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Abstract. This work presents SAPOTI (Dependable 
TCP/IP Application Servers - in Portuguese: Servidores 
de APlicações cOnfiáveis Tcp/Ip), a distributed tool that 
guarantees the availability of TCP/IP application servers, 
in particular of Web servers. The tool is based on the 
SNMP framework and is executed on a group of Web 
servers running on a set of hosts that are monitored by a 
dependable distributed network management tool based 
on the hierarchical diagnosis algorithm Hi-ADSD with 
Timestamps. One server is elected to be responsible for 
the service. After this server becomes faulty and this event 
is diagnosed, the service is automatically recovered by 
electing another server among those that are fault-free. A 
priority scheme based on identifiers is defined. The 
service is available even if only one host/server is fault-
free. Experiments are described obtained from a 
implementation of SAPOTI on a LAN with real Apache 
servers. Experiments that involved the injection of 210 
faults distributed among a group of six servers were run, 
the measured availability was at least 97.3%. In another 
experiment with five servers, where 27 faults were 
injected, the availability was 99.5% during the whole 
experiment time. 

1. Introduction 
Organizations and individuals have become increasingly 
dependent on the correct behavior of Web systems. It is 
thus important to guarantee the availability of these 
systems. This work presents  SAPOTI (Dependable 
TCP/IP Application Servers – in Portuguese: Servidores 
de APlicações cOnfiáveis Tcp/Ip), a tool that allows the 
implementation of highly-available TCP/IP [1] (Transfer 
Control Protocol/Internet Protocol) application servers, 
more specifically, allowing the deployment of fault-
tolerant Web servers. SAPOTI is implemented on top of a 
dependable distributed network monitoring system, that is 
based on hierarchical distributed diagnosis [2, 3]. The 
system employs algorithm Hi-ADSD with Timestamps 
(Hierarchical Distributed System-Level Diagnosis with 
Timestamps) [4] for fault-tolerant network resource 
monitoring. 

The objective of distributed system-level diagnosis is to 
identify which system units are faulty and which are 
fault-free [5]. When diagnosis is distributed [5] each node 
has the ability to complete locally the diagnosis of the 
whole system. When the diagnosis is adaptive, the tests 
that each node performs are based on rounds and each 
round is achieved based on the previous rounds results. 
When the diagnosis is hierarchical, the nodes are grouped 
in clusters and in each testing round the size of the 
clusters increase. Hi-ADSD with Timestamps [4] is a 
hierarchical, adaptive and distributed system-level 
diagnosis algorithm. 

SAPOTI employs the group abstraction in order to 
provide continuous, fault-tolerant service. A set of Web 
servers, called a server group, replicate the same content. 
The group employs passive replication [6], so that at any 
time one group member, called the primary, is 
responsible for serving all client requests. If the primary 
becomes faulty, after this event is diagnosed, the service 
is automatically recovered by the election of another 
primary among those group members that are fault-free. 
A priority scheme based on identifiers is defined. The 
service is available even if only one host/server is fault-
free. 

The management tool on top of which SAPOTI was 
implemented is based on the Simple Network 
Management Protocol (SNMP) protocol [7], the Internet 
standard framework for network management. A network 
management system built with SNMP consists of 
management entities that communicate using the 
management protocol. The framework includes the 
definition of a MIB (Management Information Base) [7], 
which is a collection of management objects that are 
useful for network monitoring and control. 

Experiments were also performed and are described. The 
results show that in a network configuration with six 
nodes where 210 faults were injected distributed among 
all nodes, the availability of the service was at least 
97.3%. In another network configuration with five nodes 
where some of these nodes became faulty 27 times, the 
availability of the Web server was at least 99.5%.  
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The rest of this work is organized as follows. Section 2 
presents a general view of the dependable and distributed 
management tool based on hierarchical diagnosis. Section 
3 details the architecture and implementation of SAPOTI. 
Experimental results are described in section 4. Section 5 
presents related work and section 6 concludes the paper. 

2. The Dependable and Distributed Network 
Management Tool 
SAPOTI obtains diagnostic information from the afore 
mentioned dependable and distributed network 
management tool [2, 3]. This management tool 
implements algorithm Hi-ADSD with Timestamps [4], a 
hierarchical adaptive and distributed system-level 
diagnosis algorithm. A distributed system-level diagnosis 
algorithm allows the system’s fault-free nodes to 
determine the state of all other nodes in the system [4, 5]. 
A diagnosis algorithm is called adaptive if the next tests 
are determined based on the previous tests results. When 
the diagnosis is hierarchical, nodes are grouped in 
clusters and in each testing round the size of the cluster 
increases. Initially tests are performed for clusters with 
size 1. The cluster size doubles in consecutive testing 
rounds. The maximum cluster size is n/2 where n is the 
number of nodes in the system. At each testing round, 
each node obtains diagnostic information about the whole 
cluster. It is assumed that fault-free nodes are able to 
execute tests in a reliable way and that the system is fully 
connected.  

The management tool is implemented using SNMP. The 
SNMP standard defines entities that are traditionally 
called managers and agents. The agents make available 
management information through a MIB (Management 
Information Base) [7]. The managers are sets of user 
applications that can be constructed to perform tasks such 
as fault, configuration and accounting management. 

The management tool consists of a set of agents. Each 
agent – also called a tester – keeps a Test-MIB. The Test-
MIB keeps information about the tests that are executed 
by each corresponding agent. It also keeps information 
about the state of all testers and system components. The 
testers are identified by the management tool with 
sequential identifiers. The Test-MIB allows the 
configuration of secondary tests through the specification 
of procedures. These secondary tests are constructed 
specifically for each unity that must be tested.  

A test procedure can be configured to monitor network 
services or devices. A network service is any process 
executing a tester and a device is any resource accessible 
through the network. When a secondary test is configured 
for a device and the corresponding tester becomes faulty, 
the algorithm assigns another tester to replace the faulty 
one. If the secondary test is employed for testing a 
service, the algorithm does not replace a faulty tester. In 

this case the state of the tested service is considered to be 
unknown. 

Tests are executed periodically in pre-defined testing 
intervals. The Test-MIB allows this interval to be 
configured for each test. Each MIB keeps information 
about testing intervals and about the number of tests 
executed by each tester. The MIB also keeps statistics 
such as the mean time a managed object remains fault-
free and the mean time a monitored object takes to be 
repaired after it becomes faulty. 

3. SAPOTI: Tool Architecture  
SAPOTI can be used to guarantee the high availability of 
TCP/IP applications, in particular of Web servers. The 
tool was implemented in Linux [8]. The Web server used 
was the Apache [9] server. SAPOTI is a distributed tool 
that is executed on a set of hosts that provide the 
dependable service. The tool requires the Web server to 
be installed in a group of hosts that together provide the 
dependable service. 

SAPOTI uses the sequential identifiers assigned by the 
management tool. These identifiers are used to determine 
the priority of group members. The fault-free server with 
highest priority is responsible to provide the service. The 
lowest the identifier the highest the priority. 

Each host running a group member must have a 
secondary test set up in its corresponding Test-MIB. This 
secondary test is employed to check the state of the Web 
server running in the node. This secondary test consists of 
a complete procedure that checks whether the Web server 
is fully available. From this test result and also using 
network diagnostic information obtained from the Test-
MIB, SAPOTI configures the fault-free server that has the 
highest priority to serve Web requests. 

As SAPOTI runs in a distributed way, all nodes executing 
the tool know the priority of the node that is currently 
providing the service. For the next steps, consider that a 
node i is executing the SAPOTI. If node i identifies that 
there are no other nodes with higher priority providing 
the service and if it is also not yet providing the service, 
then node i becomes the service provider. On the other 
hand, if node i is currently providing the service and it 
identifies that there is another node with higher priority 
that is also currently providing the service, node i stops 
its Web server. All diagnostic information required is 
obtained from the local Test-MIB. Thus, SAPOTI does 
not execute any additional network monitoring. As each 
node independently identifies if it should provide or not 
the service, the service remains available even if only one 
node running SAPOTI is fault-free. 

SAPOTI employs a unique virtual IP address which is 
assigned to the host providing the service. This strategy 
allows the group of servers to be transparent to the client, 
i.e. the interface is identical to the interface of a single 
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server. A virtual IP address can be configured in Linux 
with the IP aliasing technique [10]. Besides the virtual IP 
address, the host also has its own IP address. Thus, in 
order for a machine to start providing the service it sets 
up the virtual IP address and starts the Apache Web 
server.  The algorithm in pseudo-code is presented 
bellow. 
 
The SAPOTI algorithm that runs on each node: 
 

my_id := (local node id); 
time_out := (seconds to wait for each  
             iteration of the algorithm); 
repeat forever 
    server_id := (the lowest node id that is  
                 currently providing the Web server); 
    if (server_id > my_id) or (server_id is null) 
    then 
        if local node is not with the virtual IP up 
        then bring the virtual IP interface up; 
 

        if local node is not providing the Web server 
        then start the Web server; 
    else 
        if local node is with the virtual IP up 
        then take the virtual IP interface down; 
 

        if local node is providing the Web server 
        then stop the Web server; 
    end_if; 
    sleep time_out seconds; 
end_repeat; 
 

Figure 1 shows a group of four hosts running SAPOTI to 
implement a dependable Web server. In the figure the 
nodes with id 1 and 2 are faulty. As the node with id 3 
has the highest priority among fault-free nodes, it sets up 
the virtual IP address and starts the Web server. 

The nodes must keep the Web server files updated. This 
is done with the RSYNC [11] application. The RSYNC 
application synchronizes any change in the files content 
of a group of network hosts. Furthermore, the RSYNC 
application is efficient in the sense that it only transfers 
file changes. Another alternative to this task is use NFS 
(Network File System) [12] to share the files. 

4. Experimental Results 
In this section the results of two experiments are 
described. The experiments were executed to measure the 
recovery latency and the availability of a Web server in 
environments with a relatively high number of faults. In 
the first experiment 6 hosts were employed. The system 
was observed during an interval of 12 hours and 23 
minutes. Table 1 shows the identifiers of the hosts used in 
the first experiment. Faults were injected so that the 
probability that a given host is fault-free state at a specific 
instant of time varied between 30% and 85%. A total 
service collapse was also simulated in this experiment, 
i.e. occasionally all hosts could become faulty, making 
the Web server completely unavailable. 

 
Figure 1: A group of four hosts running  

the SAPOTI. 

In the second experiment 5 hosts were employed and the 
results were collected during an interval of 12 hours and 
40 minutes. Table 2 shows the hosts’ identifiers and how 
faults were injected. The fault configuration of this 
second experiment was specified so that there would be at 
least one fault-free machine during the whole experiment. 
Double consecutive events were also avoided – a host 
becomes faulty and immediately another host becomes 
fault-free – or vice-versa. 

In both experiments a host fault was simulated by killing 
its SNMP agent process. This fault simulation was 
enough because the management tool is based on the 
SNMP protocol, i.e. without the SNMP agent the 
management tool cannot obtain status information about 
the machine, considering it as unavailable. The hosts 
were connected in an Ethernet 100 Mbps network using 
NFS. All hosts run Linux Debian [14] system and version 
4.2.1 of the NET-SNMP [7]. An Apache Web server was 
executed on each host. In both experiments the testing 
interval employed by the management tool and the test 
interval of SAPOTI were set to 10 seconds. In order to 
obtain experimental data, during the entire experiment the 
state of the hosts and the state of the Web servers were 
sampled each 5 seconds. 

Tables 3 and 4 show for both experiments the number of 
times that each host became faulty and the percentage of 
time the hosts remained faulty, in comparison with the 
total observation time. It is possible to show that in the 
first experiment 210 faults occurred distributed among all 
hosts and that in the second experiment 27 faults 
occurred. 
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First Experiment 

Host ID Fault Configuration 
Puma 1   5 minutes fault-free / 10 minutes faulty 
Kenny 2   8 minutes fault-free / 9 minutes faulty 
Stan 3 13 minutes fault-free / 7 minutes faulty 
Kyle 4 17 minutes fault-free / 6 minutes faulty 
Cartman 5 21 minutes fault-free / 5 minutes faulty 
Lenoc 6 25 minutes fault-free / 4 minutes faulty 

Table 1: The host names, ID and fault configuration in 
the first experiment. 

Second Experiment 
Host ID Fault Configuration 
Puma 1 20 minutes fault-free / 40 minutes faulty 
Kenny 2 40 minutes fault-free / 20 minutes faulty 
Stan 3 Always fault-free 
Kyle 4 Always fault-free 
Cartman 5 Always fault-free 

Table 2: The host names, ID and fault configuration in 
the second experiment. 

First Experiment 
Host Faults Faulty Time in % 
Puma 50 66.4 
Kenny 44 46.6 
Stan 37 35.2 
Kyle 32 26.3 
Cartman 29 19.2 
Lenoc 26 13.7 

Table 3: The number of faults and the 
percentage of time in which hosts 

remained faulty in the first experiment. 

Seconds Experiment 
Machine Faults Faulty Time in % 
Puma 14 68.5 
Kenny 13 51.4 
Stan 0 0 
Kyle 0 0 
Cartman 0 0 

Table 4: The number of faults and the 
percentage of time in which hosts 

remained faulty in the second experiment. 

During the first experiment the service was transferred 
from a host to another 177 times. This is less than the 
number of faults injected, 210, because some faults 
occurred in machines with lower priority compared to the 
machine currently responsible for the service. In 72 cases 
the Web server became unavailable. In the other 105 
cases the service was assumed by a server with higher 
priority.  

Figure 2 shows the recovery latencies measured in the 
first experiment. It is possible to notice that the fastest 
recovery took 6 seconds and that the slowest recovery 
took 53 seconds. The average latency was 16.4 seconds. 
Figure 3 shows the accumulated recovery latency of this 
experiment. 54% of the measured recovery latency was 
less than 10 seconds. It is also possible to notice that in 
90% of the recovery time was less than 30 seconds. 

During the second experiment the Web server was 
transferred from one host to another 41 times. But, 
because of the same reason as described above, the Web 
server could be repaired 26 times. 

Figure 4 shows the recovery latency measured in second 
experiment. The fastest recovery latency was equal to 7 
seconds and the slowest recovery latency took 29 
seconds. The average latency was 14 seconds. Figure 5 
shows the accumulated recovery latency for this 
experiment. 64% of the measured recovery latencies were 
less than 10 seconds. It is also possible to notice that 
100% of the measured latencies were less than 30 
seconds. 
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Figure 2:  Recovery latency: first experiment. 

First Experiment:
Accumulated recovery latency of the Web server
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Figure 3: The accumulated recovery latency: the first 

experiment. 

Figure 6 shows the number of times that each host started 
a Web server in the first experiment. It is possible to 
notice that even in this highly dynamic environment 
where 210 faults occurred distributed among six 
machines – and the Web server changed 177 times from 
one machine to another – the measured availability of the 
Web server was 97.35%. Therefore during the 12 hours 
and 23 minutes of the first experiment the Web server 
was unavailable for less than 20 minutes. It important to 
highlight that during part of this experiment faults were 
injected that caused all hosts to become faulty. In the 
second experiment there was always at least one fault-
free host that could provide the service. 
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Second Experiment:
Recovery latency of the Web server
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Figure 4: Recovery latency: second experiment. 

Second Experiment:
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Figure 5: The accumulated recovery latency: the 

second experiment. 

Figure 7 shows that in the second experiment, even with 
27 faults distributed among the five machines – and the 
Web server changed 41 times from one machine to 
another – the availability of the Web server was 99.58% 
considering the experiment time. Therefore during the 12 
hours and 40 minutes of the first experiment the Web 
server unavailability was 0.42% of the observation time, 
i.e. it was less than 4 minutes. 
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Figure 6: Number of times each machine started a 

Web server: first experiment. 

Second Experiment:
# of times the machines started the Web server
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Figure 7: Number of times each machine started a 

Web server: the second experiment. 

It is important to make clear that the presented results 
depend on the testing intervals (10 seconds) and sampling 
interval (5 seconds) employed.  It is possible to configure 
these intervals, from milliseconds to hours.  Small 
intervals lead to more precise results. 

5. Related Work 
Although to the best of our knowledge this is the first 
work that employs distributed diagnosis in order to 
implement highly-available Web servers, other 
approaches do exist. In [15] a heartbeat monitoring 
strategy is used to implement a highly-available Apache 
Web server using two hosts. Heartbeats are short 
messages employed by a process to inform other 
processes that it is alive. The monitoring component that 
generates heartbeats executes a test procedure that allows 
the detection of a faulty service.  Even if one fault-free 
node is presented in the system, the Web server is 
supposed to be available. A key difference to our 
proposed system is that the number of heartbeats 
generated is quadratic, while it is logarithmic on average 
in SAPOTI.  

Another solution presented in [16] describes a prototype 
of a highly-available Web server for IBM SP-2 systems. 
The solution consists of a set of hosts running Web 
servers connected by a switch. This switch is a central 
component that performs load balancing and guarantees 
the availability. This work is based on a combination of 
TCP-redirection and DNS (Domain Name Server) 
features. The availability is provided by detecting node or 
server failures and redirecting requests accordingly. 
Another approach that uses a central component to 
implement clusters of Web servers is presented in [17]. In 
this approach DNS is used as a centralized dispatcher to 
distribute the requests among the available fault-free 
servers. 

Most related work focus not on the dependability of Web 
servers but on load balancing [18, 19, 20, 21, 22]. In [23] 
the authors propose a cluster of Web servers that can 
dynamically recruit non-dedicated processors when load 
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bursts occur. Recently in [24] virtual machines are used 
for deploying replicated servers. Other approaches [25, 
26] make possible the construction of cluster Web servers 
to improve performance using the Socket Cloning (SC) 
strategy.  

6. Conclusion 
This work presented SAPOTI, a distributed tool for 
deploying highly-available TCP/IP application servers, in 
particular Web servers. SAPOTI runs on top of a 
management tool based on Hi-ADSD with Timestamps, a 
distributed diagnosis algorithm. The management tool 
allows hosts and processes to be monitored in an efficient 
way. SAPOTI uses diagnostic information to monitor a 
set of hosts that may run the Web server. If the host 
running the server at a given instant of time becomes 
faulty, SAPOTI re-starts the server on a fault-free host. 
The service is available even if there is only one fault-free 
host. Experimental results show that SAPOTI is able to 
consistently improve the availability of the system. 

Future work includes deploying SAPOTI on a wide-area 
network, which requires another distributed diagnosis 
algorithm. Strategies to further improve the availability 
are also under investigation. The application of SAPOTI 
to other services is also planned. 
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