand, if the comparison produces a
mismatch, the tester considers that at least one of the two tested processors is faulty, but can not
determine which one. Considering a system of N nodes, it is proved that the algorithm’s
diagnosability is (N–1) and the latency is log2N testing rounds. Furthermore, a formal proof of
the maximum number of tests required per testing round is presented, which can be O(N3).
Simulation results are also presented.

Keywords: Distributed Diagnosis, System-Level Diagnosis, Comparison-Based Diagnosis.

1. Introduction

The basic goal of system-level diagnosis is to
determine the state of all units of a given system [1].
Each unit may be either faulty or fault-free. Fault-free
units perform tests over other units to achieve the
complete diagnosis. System-level diagnosis has been
applied to different fields, such as network fault
management and circuit fault detection. The model and
algorithm presented in this paper can be employed to
detect changes in servers that keep replicated data, such
as Web or file servers.

A number of different system-level diagnosis models
[2] have been presented in the literature. The first system-
level diagnosis model, the PMC model, was introduced in
[3]. In the PMC model, system diagnosis hinges on the
ability of units to test the status of other units. A unit can
be either faulty or fault-free and its state does not change

during diagnosis. Each change on the state of a node is
called an event. In this model, a test involves controlled
application of stimuli and observation of the
corresponding responses. The set of all test outcomes is
called the syndrome. The model assumes that fault-free
units always report the state of the units they test
correctly, while faulty units can return incorrect results
[4, 1, 3]. The minimum number of units that must be
fault-free for diagnosis to be possible is called the
diagnosability.

Many algorithms based on the PMC model have been
proposed. In the adaptive algorithms nodes decide the
next tests based on results from previous tests [5], the
distributed algorithms allow the fault-free nodes in the
system to diagnose the state of all nodes [6], and in [7] a
hierarchical algorithm is presented.

Previously published hierarchical adaptive distributed
algorithms are restricted to crash fault diagnosis and they

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 2

assume that a faulty unit simply stops and never responds
to a test [8, 9, 10]. In [10] the algorithm Hi-ADSD with
Timestamps is presented. Instead of the state diagnosis
performed by the other hierarchical algorithms, Hi-
ADSD with Timestamps performs event diagnosis. This
algorithm groups the units of the systems into sets of N/2
units called clusters. When a tester tests a fault-free unit
it gets diagnostic information about the tested unit entire
cluster. Each unit of a system running Hi-ADSD with
Timestamps keeps a timestamp for the state of each other
unit in the system, so a tester may get diagnostic
information about a certain unit from more than one
tested unit without causing any inconsistencies.

The way tests are performed in the PMC model
suffers from several limitations that have caused other
testing methods to be considered, like probabilistic
diagnosis [11] and the comparison-based models
presented below.

The comparison-based models, proposed initially by
Malek [12], and by Chwa and Hakimi [13], have been
considered to be a practical approach for fault diagnosis
in distributed systems. In these first comparison-based
models, it was assumed that system tasks are duplicated
on two distinct units in the system and their outputs are
compared by a central observer. This central observer is a
reliable unit that cannot suffer any event. The observer
performs diagnosis using the comparisons’ outcomes.

Maeng and Malek present an extension of the
Malek’s comparison-based model, known as the MM
model [14]. This model allows comparisons to be carried
out by the units themselves, i.e., the comparisons are
distributed. The unit that performs the comparison must
be distinct from the two units that produce the outputs.
Sengupta and Dahbura present a generalization of the
MM model in [15], known as the generalized comparison
model, which allows the tester unit to be one of the units
which produce the outputs. In both the MM model and
the generalized comparison model, although the
comparisons are distributed, the comparisons’ outcomes
are still sent to a central observer, and only the central
observer performs the diagnosis.

In [16], Blough and Brown present a distributed
diagnosis model based on the comparison approach, the
so-called Broadcast Comparison model. In this model, a
distributed diagnosis procedure is used, which is based
on comparisons of redundant task outputs and has access
to a reliable broadcast protocol. In the Broadcast
Comparison model, tasks are assigned to pairs of distinct
units. These units execute the task and send their outputs
to all fault-free units in the system employing a reliable
broadcast protocol. Each fault-free unit in the system
receives and compares the two outputs eventually
achieving the complete diagnosis. Note that comparisons

are performed on every fault-free unit, including the
processors that execute the task. The main purpose of this
model is to reduce the latency and the time in which one
node must remain in a given state, not the number of tests
or comparisons executed.

Wang [17] presents the diagnosability of hypercubes
[18, 19] and the so-called enhanced hypercubes [20],
considering a comparison-based model. The enhanced
hypercube is obtained by adding more links to the regular
hypercube. These extra links increase the system’s
diagnosability. Each processor executes tests on other
processors by comparing tasks outputs. This model
allows the tester to be one of the processors that have the
tasks outputs compared.

Araki and Shibata [21] present the diagnosability of
butterfly networks [22] using the comparison approach.
Two comparison schemes for generating syndromes on
butterfly networks are proposed. One is called one-way
comparison, and the other is called two-way comparison.
Tests involve sending the same task to two processors.
Then the comparison of these two task outputs is
performed by a third processor. The diagnosability of a k-
ary butterfly network considering the one-way
comparison scheme is k–2 and the diagnosability of the
two-way scheme is 2(k–2).

Fan [23] presents the diagnosability of crossed cubes
– a hypercube variant, but with lower diameter – under
the comparison-based diagnosis model. The
diagnosability of crossed cubes with n ≥ 4 processors
is n.

In this paper, we present a new distributed
comparison-based model for system-level diagnosis. An
algorithm based on this model is presented, the
Hierarchical Comparison-Based Adaptive Distributed
System-Level Diagnosis (Hi-Comp) algorithm. This
algorithm uses a similar hierarchical testing strategy as
the one employed by Hi-ADSD with Timestamps. As Hi-
Comp is comparison-based, it is not limited to permanent
fault diagnosis, like the hierarchical distributed
algorithms based on the PMC model. The diagnosability
of the algorithm is presented, as well as formal proofs of
the algorithm’s latency and maximum number of tests
required.

The rest of work is organized as follows. In section 2
we present the new model. Section 3 introduces the new
algorithm. Section 4 presents the formal proofs for the
algorithm’s latency, maximum number of tests and
diagnosability. In section 5 simulation results are
presented and section 6 contains the conclusion.

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 3

2. The Distributed Comparison Model

In the new model, a system S is represented by a
graph G=(V,E), where V is a set of vertices and E is a set
of edges. Each vertex in the graph corresponds to a node
of the system and the edges correspond to the
communication links. In this model links do not become
faulty. Nodes of the system can be either faulty or fault-
free and changes in the state of nodes, from faulty to
fault-free or vice-versa, are called events.

System S is fully connected, i.e., there must exist a
communication link between any pair of nodes in the
system. Therefore, graph G is a complete graph, i.e.,

Vi ∈∀ e Vj ∈∀ , Eji ∈∃),(.

A fault-free node tests other nodes of the system to
identify their states. A test is performed by sending a task
to two distinct nodes of the system. After executing the
task, each node sends the task output to the tester. After
receiving the two outputs, the tester compares the
outputs. If the comparison produces a match the tester
considers the two tested nodes as fault-free. If the
comparison produces a mismatch the tester considers that
at least one of the two tested nodes is faulty, but cannot
conclude which one. To assure that the comparison
outcomes are correct, the following assumptions are
made over the system:

1. A fault-free processor comparing outputs
produced by two fault-free nodes always produces
a match.

2. A fault-free processor comparing outputs
produced by a faulty node and any other node,
faulty or fault-free, always produces a mismatch.

3. The time for a fault-free node to produce an
output for a task is bounded.

To guarantee that assumption 2 is satisfied, two faulty
nodes must produce different outputs for a same task.

A multi-graph [24], M(S), is defined to represent the
way that tests are executed in the system. M(S) is a
directed multi-graph defined over graph G, when all
nodes of the system are fault-free. The vertices of M(S)
are the nodes of system S. Each edge in M(S) represents
that a node is sending a task to another node, i.e., there is
an edge from node i to node j when node i sends a task to
node j. Furthermore, if node i sends a task to be executed
by nodes j and k, then there is an edge from node i to
node j identified by (i,j)k and there is an edge from node i
to node k identified by (i,k)j. So, if there is an edge (i,j)k
from node i to node j then there must exist an edge (i,k)j
from node i to node k. As an example consider figure 1a,
as node 1 sends tasks to node 2, to node 3 and to node 4,
the edges are: (1,2)3, (1,3)2, (1,2)4, (1,4)2, (1,3)4 e (1,4)3,

and all edges are from node 1 to the other nodes. Edge
(1,2)3 indicates that node 1 sent a task to node 2 and the
output of this task will be compared with the output
produced for this same task by node 3, therefore the edge
(1,3)2 must also be in the graph.

(1,4)3
(1,4)2

(1,2)3

(1,2)4

(1,3)2

(1,3)4

(b)(a)
Figure 1. a) Multi-graph M(S). b) Graph T(S).

The model uses a graph T(S), defined over multi-
graph M(S), to depict the tests executed by fault-free
nodes, the Tested Fault-Free graph. In this graph, there
is an edge from node i to node j when there is at least one
edge from node i to node j in M(S). Figure 1b shows the
graph T(S) for the multi-graph M(S) presented in figure
1a.

The diagnostic distance between node i and node j is
defined as the shortest distance between node i and node
j in T(S), i.e. the shortest path between node i and node j.
For example, in figure 1b the diagnostic distance between
node 1 and node 3 is 1, because the shortest path between
these two nodes has one edge.

3. The Hierarchical Comparison-
Based Algorithm

In this section the new Hierarchical Comparison-
Based Adaptive Distributed System-Level Diagnosis (Hi-
Comp) algorithm is presented. This algorithm is based on
the model presented in section 2.

The algorithm employs a testing strategy represented
by T(S) graph. T(S) is a hypercube when all nodes in the
system are fault-free. Figure 2 shows the graph T(S) for a
system of 8 nodes.

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 4

Figure 2. T(S) for a system of 8 nodes.

The Tested Fault-Free graph of node i, Ti(S), is a
directed graph defined over T(S) and shows how the
diagnostic information flows in the system. There is an
edge in Ti(S) from node a to node b if there is an edge in
T(S) from node a to node b and the diagnostic distance
between node i and node a is shorter than the diagnostic
distance between node i and node b. Figure 3 shows
T0(S) for a system of 8 nodes. For instance, there is an
edge from node 1 to node 3 in this figure, because the
diagnostic distance between node 0 and node 1 is shorter
than the distance between node 0 and node 3.

Nodes with diagnostic distance 1 to node i are called
sons of node i. In figure 3 the sons of node 0 are nodes 1,
2 and 4.

A testing round is defined as the interval of time that
all fault-free nodes need to obtain diagnostic information
about all nodes of the system. An assumption is made
that after node i tests node j in a certain testing round,
node j cannot suffer an event in this testing round.

The testing strategy groups the nodes into clusters
like the Hi-ADSD with Timestamps algorithm [10]. Each
cluster has N/2 nodes. A function, based on the
diagnostic distance, defines the list of nodes about which
node i can obtain diagnostic information through a given
node p. Figure 3 depicts the cluster division for a system
of 8 nodes in T0(S). The clusters are: (a) nodes {1, 3, 5,
7}, (b) nodes {2, 3, 6, 7} e (c) nodes {4, 5, 6, 7}.

(b)(a) (c)

Figure 3. Cluster division for a system of 8 nodes in T0(S).

3.1 Hi-Comp: Description

In Hi-Comp tests are made by sending a task to two
distinct nodes that execute this task and send the outputs
to the tester. This algorithm diagnoses events and states.

Initially, node i sends a task to its sons in pairs. For
example, for a system of 16 nodes shown in figure 4,
node 0 sends a task to nodes 1 and 2; then it sends
another task to nodes 4 and 8. When the quantity of sons
is odd, the last node is tested with the previous one. For
example, for a system of 8 nodes shown in figure 2, node
0 sends a task to nodes 1 and 2; then it sends another task
to nodes 2 and 4.

Figure 4. System with 16 nodes.

When node i diagnoses that two nodes are fault-free,
by comparing the outputs produced by these nodes, node
i obtains from these nodes diagnostic information about
the entire clusters to which each of the tested nodes
belongs.

In this algorithm it is possible that node i receives
diagnostic information from node j through two or more
nodes p and p’, because a node can belong to more than
one cluster, as shown in figure 3. Thus, it is necessary to
guarantee that node i has always the most recent
diagnostic information about the other nodes. In order to
allow nodes to determine the order in which events were
detected, the algorithm employs timestamps [10, 25].

When node i receives diagnostic information about
node j through node p, node i compares its own
timestamp about node j with node p’s timestamp about
node j, if the comparison indicates that node p’s
information is more recent then node i updates its own
diagnostic information; otherwise, node i rules the
information received from node p out.

When node i executes a comparison of outputs and
this comparison indicates a mismatch, node i classifies
the state of the two nodes as undefined, because it is not

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 5

possible to determine which node is faulty and which is
fault-free. At this point, if node i has already identified
any fault-free node, it tests this fault-free node with the
two undefined nodes in question, each in turn. If an
output comparison indicates a match then node i
classifies the tested node as fault-free, changing from
undefined to fault-free, otherwise node i classifies the
tested node as faulty, changing from undefined to faulty.
Meanwhile, if node i has not yet diagnosed any fault-free
node, these two nodes stay as undefined until node i
diagnoses a fault-free node that could be used to diagnose
the undefined ones.

If node i tests all its sons as undefined, it must test the
sons of its sons in Ti(S), and so on until it has tested all
nodes. The last node is tested with all nodes in the
system. If any comparison indicates a match, the tester
classifies these nodes as fault-free, and the tester may
then determine the state of all other nodes of the system,
either by receiving diagnostic information about these
nodes, or by testing the undefined nodes with the fault-
free ones.

If, after testing the last node, no fault-free node was
found, the tester assumes itself as
fault-free and tests all nodes with itself. Now, if a
comparison indicates a mismatch, the tester classifies this
node as faulty; if a comparison indicates a match, the
tester classifies the tested node as fault-free.

3.2 Hi-Comp: Specification

The new algorithm works over three sets: the set of
undefined nodes: U, the set of faulty nodes: F and the set
of fault-free nodes: FF. These sets have some properties:

∅=∩ FU , ∅=∩ FFU , ∅=∩ FFF and

VFFFU =∪∪ . Each node of the system keeps
these three sets, the contents of which can vary from
node to node. By the end of a testing round set U is
always empty.

When node i compares the outputs of a task
performed by nodes p and p’ and this comparison
indicates a match, node i identifies the two tested nodes
as fault-free. Node i puts the tested nodes in the set FF
removing them from the set to which they belonged.
When node i identifies one fault-free node, node i gets
from this node diagnostic information about the whole
cluster to which the fault-free node belongs. Each cluster
contains N/2 nodes. Furthermore, as information is
timestamped, node i must test if the received information
is newer than its own information. If the received
information is newer, node i must update its own
information; otherwise, node i simply rules the received
information out. In other words:

send_task(p,p');
IF (output(p) == output(p'))
THEN
 U = U - {p};
 U = U - {p'};
 F = F - {p};
 F = F - {p'};
 FF = FF + {p} + {p'};

 GET diagnostic information from p;

 IF (diagnostic information is newer)
 THEN update local diagnostic information;

 GET diagnostic information from p';

 IF (diagnostic information is newer)
 THEN update local diagnostic information;

If node i’s comparison indicates a mismatch when
comparing p’s and p’’s outputs, node i classifies these
nodes as undefined. Node i puts these nodes in set U
removing them from the set to which they belonged. In
other words:

send_task(p,p');
IF (output(p) != output(p'))
THEN
 FF = FF - {p};
 FF = FF - {p'};
 F = F - {p};
 F = F - {p'};
 U = U + {p} + {p'};

Before node i puts a node p in set U, node i must test
node p with all nodes Uk ∈ . If all these comparisons
indicate mismatches node i puts node p in set U. In other
words:

send_task(p,p');
IF (output(p) != output(p'))
THEN
 REPEAT for all k in U
 send_task(p,k);
 UNTIL (k == last node in U);
 IF (no comparison between p and k indicates a ma tch)
 THEN
 FF = FF - {p};
 F = F - {p};
 U = U + {p};

 REPEAT for all k in U
 send_task(p',k);
 UNTIL (k == last node in U);
 IF (no comparison between p' and k indicates a
match)
 THEN
 FF = FF - {p'};
 F = F - {p'};
 U = U + {p'};

Considering the comparisons between node p and
node Uk ∈ , when one of these comparisons produces a
match, the tester can classify nodes p and k as fault-free,

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 6

and all the other nodes U∈ as faulty. In other words:

send_task(p,p');
IF (output(p) != output(p'))
THEN
 REPEAT for all k in U
 send_task(p,k);
 UNTIL (output(p) == output(k) OR (k == last node in
U);
 IF (output(p) == output(k))
 THEN
 U = U - {p};
 F = F - {p};
 FF = FF + {p};
 U = U - {k};
 FF = FF + {k};
 F = F + U;
 ELSE
 FF = FF - {p};
 F = F - {p};
 U = U + {p};

 REPEAT for all k in U
 send_task(p',k);
 UNTIL (output(p') == output(k) OR (k == last nod e in
U);
 IF (output(p') == output(k))
 THEN
 U = U - {p'};
 F = F - {p'};
 FF = FF + {p'};
 U = U - {k};
 FF = FF + {k};
 F = F + U;
 ELSE
 FF = FF - {p'};
 F = F - {p'};
 U = U + {p'};

When a node Uk ∈ is identified as fault-free by
node i, node i gets the N/2 items of diagnostic
information about the tested node’s cluster.

If after node i tests its sons, set U is empty and there
are some nodes about which node i does not have
diagnostic information, node i must test these nodes with
one node previously identified as fault-free in this testing
round.

If after node i tests its sons, set FF is empty, i.e. all
sons of node i are classified as undefined, node i must
test the sons if its sons, and so on until a comparison
indicates a match, or node i tests the last node in Ti(S).

If node i tests the last node in Ti(S), node i must send
tasks to this node and all nodes Uk ∈ , one by one. In
other words:

REPEAT for all k in U
 send_task(p,k);
UNTIL (output(p) == output(k) OR (k == last node in U);
IF (output(p) == output(k))
THEN
 U = U - {p};
 F = F - {p};
 FF = FF + {p};
 U = U - {k};

 FF = FF + {k};
 F = F + U;
ELSE
 FF = FF - {p};
 F = F - {p};
 U = U + {p};

If after testing all nodes in Ti(S), set FF remains
empty, node i assumes itself as fault-free and tests all
nodes Uk ∈ with itself. Mismatches indicate that node
k is faulty and matches indicate that node k is fault-free.
In other words:

REPEAT for all k in U
 send_task(i,k);
UNTIL (output(i) == output(k) OR (k == last node in U);
IF (output(i) == output(k))
THEN
 U = U - {k};
 FF = FF + {k};
 F = F + U;
ELSE
 U = U - {k};
 F = F + {k};

Thus, by the end of a testing round, every fault-free
node has set ∅=U and all the nodes either in F or FF,
i.e. VFFF =∪ .

The algorithm in pseudo-code is given below.

Algorithm running at node i:

TO_TEST = {ALL NODES};
U = EMPTY; F = EMPTY; FF = EMPTY;

REPEAT FOREVER

 REPEAT
 p = next_pair_to_test; p' = next_pair_to_test;
 result = send_task_and_compare(p,p');

 IF (result == 0) /*p and p' are tested fault-fre e */
 THEN
 U=U-{p, p'}; F=F-{p, p'}; FF=FF+{p, p'};
 TO_TEST=TO_TEST-{p, p'};
 GET N/2 items of diagnostic information
 from p and p';
 FOR each peace of information
 COMPARE timestamps;
 UPDATE local diagnostic information if necess ary;

 ELSE /* test p and p' are tested undefine d */
 IF (FF != EMPTY)
 THEN
 result = send_task_and_compare(p, node_of_FF) ;
 IF (result == 0)
 THEN
 F=F-{p}; U=U-{p}; FF=FF+{p};
 GET N/2 items of diagnostic information from p;
 FOR each peace of information
 COMPARE timestamps;
 UPDATE local diagnostic information
 if necessary;
 ELSE
 U=U-{p}; FF=FF-{p}; F=F+{p};
 END_IF;

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 7

 result = send_task_and_compare(p', node_of_FF);
 IF (result == 0)
 THEN
 F=F-{p'}; U=U-{p'}; FF=FF+{p'};
 GET N/2 items of diagnostic information from p';
 FOR each peace of information
 COMPARE timestamps;
 UPDATE local diagnostic information
 if necessary;
 ELSE
 U=U-{p'}; FF=FF-{p'}; F=F+{p'};
 END_IF;

 ELSE /* FF == EMPTY */
 REPEAT
 k = select_new_node_from(U);
 result = send_task_and_compare(p,k);
 IF (result == 0)
 THEN
 F=F-{p}; U=U-{p}; U=U-{k}; FF=FF+{k};
 FF=FF+{p}; F=F+U+{p'}; U=EMPTY;
 END_IF;
 UNTIL (U == EMPTY) OR (k == last_node_from(U));

 IF (U != EMPTY)
 THEN
 REPEAT
 k = select_new_node_from(U);
 result = send_task_and_compare(p',k);
 IF (result == 0)
 THEN
 F=F-{p'}; U=U-{p'}; U=U-{k}; FF=FF+{k};
 FF=FF+{p'}; F=F+U+{p}; U=EMPTY;
 END_IF;
 UNTIL (U == EMPTY) OR (k == last_node_from(U));
 U=U+{p};

 IF (result == 1)
 THEN
 U=U+{p'}
 END_IF;
 END_IF;
 END_IF;
 UNTIL (test == ok) or (node_to_test == last_node) ;

 IF (TO_TEST != EMPTY)
 THEN
 m = select_node_from(FF);
 REPEAT
 n = select_node_from(TO_TEST);
 result = send_task_and_compare(m,n);
 IF (result == 0)
 THEN
 F=F-{n}; U=U-{n}; TO_TEST=TO_TEST-{n}; FF=FF+ {n};
 ELSE
 FF=FF-{n}; U=U-{n}; TO_TEST=TO_TEST-{n}; F=F+ {n};
 END_IF
 UNTIL (TO_TEST == EMPTY);
 END_IF

 IF (|U| = N-2) /* Last Node from TFFi */
 THEN
 l = last_node_from_TFFi;
 REPEAT
 k = select_new_node_from(U);
 result = send_task_and_compare(l,k);
 IF (result == 0)
 THEN
 F=F-{l}; U=U-{l}; U=U-{k}; FF=FF+{k}; FF=FF+{ l};
 F=F+U; U=EMPTY;
 END_IF;
 UNTIL (U == EMPTY) OR (k == last_node_from(U));

 IF (U != EMPTY)
 THEN
 U=U+{l};
 END_IF;
 END_IF;

 IF (|U| = N-1) /* Tester itself */
 THEN
 REPEAT
 k = select_new_node_from(U);
 result = send_task_and_compare(i,k);
 IF (result == 0)
 THEN
 U=U-{k}; FF=FF+{k}; F=F+U; U=EMPTY;
 ELSE
 U=U-{k}; F=F+{k};
 END_IF;
 UNTIL (U == EMPTY);
 END_IF;

4. Hi-Comp: Latency and Maximum
Number of Tests

In this section, the formal proofs of the latency and
maximum number of tests required by the new algorithm
are presented.

Theorem 1. A system running the Hierarchical
Distributed Comparison-Based algorithm is
(N–1)-diagnosable.

Proof:

First consider a system with only one fault-free node
and N–1 faulty nodes. By definition, the fault-free node
tests all nodes combining them in pairs and, as none are
determined to be fault-free, the tester continues executing
tests comparing all nodes with itself and achieves the
complete diagnosis of the system, identifying the state of
all nodes as faulty.

Now, consider a system with more than one fault-free
node. Each of these fault-free nodes executes tests until it
finds two other fault-free nodes, one of which can be the
tester itself. When the tester finds two fault-free nodes, it
obtains diagnostic information from these fault-free
nodes. By getting diagnostic information from the tested
fault-free nodes and, considering the information
obtained by its own tests, the tester achieves the complete
and correct diagnosis of the system.

However, if a situation such as shown in figure 5
happens, i.e. if node a could obtain diagnostic
information about node c from node b and node b obtains
diagnostic information about node c from node a, then
both, node a and node b, would not achieve the complete
diagnosis of the system.

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 8

Figure 5. Nodes a and b exchange information

about node c.

This situation never happens because if node a
receives information about node c from node b, the
diagnostic distance between nodes a and c must be larger
than the diagnostic distance between nodes b and c;
analogously for node b to receive diagnostic information
about node c from node a, the diagnostic distance
between nodes b and c must be larger than the distance
between nodes a and c.

Concluding, even if there is only one fault-free node,
this node is capable of correctly achieving the complete
diagnosis of the system, so the algorithm is
(N–1)-diagnosable. □

Theorem 2. All fault-free nodes running Hi-Comp
require, at most, log2N testing rounds to achieve the
complete diagnosis of the system.

Proof:

Consider a new event on node a. By the definition of
testing round, all nodes with diagnostic distance equal to
1 to node a, i.e. all sons of node a, diagnose this event in
the first testing round after the event.

Now, in the second testing round after the event, the
nodes with diagnostic distance equal to 2 to node a
diagnose the event, either by getting diagnostic
information from nodes with diagnostic distance equal to
1 to node a, or by directly testing node a, if all nodes
with diagnostic distance equal to 1 to node a are faulty.

Consider that node i is fault-free and has diagnostic
distance equal to d to node a. Assume that node i
diagnoses the event at node a in at most d testing rounds.

Now consider a node j with diagnostic distance equal
to d+1 to node a. By the definition of diagnostic distance,
any node with diagnostic distance equal to d+1 to node a
is a son of a node with diagnostic distance equal to d to
node a. So node j is son of a node i. By the definition of
testing round, a node must test all its sons in each testing
round, so node j tests node i in all testing rounds, then
node j can take at most one testing round to get new
information from node i.

As node i diagnoses node a’s event in at most d
testing rounds, and node j takes at most one testing round

to get new diagnostic information from node i, node j can
take at most d+1 testing rounds to diagnose the node a’s
event.

 Therefore, for node j diagnoses an event that
happened in node a, with diagnostic distance equal to
d+1 between then, node j can take at most d+1 testing
rounds.

Concluding, if the diagnostic distance between two
nodes is x one of these nodes may take up to x testing
rounds to diagnose an event at the other node.

By the hypercube’s definition [18] the largest
diagnostic distance between two nodes is log2N.
Therefore the algorithm’s maximum latency is log2N
testing rounds. □

Figure 6 illustrates theorem 2. In the first testing
round after an event at node a, the sons of node a
diagnose the event. In the second testing round the nodes
that are sons of node a’s sons diagnose the event, either
by getting information from the sons of node a or by
testing node a directly. After d testing rounds, node i
with diagnostic distance equal to d to node a diagnose the
event. Finally the node with the largest diagnostic
distance to node a, log2N, diagnoses the event, in at most
log2N testing rounds.

Figure 6. Illustration of TFFa.

Theorem 3. The maximum number of tests required
by all fault-free nodes in one testing round is O(N3).

Proof:

Initially, consider only one fault-free node in the
system and N–1 faulty nodes. To complete the diagnosis
of the system, the fault-free node sends tasks to the faulty
nodes combining then in pairs, so the number of tests

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 9

executed is the combination of N–1 in pairs: 2
1−NC .

However these tests are not enough for the fault-free
node to achieve the complete diagnosis, so the fault-free
node assumes that it is itself fault-free and sends tasks to
itself and each one of the other nodes, i.e. it executes N–1
more tests. Thus the total number of tests required by one

fault-free node is:
2

)1(
2

2
1

NN
NCN

−=−+− .

Now consider two fault-free nodes. The maximum
number of tests required by these two fault-free nodes is
at most two times the maximum number of tests required
for one fault-free node. The number of tests executed in

this case is:

2
*2

22

222 NNNNNN −=−+−
.

For three fault-free nodes, the theoretical maximum
number of tests required is three times the maximum
number of tests required for one fault-free node:

2
*3

2 NN −
.

By considering N fault-free nodes in the system, the
theoretical maximum number of tests is, at most, N times
the maximum number of tests required for one node:

22
*

232 NNNN
N

−=−
, that is O(N3). �

 It is known that as more nodes are fault-free less
tests are required to complete the diagnosis, because the
fault-free nodes can get diagnostic information from
other fault-free nodes. For example, when all N nodes are

fault-free, each node executes
2

2Nlog
 tests, which are

smaller than
2

2 NN −
. Although the worst case is

extremely rare it is O(N3). □

5. Simulation Results

In this section experimental results obtained with Hi-
Comp’s simulation are presented. The simulations were
conducted using the discrete event simulation language
SMPL [26]. Nodes were modeled as SMPL facilities, and
each node was identified by a SMPL token number.
Three types of events were defined: test, fault and repair.

Results of two experiments are presented. The first
experiment shows the worst case of the latency, whose

results confirm theorem 1. In the second experiment we
investigated the maximum number of tests for different
numbers of fault-free nodes, from 1 node to N–1 nodes;
this experiment shows the difference between the
simulated maximum number of tests required and the
theoretical maximum presented in theorem 2.

5.1 Algorithm’s Latency

To illustrate the algorithm’s latency two experiments
are presented: the first one considers the diagnosis of one
event. In this experiment all nodes are fault-free, then an
event happens in one node. In the second experiment, we
consider the diagnosis of N–1 simultaneous events,
initially only one node is fault-free, then one event
happens in each faulty node and all nodes of system
become fault-free, the experiment shows how the node
that was fault-free from the beginning diagnoses all
events.

5.1.1 Diagnosis of 1 Event

The purpose of this experiment is illustrate the
amount of testing rounds needed for one event to be
diagnosed by all the other N–1 fault-free nodes, in a
system of 16 nodes.

Figure 7. System of 16 nodes with one event.

 By the definition of testing round, each node
running the algorithm must obtain diagnostic information
about all nodes of the system in each testing round, i.e., a
node k is tested, at least, by all nodes of which node k is
son in each testing round.

Thus in the first testing round after an event on node
k, all nodes of which node k is son diagnose this event. In
the second testing round after the event, the information
about the event is passed to the testers of the sons of node
k and the information flows through TFFi graph.

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 10

Testing Round Amount of Nodes that

Diagnoses the Event
1 4
2 6
3 4
4 1

Table 1. Number of nodes that diagnoses an event per testing round in a
system of 16 nodes.

This experiment was conducted over the system of 16
nodes shown in figure 7. The event happens in node 15
and the information about this event must be passed on
until node 0 receives the information. Table 1 shows the
amount of nodes that diagnose the event in each testing
round. In the first testing round after the event, 4 nodes
diagnoses the event, in the second round 6 nodes, in the
third round other 4 nodes and in the fourth round only 1
node diagnoses the event.

5.1.2 Diagnosis of N–1 Simultaneous Events

In this experiment only node 0 is fault-free and all
other nodes are faulty; this system is shown in figure 8.
Node 0 knows the state of all nodes, when at once an
event happens at each faulty node and they all become
fault-free.

Figure 8. 16 nodes system with N–1 faulty nodes.

In the first testing round after the events, node 0
diagnoses the events that occurred at its sons, as all the
other nodes do. In the second testing round node 0
diagnoses the events that occurred at the sons of its sons
through its sons, and son on until the entire system is
diagnosed.

Table 2 shows the amount of events node 0 diagnoses
per testing round.

Testing Round Amount of Nodes

1 4
2 6
3 4
4 1

Table 2. Amount of nodes that node 0 diagnoses per testing round, in a
system of 16 nodes with 15 simultaneous events.

So, in log216 = 4 testing rounds after the events, node
0 correctly diagnoses all events.

5.2 Maximum Number of Tests

The purpose of this experiment is to show the
maximum number of tests performed by different
amounts of fault-free nodes in one testing round. In this
experiment, all arrangements of fault-free nodes were
analyzed and the ones with the largest number of tests per
testing rounds were picked, from 0 to N fault-free nodes.

Number of Tests Executed in the System

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Amount of Fault-Free Nodes

A
m

o
u

n
t

o
f

T
es

ts

Teorical Results
Simulation Results

Figure 9. Number of tests executed in the system.

In figure 9 the continuous line depicts the number of
tests executed in the system for the different amounts of

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 11

fault-free nodes; the dashed line shows the theoretical
worst case of the number of tests according to theorem 3.
As shown in the figure, the real number of tests required
is smaller than the theoretical maximum number of tests
predicted in theorem 3.

Figure 10. The situation with the maximum

quantity of tests.

As shown in figure 10 the largest amount of tests
occurs when there are only four fault-free nodes in the
system. In Hi-Comp a node executes tests in the system
until it finds two fault-free nodes. Nodes were arranged
as shown in figure 10; this situation forces all fault-free
nodes to execute the largest number of tests to find two
fault-free nodes. For example, node 0 needs to test all
nodes between nodes 1 and 14, sending tasks to each pair
of nodes in this interval, until tests the pair formed by
nodes 1 and 14. All fault-free nodes repeat this situation,
raising the number of tests to its maximum.

This results confirm the suspicion that the maximum
number of tests in the system is less than O(N3).

6. Conclusion

This paper presented the distributed comparison-
based model in which the Hi-Comp (Hierarchical
Comparison-based Adaptive Distributed System-Level
Diagnosis) algorithm is based. This is the first
hierarchical, distributed and comparison-based algorithm.

Nodes running comparison-based diagnosis
algorithms execute tests by comparing tasks results. In
Hi-Comp nodes must test other nodes to achieve the
complete diagnosis. A tester sends a task to two nodes.
Each of these nodes executes this task and sends its
output to the tester. The tester receives and compares the
two outputs; if the comparison produces a match, the
tester assume that the two nodes are fault-free; but, if the
comparison produces a mismatch, the tester considers

that, at least one of the two nodes is faulty, but cannot
identify which one.

When a fault-free node is tested, the tester obtains
diagnostic information about the entire cluster of the
tested node. Clusters contain N/2 nodes. To allow nodes
to determine the order in which events were detected, the
algorithm employs timestamps.

The new algorithm’s latency is log2N testing rounds.
A testing round is defined as the period of time that all
fault-free nodes need to obtain diagnostic information
about all nodes of the system.

The maximum number of tests in the system is O(N3)
tests per testing round. The algorithm is N–1-
diagnosable, i.e., if there are up to N–1 faulty nodes in
the system, the fault-free nodes still achieve the complete
correct diagnosis.

A practical tool for faulty management of computer
networks applications based on the Hi-Comp algorithm is
one of the main objectives for future work.

References

[1] A. Subbiah, and D.M. Blough, “Distributed
Diagnosis in Dynamic Fault Environments,”
IEEE Transactions on Paralel and Distributed
Systems, Vol. 15 No. 5, pp. 453-467, 2004.

[2] G. Masson, D. Blough, and G. Sullivan, “System
Diagnosis,” Fault-Tolerant Computer System
Design, ed. D.K. Pradhan, Prentice-Hall, 1996.

[3] F. Preparata, G. Metze, and R.T. Chien, “On The
Connection Assignment Problem of Diagnosable
Systems,” IEEE Transactions on Electronic
Computers, Vol. 16, pp. 848-854, 1968.

[4] S.L. Hakimi, and A.T. Amin, “Characterization
of Connection Assignments of Diagnosable
Systems,” IEEE Transactions on Computers,
Vol. 23, pp. 86-88, 1974.

[5] S.L. Hakimi, and K. Nakajima, “On Adaptive
System Diagnosis,” IEEE Transactions on
Computers, Vol. 33, pp. 234-240, 1984.

[6] S.H. Hosseini, J.G. Kuhl, and S.M. Reddy, “A
Diagnosis Algorithm for Distributed Computing
Systems with Failure and Repair,” IEEE
Transactions on Computers, Vol. 33, pp. 223-
233, 1984.

[7] E.P. Duarte Jr., and T. Nanya, “A Hierarchical
Adaptive Distributed System-Level Diagnosis
Algorithm,” IEEE Transactions on Computers,
Vol.47, pp. 34-45, 1998.

[8] R.P. Bianchini, and R. Buskens,
“Implementation of On-Line Distributed
System-Level Diagnosis Theory,” IEEE

Luiz C. P. Albini, Elias P. Duarte Jr. A Generalized Model for Distributed
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis

 12

Transactions on Computers, Vol. 41, pp. 616-
626, 1992.

[9] A. Brawerman, and E.P. Duarte Jr., “A
Synchronous Testing Strategy for Hierarchical
Adaptive Distributed System-Level Diagnosis,”
Journal of Electronic Testing Theory and
Applications, Vol. 17, No. 2, pp. 185-195, 2001.

[10] E.P. Duarte Jr., A. Brawerman, and L.C.P.
Albini, “An Algorithm for Distributed
Hierarchical Diagnosis of Dynamic Fault and
Repair Events,” Proc. IEEE ICPADS’00, pp.
299-306, 2000.

[11] S. Lee, and K.G. Shin, “Probabilistic Diagnosis
of Multiprocessor Systems,” ACM Computing
Surveys, Vol. 26, No. 1, pp. 121-139, 1994.

[12] M. Malek, “A Comparison Connection
Assignment for Diagnosis of Multiprocessor
Systems,” Proc. Seventh Int’ l Symp. Computer
Architecture, pp. 31-36, 1980.

[13] K.Y. Chwa, and S.L. Hakimi, “Schemes for
Fault-Tolerant Computing: A Comparison of
Modularly Redundant and t-Diagnosable
Systems,” Information and Control, Vol. 49, pp.
212-238, 1981.

[14] J. Maeng, and M. Malek, “A Comparison
Connection Assignment for Self-Diagnosis of
Multiprocessor Systems,” Digest 11th Int’ l
Symp. Fault Tolerant Computing, pp. 173-175,
1981.

[15] A. Sengupta, and A.T. Dahbura, “On Self-
Diagnosable Multiprocessor Systems: Diagnosis
by Comparison Approach,” IEEE Transactions
on Computers, Vol. 41, No. 11, pp. 1386-1396,
1992.

[16] D.M. Blough, and H.W. Brown, “The Broadcast
Comparison Model for On-Line Fault Diagnosis
in Multicomputer Systems: Theory and
Implementation,” IEEE Transactions on
Computers, Vol. 48, pp. 470-493, 1999.

[17] D. Wang, “Diagnosability of Hipercubes and
Enhanced Hypercubes under the Comparison
Diagnosis Model,” IEEE Transactions on
Computers, Vol. 48, No. 12, pp. 1369-1374, 1999.

[18] G.S. Almasi, and A. Gottlieb, Highly Parallel
Computing, The Benjamim/Commings
Publishing Company Inc., 1994.

[19] C. Xavier, and S.S. Iyengar, Introduction to
Parallel Algorithms, Wiley-Intersciense
Publication, 1998.

[20] N.F. Tzeng, and S. Wei, “Enhanced
Hypercubes,” IEEE Transactions on Computers,
Vol. 40, No. 3, pp. 284-294, Mar. 1991.

[21] T. Araki, and Y. Shibata, “Diagnosability of
Butterfly Networks under the Comparison
Approach,” IEICE Trans. Fundamentals, Vol

[22] F.T. Leighton, Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, San Mateo,
CA, 1992.

[23] J. Fan, “Diagnosability of Crossed Cubes,” IEEE
Transactions on Computers, Vol. 13, No. 10, pp.
1099-1104, Out. 2002.

[24] F. Harary, Graph Theory, Addison-Wesley
Publishing Company, 1971.

[25] S. Rangarajan, A.T. Dahbura, and E.A. Ziegler,
“A Distributed System-Level Diagnosis for
Arbitrary Network Topologies,” IEEE
Transactions on Computers, Vol. 44, No. 2, pp.
312-333, 1995.

[26] M.H. MacDougall, Simulating Computer
Systems: Techniques and Tools, The MIT Press,
Cambridge, MA, 1987.

