
Diagnosis of Content Pollution in P2P Live Streaming Networks

Roverli P. Ziwich1, Emanuel A. Schimidt1, Elias P. Duarte Jr.1, Ingrid Jansch-Pôrto2

1Federal University of Paraná (UFPR)
Dept. Informatics, P.O.Box 19018, 81531-990, Curitiba, PR, Brazil

2Federal University of Rio Grande do Sul (UFRGS)
Informatics Inst., P.O.Box 15064, 91501-970, Porto Alegre, RS, Brazil

Email: {roverli,emanuel,elias}@inf.ufpr.br, ingrid@inf.ufrgs.br

Abstract

Content pollution is one of the challenges for massively
deploying live streaming P2P networks in the Internet. As
the peers themselves are responsible to retransmit data,
there is no trivial solution to this problem. This work
presents a new strategy to detect content pollution that em-
ploys comparison-based diagnosis to identify modifications
on the data stream. A peer compares randomly selected
chunks received from its neighbors. Based on the compari-
son results, peers that transmitted polluted content are iden-
tified. The proposed solution was implemented using Fire-
flies, a scalable and intrusion-tolerant overlay network. Ex-
perimental results show that the strategy represents a feasi-
ble solution to detect content pollution and causes a low
overhead in terms of network bandwidth.

1 Introduction

Peer-to-peer (P2P) live streaming video transmissions
are becoming increasing popular in the Internet [18]. Sev-
eral systems that implement video live streaming in P2P
networks have appeared in last years, for instance PPLive1,
SopCast2, and PPStream3. In contrast with the tradi-
tional client-server solutions, the peers in a peer-to-peer
live streaming network not only consume but also share the
stream content among themselves. In this way, using a P2P
network to transmit live streaming sessions decreases the
demand on the source, and allows thousands, or even mil-
lions of users to join the network and follow the transmis-
sion at the same time.

In a P2P live streaming network the content is initially
transmitted by a source server. The transmitted data is di-

1PPLive - http://www.pplive.com/en
2SopCast - http://www.sopcast.com
3PPStream - http://www.ppstream.com

vided in chunks, which are shared between the peers them-
selves. On the other hand, these systems present several
challenges. One of which is to deal with the churn, i.e.
the fact that peers join and leave the network continuously,
without decreasing the quality of the transmission. Another
important challenge is to deal with malicious peers, that
can harm the system in several ways, including by pollut-
ing content as described below.

A content pollution attack consists of the unauthorized
modification of the original data by one or more malicious
peers. The modifications can be of different types, includ-
ing changes of the original data, creation of new data, or
even data destruction or omission [12]. A characteristic that
also contributes to the content pollution problem in P2P live
streaming networks is the restriction on the maximum time
data is allowed to reach a peer. This is relevant because the
detection of the polluted data and the creation of new re-
quests to replace those chunks can increase delays and also
cause jumps (or gaps) in the transmission [29].

Some of the solutions that handle the content pollution
problem in P2P live streaming networks assume that all
peers in the network previously know – or receive during
the transmission – the hash value [28] of all chunks. In this
way, all peers in the P2P network are able to identify any
change in any chunk. A peer can generate a new hash of the
received chunk and verify if it matches the previously re-
ceived hash value. However, this strategy has a drawback,
which is the hash distribution. A malicious peer can trans-
mit a set of fake hash values within modified chunks, de-
ceiving other peers in the network.

Another approach for dealing with pollution detection is
the usage of digital signatures, basically consisting of hash
values encrypted with a private key [13]. In this strategy the
chunk’s digital signatures are generated by the source server
and they are transmitted with the chunks. Even if a mali-
cious peer transmits a modified chunk to its neighbors, the
malicious peer will not be able to forge the corresponding
signature. On the other hand, all peers will need to check

2013 6th Latin-American Symposium on Dependable Computing

978-0-7695-4962-0/13 $26.00 © 2013 IEEE

DOI 10.1109/LADC.2013.13

48

the digital signatures, which is a computationally expensive
procedure.

This work presents an alternative solution to diagnose
content pollution in live streaming P2P networks. The pro-
posed solution uses comparison-based diagnosis [9] to de-
tect unauthorized modifications in the transmitted content.
Each system peer executes comparisons over randomly se-
lected chunks obtained from all of its neighbors. Based on
the comparison results, a classification of the peers in sets
is performed allowing the detection of content pollution.

The proposed solution was implemented using Fireflies
– a scalable and intrusion tolerant overlay network protocol
[14, 13]. Fireflies uses the pull-based strategy to transmit
data, and the mesh topology is employed. The proposed
strategy was implemented using the same Fireflies simula-
tor described in [13]. Thousands of experiments were per-
formed in order to evaluate the overhead of the comparisons
executed. Results show that this overhead is low enough,
and that the application of comparison-based diagnosis to
detect content pollution in P2P networks is feasible.

The rest of the paper is organized as follows. Sec-
tion II gives a brief introduction to P2P live streaming,
comparison-based diagnosis and to the Fireflies protocol.
Section III presents the proposed strategy to diagnose con-
tent pollution in P2P live streaming networks. In section IV
experimental results are presented. Section V presents a de-
scription of related work and is followed by the concluding
remarks in section VI.

2 Preliminary Definitions

This section starts with a brief introduction to live
streaming in P2P networks; next the Fireflies protocol –
a scalable and intrusion-tolerant overlay network – is de-
scribed; finally, an overview of comparison-based diagnosis
is presented, that is the basis on which the proposed pollu-
tion detection strategy was devised.

2.1 Live Streaming in P2P Networks

Live streaming in P2P networks starts at a source server
that have the content that is disseminated. The content is
divided in small pieces, called chunks. The source server is
responsible to insert the chunks in the network. The chunks
are then shared by peers, that both consume and retransmit
content to other peers. Two topologies are usually employed
to transmit live streaming on P2P networks [19]: the tree
topology and the mesh topology, described below.

In the tree topology, the peers form a tree, of which the
source server is the root. The main advantage of using the
tree topology is that, after the tree is built, the data trans-
mission decisions are simple: a peer receives data from its
parent and forwards data to its children [6]. In a fault-less

system this topology presents a low delay between the trans-
mission of the data by the source server and the arrival of the
data at all system peers. However the tree topology presents
three important disadvantages. (1) If data is lost at a peer
located close to the root, it will affect its whole subtree.
(2) This topology has low resilience under churn: if a peer
leaves the system and it is not a leaf, then its whole subtree
will stop receiving data until the tree is rebuilt [19]. (3) The
average upload rate is lower than in other topologies. This
happens because all leaf peers only receive data and do not
participate by actively transmitting data.

The mesh topology is not structured, i.e. it is not based
on a predefined network structure [24]. In this topology,
when a peer wants to join the transmission, it simply con-
nects itself to a list of peers and starts to share information.
The main problem of mesh networks is related to the way
peers exchange data: to receive a particular chunk, a peer
needs to first issue a request and to keep a list of the data
available at all its neighbors. Thus a mesh-based transmis-
sion requires more bandwidth compared to the tree-based
alternative, and this may lead to higher delays in the data
propagation throughout the system.

Three strategies are usually employed by the peers to ex-
change data [19]: push-based, pull-based and push-pull-
based. The push-based strategy is mainly used in tree
topologies. Data is transmitted by some peers to other peers
without having the need for previous requests. Although in
a strictly push-based system this strategy avoids the over-
head of requests, there is no way to request any data, even
if the transmission had previously failed. Another disad-
vantage of this strategy is that, if multiple data senders are
present in the network, an specific peer can receive dupli-
cated data, that represents a waste in terms of bandwidth
usage.

In the pull-based strategy, specific data is sent by peers
that have received a request for that data. If a particular
chunk has not been received due to some fault, then the
peer can reissue the request and try to obtain the lost data.
On the other hand, peers need to keep data availability in-
formation. The push-pull-based strategy combines both ap-
proaches: data can be transmitted without specific requests,
but it is also possible to request a particular piece of data
[19]. This strategy can be implemented as pull-based, also
allowing the requests to be issued (push-based) if the pull-
based strategy missed some chunk [11].

2.2 The Fireflies Protocol

Fireflies is a protocol that builds a scalable and intrusion-
tolerant overlay network [14]. All network peers execute
the Fireflies protocol using a pull-based strategy to trans-
mit data, and the peers are organized in a mesh topology.
Besides the peers, the system also assumes a source server,

49

which generates the chunks. The source server is consid-
ered to be a reliable unit that never fails.

The chunks are sent from the source server to a limited
number of system peers. The peers then share the chunks
between themselves, in order to have all peers receive all
chunks disseminated by the source. All peers receive a se-
quential identifier and they are organized on multiple rings
[14]. The number of rings is configurable and each ring
contains all peers. The rings dictate how peers communi-
cate among themselves i.e. the protocol determines which
peers are the neighbors of which other peers. Considering
all rings, it is possible that a particular peer has some spe-
cific neighbor in more than a ring: every peer always has at
least 2 and at most (2∗λ) neighbors, where λ is the number
of rings configured in Fireflies.

As an example, Figure 1 shows a system with 9 peers
organized in 3 rings. Note that the neighbors of peer 1 are
the peers 2, 3, 4, 7 and 9. The figure also shows that peer 1
has peer 3 as a neighbor in two different rings. In Fireflies
the source server receives identifier 0, does not participate
in the ring configurations and its neighbors are randomly
chosen. The amount of source neighbors is a configurable
parameter in the protocol.

4

9 1

3

75

2

6

8

9

6

3

1

2

4

7

5

8

7

6

5

2

1

3

9

4

8

Figure 1. Fireflies example: 9 peers orga-
nized in 3 rings.

The Fireflies protocol configures in each peer an avail-
ability window that is a list that indicates which are the
chunks every peer has available to send to its neighbors.
The protocol also configures in every peer an interest win-
dow which keeps a list of the chunks that the peer needs
to receive. When a peer receives a chunk, it notifies all its
neighbors about the availability of that chunk. Based on
these notifications all system peers are able to maintain a
list of which chunks are available at their neighbors. If a
peer p knows that one of its neighbors n has an available
chunk c, and this chunk is in the interest window of peer p,
this peer requests chunk c to peer n. When peer n receives
the request from p, peer n verifies if chunk c is still in its
availability window. In this case, chunk c is sent to peer
p; otherwise, the request is simply ignored. This is exactly
same procedure that happens with all chunks generated by
the source server: when the source generates a new chunk, it

notifies all its neighbors about the availability of that chunk,
and then the diffusion of the chunk starts.

2.3 Comparison-Based Diagnosis

Comparison-based diagnosis [9] allows the state of the
units of a given system to be identified as either faulty or
faulty-free. Diagnosis is based on the comparison of task
outputs produced by the execution of a given task by pairs
of units. The complete system diagnosis is obtained by
processing the results of all comparisons. The set of all
comparison results is called the syndrome of the system.
The MM comparison-based model was proposed by Maeng
and Malek [21] to diagnose multiprocessor systems com-
posed of homogeneous units. The system is represented by
a graph G = (V,E), where V is the set of units and E is the
set of communication links. In this model the output of the
same task executed by a pair of units are compared. An unit
k is a comparator – or tester – of other two units i and j if
and only if (k, i) ∈ E and (k, j) ∈ E, and also if k �= i and
k �= j. If the comparison of units i and j by unit k indicates
a match and also if the comparator unit k is fault-free, then
units i, j are also faulty-free. If the comparison indicates a
mismatch, at least one of the units i, j, or k is faulty.

In the MM model, the outputs of a task returned by two
faulty units is assumed to be always different. If the com-
parator k is faulty, all the comparison results are not reli-
able, i.e. the comparator may lie. After the comparison of
the task outputs, the comparator sends the comparison re-
sult to a central observer. This central observer is a reliable
unit that performs the complete system diagnosis. Maeng
and Malek also presented a special case of the MM model,
called MM*, in which every unit compares all of its neigh-
bors to which they are connected.

In [31] a generalized comparison-based diagnosis model
is presented in which the units themselves are able to per-
form the system diagnosis, instead of a central observer.
And most important, one of the main differences of this
model to others is that the comparison result of tasks ex-
ecuted by pairs of faulty units may result in a match. In this
work we employ this diagnosis model, but also assume that
every unit compares results from all its neighbors, such as
in the MM* model.

3 The Proposed Approach: Diagnosis of P2P
Content Pollution

This section presents the proposed solution to diagnose
content pollution in P2P live streaming networks. The pro-
posed approach uses comparison-based diagnosis to detect
pollution and is based on the Fireflies overlay network. Be-
sides the source server and the peers – which are already

50

components of the Fireflies architecture itself – the pro-
posed solution employs two components: the comparator
module and the tracker, described next.

The comparator module is a component executed by ev-
ery peer, and is integrated to the Fireflies protocol itself,
having access to both the received chunks and the availabil-
ity window of the peer. This module is responsible to ex-
ecute comparisons of predetermined chunks. Comparisons
are executed on a particular chunk which is obtained from
all the peers’ neighbors. The neighbors are then classified in
sets according to the comparison results, and the classifica-
tion is sent to the tracker. The tracker is a reliable unit that
is accessible to all system peers. The tracker is responsible
to unify the classifications received from the comparators
in a system wide way, thus performing the diagnosis of the
system, i.e. determining if there is content pollution in the
network, and which peers have received polluted data.

The comparator module executes at every peer i and pe-
riodically requests chunks with identifier cid (chunk identi-
fier) from all neighbors. The comparator request is a regular
Fireflies request, sent through a Fireflies connection. Even
if the peer that receives the request is malicious, it cannot
determine that this request was issued by a comparator mod-
ule, and thus it does not handle this request in a different
way.

The identifier (cid) of the chunks to be compared is ran-
domly selected by the tracker, that notifies the comparator
modules. As soon as those chunks become available at the
neighbors of peer i, the comparator module requests the
chunks. After all chunks are received, the comparator mod-
ule compares and classifies the neighbors in sets Ui,cid. Set
Ui,cid keeps for each version of the chunk cid received from
the neighbors, the set of identifiers of the peers that sent that
content, i.e.

Ui,cid = {(chunka, {peeri, peerj, ...}), (chunkb,
{peerk, peerl, ...}), ...}.

One specific subset keeps the list of peers that have not send
replies. As soon as set Ui,cid is complete, i.e. with informa-
tion about all neighbors of peer i, it is sent to the tracker.

An optimization was made for the purpose of reducing
the length of the message peers send to the tracker: set
Ui,cid keeps the hash value of the chunk instead of the whole
chunk itself. In this way,

Ui,cid = {(hash chunka, {peeri, peerj, ...}),
(hash chunkb, {peerk, peerl, ...}), ...}.

The comparator module at a given peer is assumed to be
able to correctly classify the peer’s neighbors and to ex-
change messages reliably with the tracker. To implement
this assumption, it is possible to use an approach with
TSL/SSL in which asymmetric cryptography is employed
in the beginning of each session and then a secret key is

established for communication between the tracker and the
comparator.

Figure 2 shows an example to illustrate the proposed
strategy. In the example, chunk 13 is one of the chunks that
the tracker randomly chose to be compared. Peers 4 and 6
have requested chunk 13 from all their neighbors. The fig-
ure shows the transmission of chunk 13 for all neighbors of
peers 4 and 6. The directed edges represent the transmis-
sion of chunks that were requested. The other undirected
edges represent the communication links between peers or
between a peer and the source server.

The example considers that the original chunk 13 has
hash value equal to AA, and that a polluted version of this
same chunk improperly modified by peer 5 has hash value
AB. Based on this considerations, the sets Ui,cid after the
classification performed by peers 4 and 6 are shown in Table
1. Peers 4 and 6 put themselves in the sets Ui,cid, being
inserted in the group corresponding to the content of the
chunk they have.

chunk
13

chunk
13

chunk
13

chunk
13

chunk
13

chunk
13

chunk
13

chunk
13

modified

Source

4

1 2

3 6 7

8 9

5 5

Figure 2. Transmission of chunk 13 to peers 4
and 6; peer 5 is malicious.

After the tracker receives set Ui,cid from every peer i, it
classifies all peers using another set Tcid. Although set Tcid

has the same format of set Ui,cid, in Tcid a given peer may
appear in more than one subset. An example of this situa-
tion is shown in Figure 2, in which peer 5 has sent chunks
with different hash values to its neighbors: peers 4 and 6. In
this example the tracker will classify peer 5 in two different
subsets of the corresponding set Tcid: in the subsets indexed
by hash values AA and AB.

As the source is a reliable unit that does not send pol-
luted chunks, the source will always be in only one subset
of set Tcid. To perform the diagnosis, the tracker considers
as faulty the peers that have chunks classified in different
subsets of Tcid as the subset to which source server belongs.
Figure 3 illustrates the transmission to tracker of sets Ui,13

by peers 4 and 6.
Table 2 shows set T13 with the final classification per-

formed by the tracker for chunk 13. The set was obtained
with the union of sets U4,13 and U6,13. This set T13 is still

51

Peer chunk Set Ui,cid

4 13 U4,13 = {(AA, {1, 3, 4, 5, 8})}
6 13 U6,13 = {(AA, {2, 6, 7, 9}), (AB, {5})}

Table 1. Sets U4,13 and U6,13 generated respectively by peers 4 and 6.

chunk Set Tcid

13 T13 = {(AA, {source, 1, 2, 3, 4, 5, 6, 7, 8, 9}), (AB, {5})}

Table 2. Set T13 generated by the tracker based on received sets U4,13 and U6,13.

Source

4

1 2

3 6 7

8 9

U
6,13

U
4,13

5 5

Tracker

Figure 3. Peers 4 and 6 send their sets Ui,13

sets to the tracker.

partially complete, because the tracker remains waiting for
the remaining Ui,13 sets from the other peers.

As the comparator module executes continuously, the
tracker may be still receiving information about a given
chunk cida from some peers while other peers are already
sending information about another chunk cidb. For this rea-
son, different sets are kept for different chunks, e.g. Tcida

and Tcidb
.

Figure 4 presents the algorithm executed by the com-
parator module at peer i. Initially (line 2) the comparator
obtains the list of chunks that needs to be compared. This
information is obtained from the tracker. The comparator
module then waits for its neighbors to have the chunk avail-
able. The algorithm executes from line 4 whenever any
neighbor n has a new chunk available. If the cid of the
new available chunk is in the list of chunks that need to be
compared, peer i checks if the local timer associated to that
cid was already initialized (line 6). This timer is used as
a timeout limit to peer i perform all comparisons related to
chunk cid. The timer is started at the first time the chunk
becomes available at a neighbor (line 7). In line 9, a request
for chunk cid is sent to peer n. After this, set Ui,cid is up-
dated in order to include peer n, which is classified based
on the comparison of the content of the received chunk.

From line 14 the algorithm checks if set Ui,cid is com-
plete, i.e. has information from all neighbors of peer i,
and if the time limit to get information about that chunk

Algorithm: ComparatorModule
1: begin
2: list of cids← get from tracker the list of
3: chunks that needs to be compared;
4: whenever a neighbor n makes available a new chunk cid do
5: if cid ∈ list of cids then
6: if timer cid is not initialized then
7: initialize timer cid;
8: end if
9: request and get chunk cid from n;
10: update Ui,cid;
11: end if
12: end whenever
13:
14: whenever ((Ui,cid has data about all its neighbors) or
15: (timer cid > response time limit)) do
16: if timer cid > response time limit then
17: include neighbor peers that have not
18: answered in a specific set of Ui,cid;
19: end if
20: send Ui,cid to tracker;
21: list of cids← get from tracker the list of
22: chunks that needs to be compared;
23: end whenever
24: end

Figure 4. The proposed comparator-module
algorithm that is executed by all peers.

was reached. In both cases set Ui,cid is sent to the tracker
(line 20). Peers that have not sent the chunk are classi-
fied accordingly (line 17). The response timeout interval
(response time limit) is based on the size of the peers’
availability window that also considers the frequency in
which new chunks are generated by the source server.

The tracker continually receives sets Ui,cid for a given
chunk cid, as shown in line 2 of algorithm Diagnosis pre-
sented in Figure 5. Whenever the tracker receives a set
Ui,cid, it classifies the peers in the subsets of that Ui,cid in
a corresponding Tcid set (lines 4–10). After completing the
classification of all peers or if the time limit for the peers to
send their respective sets Ui,cid has been reached (line 14),
the tracker outputs the system diagnosis (line 20). If peer i
does not send set Ui,cid within the response time limit, this
peer i is classified into a specific subset of the set Tcid (lines
16 and 17). As it processes set Tcid, the tracker classifies as
faulty all peers not in the same subset as the source.

52

Algorithm: Diagnosis
1: begin
2: whenever receives a Ui,cid set do
3: for every subset u of Ui,cid

4: if hash chunku ∈ Tcid then
5: insert peers from hash chunku in the
6: corresponding set of Tcid;
7: else
8: create new subset in Tcid with the peers of subset
9: u = (hash chunku, {list of peers});

10: end if
11: end for
12: end whenever
13:
14: whenever ((Tcid has data about all its neighbors) or
15: (timer cid > response time limit)) do
16: if timer cid > response time limit then
17: include peers that have not answered in
18: a specific set of Tcid;
19: end if
20: print the diagnosis related to the comparisons
21: of chunk cid based on Tcid;
22: end whenever
23: end

Figure 5. Diagnosis algorithm executed by
the tracker.

4 Experimental Results

The proposed strategy was implemented using the Fire-
flies simulator described in [13]. Several experiments were
executed for network sizes of 200, 500 and 1000 peers.
Each experiment lasted 200 seconds and the source server
generated 30 chunks/second. The chunk size was 10 KB.
Both the availability window and the interest window of all
peers were configured for 3000 chunks. Moreover, Fireflies
was set up to organize the peers in three rings, so that each
peer had at least two and at most six neighbors.

The main purpose of the experiments were to (a) check
that peers that received polluted data were properly diag-
nosed; (b) compute the overhead added by the proposed so-
lution in terms of the amount of additional chunks transmit-
ted in the network; (c) check the effect of churn; (d) check
the effectiveness and overhead of the proposed strategy for
different network sizes (in terms of the number of peers)
and for different monitoring frequencies, and (e) evaluate
the tracker scalability.

The main parameters that were varied were:

(1) the total number of peers: 200, 500 and 1000 peers;

(2) the number of malicious peers: 0%, 5%, 10%, 15%,
20% and 25% of the amount of peers;

(3) the monitoring frequency: 1 and 15 seconds; this is
the frequency in which the tracker randomly chooses
a chunk to be monitored (that is also the frequency in
which the tracker produces a new diagnosis report of
system pollution;

(4) the behavior a malicious peer presents, two types were
possible: (a) modify the chunk content with a proba-
bility of 100%, and (b) modify the chunk content with
a probability of 50%;

(5) churn could be turned on and off: for experiments with
churn, either 50% or 100% of the number of peers had
a probability to leave and join the system. Peers joined
the system following a normal distribution with aver-
age of either 50% or 100% of the number of peers and
standard deviation of 20. Peers left the network follow-
ing a Poisson distribution with average of either 50%
or 100% of the number of peers.

The experiments were executed a total of 20,000 times.
Results are summarized and presented in the graphs of Fig-
ures 6–13. The lines in the graphs represent the averages,
while vertical interval lines show the 95% confidence inter-
val.

Figure 6 shows the number of chunks sent over the net-
work by the Fireflies protocol without the proposed solution
on systems with 500 peers. This figure show both results of
the experiments performed with churn (50% of peers) and
without churn. It is possible to note that the average num-
ber of chunks sent by Fireflies was always between 1.9 and
2.8 million chunks. In all figures, curves identified with
“always” in the graph refer to experiments in which the
malicious peers alter every chunk content. On the other
hand, the curves identified with “random” refer to the ex-
periments in which malicious peers alter content randomly,
with a probability of 50%.

Figure 7 shows the average number of chunks requested
by the comparators for systems with 500 peers. The com-
parator module was configured with a monitoring interval of
15 seconds. It is possible to note that the average number of
chunks requested by both faithful and malicious peers is in
the range of 22,000 and 33,000. Thus in comparison with
the number of chunks sent by the Fireflies protocol alone
(Figure 6), the proposed solution generated an overhead of
about 1.2%. Note that this small overhead was observed
with a monitoring interval of 15 seconds; depending on the
bandwidth available on the network, this frequency can be
increased or reduced.

Figure 8 shows the average number of peers that received
polluted data (also for systems with 500 peers). In this fig-
ure it is possible to note that even with only 5% of mali-
cious peers, the total number of peers that received polluted
chunks was up to 86 of peers. If 25% of the peers are mali-
cious, the total number of peers that have received polluted
data reached 295 (59%) of all peers.

Figure 9 shows the number of peers that had received
polluted data but under varying churn rates. The experi-
ments were also executed for systems with 500 peers. It is
possible to note that the average number of polluted peers

53

with the higher churn rate of 100% was actually lower than
that with the 50% rate. This happened for with a higher
churn rate, more malicious peers were removed from sys-
tem.

1000000

1500000

2000000

2500000

3000000

0.00 0.05 0.10 0.15 0.20 0.25

N
um

be
r

of
 tr

an
sm

itt
ed

 c
hu

nk
s

Pct of malicious peers

Average number of chunks sent by Fireflies

no churn, always
churn(50%), always

no churn, random
churn(50%), random

Figure 6. Number of chunks sent by Fireflies.

10000

15000

20000

25000

30000

35000

40000

0.00 0.05 0.10 0.15 0.20 0.25

N
um

be
r

of
 r

eq
ue

st
ed

 c
hu

nk
s

Pct of malicious peers

Average number of chunks requested by the proposed solution

no churn, always
churn(50%), always

no churn, random
churn(50%), random

Figure 7. Number of chunks requested by
comparator modules.

Figure 10 shows the average percentage of peers that re-
ceived polluted chunks and were correctly diagnosed by the
proposed strategy (again for systems with 500 peers and
monitoring interval of 15 seconds). The figure shows that
in all experiments the proposed solution correctly identified
between 95% and 97% of the peers that have received pol-
luted content. Content pollution was not diagnosed only in
cases in which peers did not receive chunks in time – i.e.
these cases are due to the nature of the P2P network itself,
and is a consequence of the peers interest and availability
windows employed.

The next Figure 11 shows the number of chunks em-

0

50

100

150

200

250

300

350

0.05 0.10 0.15 0.20 0.25

N
um

be
r

of
 p

ee
rs

Pct of malicious peers

Average number of peers that received poluted data

no churn, always
churn(50%), always

no churn, random
churn(50%), random

Figure 8. Peers that received polluted data.

350

300

250

200

150

100

50

0

0.05 0.10 0.15 0.20 0.25

N
um

be
r

of
 p

ol
ut

ed
 p

ee
rs

Pct of malicious peers

Number of poluted peers, varying churn

churn(50%), always
churn(100%), always
churn(50%), random

churn(100%), random

Figure 9. Peers that received polluted data
varying churn.

ployed by the proposed strategy, but now varying the
amount of peers in the experiments: 200, 500 and 1000
peers. The figure summarises both the experiments exe-
cuted with no malicious peers and those with 25% of mali-
cious peers. The monitoring interval was 15 seconds. It is
possible to note that the overhead generated by the proposed
strategy increases linearly with the network size.

Figure 12 shows the average number of chunks requested
by the comparator module, but now varying the monitor-
ing interval: 1 second and 15 seconds. The network size
was 500 peers. Note that the y axis is in logarithmic scale.
Results confirm that increasing the monitoring interval also
increases the overhead linearly.

Finally, Figure 13 shows tracker’s average bandwidth us-
age in kbits per second, for networks with 500 and 1000
peers (also for a monitoring interval of 15 seconds). The
amount of bandwidth used is below 500 kbits per second
most of the time, reaching 2.8 mbps peak once after 80 sec-

54

onds of transmission. This can be considered a low amount
of bandwidth, and shows that the proposed tracker is scal-
able.

80

85

90

95

100

0.05 0.10 0.15 0.20 0.25

P
ct

 o
f p

ol
ut

ed
 p

ee
rs

 d
ia

gn
os

ed

Pct of malicious peers

Pct. of poluted peers that have been diagnosed

no churn, always
churn(50%), always

no churn, random
churn(50%), random

Figure 10. Percentage of polluted peers that
have been correctly diagnosed.

0

10000

20000

30000

40000

50000

60000

70000

80000

200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 r

eq
ue

st
ed

 c
hu

nk
s

Number of peers in the network

Number of chunks requested by the proposed solution

0% of malicous, no churn
0% of malicous, churn(50%)
0.25% of malicous, no churn

0.25% of malicous, churn(50%)

Figure 11. Number of chunks requested by
comparator modules.

5 Related Work

Several strategies have been published on dealing with
pollution – or poisoning [4] – in P2P networks. Some of the
most relevant are briefly described below.

Black lists [17] identify the polluters by keeping ranges
of IP addresses that include the addresses of peers that are
known to have disseminated polluted content. Those ranges
are designed to include the minimum possible number of
non-polluters. When applied to live streaming transmis-
sions, this technique can be expensive [12]. Furthermore

1000

10000

100000

1000000

10000000

0.05 0.10 0.15 0.20 0.25

N
um

be
r

of
 r

eq
ue

st
ed

 c
hu

nk
s

(lo
g.

 s
ca

le
)

Pct of malicious peers

Number of chunks requested by the prop. solution (varying interval)

churn(50%), 15 secs of interval
churn(50%), 1 secs of interval

no churn, 15 secs of interval
no churn, 1 secs of interval

Figure 12. Number of chunks requested by
comparator modules, varying the monitoring
interval.

0

500

1000

1500

2000

2500

3000

60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

in
 k

bp
s)

 u
se

d
by

 th
e

tr
ac

ke
r

Time (in seconds)

Tracker bandwidth usage (in kbps)

500 peers, no churn
500 peers, churn(50%)

1000 peers, no churn
1000 peers, churn(50%)

Figure 13. Tracker bandwidth usage.

a vulnerability can be explored in which a malicious peer
may assume a new address that is not in the black list.

A basic technique, employed by BitTorrent [7], is to al-
low peers to obtain the hash-based signatures [28] of the
chunks, so that when a chunk is received the peer can check
its integrity. In live streaming systems the problem is to be
able to have all peers receive all signatures of all hashes in
advance.

Another similar approach is to have the source server
generate a digital signature for every chunk [13]. An advan-
tage of this strategy is that the signature can be transmitted
in the chunk itself, as it is signed with the source’s private
signature. A drawback is that this approach is expensive,
as it involves public-key cryptography, and this may be pro-
hibitive given the requirements of live streaming. Linear
Digests are a generalization of this technique [13], in which
the hash values of several chunks are grouped in one digital

55

signature generated by the source. When comparing Linear
Digests to the solution proposed on this work, it is possible
to see that [13] is a technique that uses more computation
than communication, which is the opposite of the solution
being proposed.

Some other tools [16, 15] apply cryptography to the
whole chunk using a predefined shared secret key. In [15]
the authors also propose a secure distributed key manage-
ment scheme in which the source server periodically recom-
putes and retransmits an updated shared key to a limited
number of peers.

In [3] the authors present another solution that uses
groups of peers to maintain the integrity of content trans-
mitted by the source. The server publishes the content in-
formation to a group of peers. Any requesting peer can ver-
ify the integrity of the requested content from the group of
content maintainers.

The authors in [25] present Credence, a P2P system for
file sharing based on ranking. In this system, a peer can
classify another peer as honest, that can consequently ac-
cess the shared content. In [1] the authors also present other
two solutions based on ranking which are applied to live
streaming.

Other alternative strategies avoid the cost of authentica-
tion. In a Merkle-tree [28] the source server computes the
hash value of n consecutive chunks. These hashes are used
as the leaves of a Merkle tree and the intermediate nodes
are identified by the hash values of its sons in the tree. The
hash values of all nodes in this tree structure are combined
to perform the authentication of each chunk.

In [8] the authors evaluate four of the strategies men-
tioned above: black lists, cryptography, hash verification
and digital signatures. The authors conclude that the use of
Merkle trees is one of the most efficient in terms of compu-
tational overhead. More recently, the authors of [18] have
evaluated the impact of pollution attacks, and they show that
the impact of an attack is not directly related to the network
size, but is strongly depend on the network stability and on
the bandwidth available by the malicious peers and by the
source.

A network coding [26, 10] strategy called MIS (Mali-
cious node Identification Scheme) is presented in [27] to
identify and limit content pollution in P2P live streaming
systems. The source splits the transmitted content in seg-
ments; each segment is then divided in blocks and each
block is subdivided in codewords – that convert every seg-
ment in a matrix of elements of the Galois Field (GF). The
coded blocks – that are created based on the GF matrix com-
bining a coefficient vector to the original blocks – are the
information transmitted by the source server to the peers.
The peers receive the coded blocks, which are decoded to
reconstruct the original segments.

In [20] the authors present a strategy to hide the iden-

tity of source servers in P2P-VoD (Video-on-Demand) net-
works. This is important as with that information a bad in-
tentioned entity can direct attacks such as DDoS to those
servers in order to harm the live streaming session. In
[2, 23] a characterization of traffic generated by SopCast
is presented. One of the conclusions is that a malicious peer
was able to compromise 50% of the network peers and 30%
of the download bandwidth.

In [30] the authors evaluate two of the most common
attacks against P2P file-sharing networks: index poisoning
and content pollution. Their analysis show that three fac-
tors have an impact on content distribution: the persistence
of the original files, the false positive rate, and the initial sit-
uation of the P2P network. In [22] a method is presented to
quantify content pollution in the KAD network by analysing
file names and their corresponding content. A large number
of files was considered and results show that 2/3 of the con-
tent is polluted.

The authors of [12] presented a survey on security and
privacy aspects of P2P live streaming networks. They dis-
cuss aspects that include access control, identity manage-
ment strategies and mechanisms for incentives and punish-
ments. They show that the tree-based topology is not only
vulnerable to pollution attacks but is also vulnerable to pro-
tocol failures.

Recently in [5] the authors present an evaluation of con-
tent authentication mechanisms in P2P live streaming net-
works. They compare the overhead and the security of sev-
eral techniques and show that for high resolution streaming,
the mechanisms with acceptable overheads are not resilient
under pollution attacks.

6 Conclusion

This work introduced a new strategy to diagnose content
pollution in P2P live streaming networks. The proposed
solution employs comparison-based diagnosis to identify
unauthorized changes in the transmitted content. Each peer
executes comparisons of randomly selected chunks received
from all its neighbors. Diagnosis is accomplished by pro-
cessing results of all comparisons, i.e. from the comparison
results it is possible to identify the peers that have received
polluted data. The proposed solution was implemented us-
ing the Fireflies protocol. A large number of simulation ex-
periments were performed. Results show that the overhead
is only about 1.2% in terms of extra bandwidth required,
and that the proposed strategy represents a feasible solution
to detect content pollution in live streaming systems. Fu-
ture work includes implementing the diagnosis strategy for
a real Internet-based streaming service, evaluating the com-
parison approach for other types of overlay networks, and
also extending the solution to work with several trackers in
order to improve its robustness and scalability.

56

References

[1] A. Borges, J. Almeida, and S. Campos. Fighting Pollution
in P2P Live Streaming Systems. IEEE Intl. Conf. on Multi-
media and Expo (ICME’08), pages 481–484, 2008.

[2] A. Borges, P. Gomes, J. Nacif, R. Mantini, J. M. Almeida,
and S. Campos. Characterizing SopCast Client Behavior.
Computer Communications, 35(8):1004–1016, May 2012.

[3] R. Chen, E. K. Lua, J. Crowcroft, W. Guo, L. Tang, and
Z. Chen. Securing Peer-to-Peer Content Sharing Service
from Poisoning Attacks. Proc. of the 8th IEEE Intl. Conf.
on Peer-to-Peer Computing (P2P’08), pages 22–29, 2008.

[4] N. Christin, A. S. Weigend, and J. Chuang. Content Avail-
ability, Pollution and Poisoning in File Sharing Peer-to-Peer
Networks. Proc. of the 6th ACM Conf. on Electronic Com-
merce (EC’05), pages 68–77, 2005.

[5] R. V. Coelho, J. T. Pastro, R. S. Antunes, M. P. Barcellos,
I. Jansch-Porto, and L. P. Gaspary. Challenging the Feasi-
bility of Authentication Mechanisms for P2P Live Stream-
ing. Proc. of the 6th Latin America Networking Conference
(LANC’2011), pages 55–63, 2011.

[6] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming
Live Media over a Peer-to-Peer Network. Technical Report,
Stanford InfoLab, (2001-30), 2001.

[7] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena. The Pollu-
tion Attack in P2P Live Video Streaming: Measurement Re-
sults and Defenses. Proc. of the Workshop on Peer-to-peer
Streaming and IP-TV (P2P-TV’07), pages 323–328, 2007.

[8] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena. Pollution
in P2P Live Video Streaming. Intl. Journal of Computer
Networks and Communications (IJCNC’09), 1(2), 2009.

[9] E. P. Duarte Jr., R. P. Ziwich, and L. C. P. Albini. A Sur-
vey of Comparison-Based System-Level Diagnosis. ACM
Computing Surveys (CSUR), 43(3):22:1–22:56, 2011.

[10] C. Feng and B. Li. On Large-Scale Peer-to-Peer Stream-
ing Systems with Network Coding. ACM Multimedia
(MM’2009), 2009.

[11] V. Fodor and G. Dan. Resilience in Live Peer-to-peer
Streaming. IEEE Communications Magazine, 45(6), 2007.

[12] G. Gheorghe, R. L. Cigno, and A. Montresor. Security and
Privacy Issues in P2P Streaming Systems: A Survey. Peer-
to-Peer Networking and Applications, 4(2):75–91, 2010.

[13] M. Haridasan and R. van Renesse. SecureStream: An
Intrusion-Tolerant Protocol for Live-Streaming Dissemina-
tion. Computer Communications, 31(3):185–192, Feb.
2008.

[14] H. Johansen, A. Allavena, and R. van Renesse. Fireflies:
Scalable Support for Intrusion-Tolerant Network Overlays.
Proc. of the 1st ACM EuroSys., C-25, 2006.

[15] J.-S. Li, C.-J. Hsieh, and Y.-K. Wang. Distributed Key Man-
agement Scheme for Peer-to-Peer Live Streaming Services.
Intl. Journal of Communication Systems, 2012.

[16] J. Liang, R. Kumar, and K. W. Ross. The FastTrack Overlay:
A Measurement Study. Computer Networks, 2006.

[17] J. Liang, N. Naoumov, and K. W. Ross. Efficient Black-
listing and Pollution-Level Eestimation in P2P File-Sharing
Systems. Asian Internet Engineering Conference, pages
173–175, 2005.

[18] E. Lin, D. M. N. de Castro, M. Wang, and J. Aycock. SPoIM:
A close Look at Pollution Attacks in P2P Live Stream-
ing. Proc. of the 18th Intl. Workshop on Quality of Service
(IWQoS’10), pages 1–9, 2010.

[19] T. Loocher, R. Meier, S. Schmid, and R. Wattenhofer. Push-
to-Pull Peer-to-Peer Live Streaming. 21st Intl. Symp. on Dis-
tributed Computing (DISC’07), pages 388–402, 2007.

[20] M. Lu, P. P. C. Lee, and J. C. S. Lui. Identity Attack
and Anonymity Protection for P2P-VoD Systems. Proc.
of the ACM/IEEE Intl. Workshop on Quality of Service
(IWQoS’2011), 2011.

[21] J. Maeng and M. Malek. A Comparison Connection Assign-
ment for Self-Diagnosis of Multiprocessor Systems. Proc. of
the 11th IEEE Fault-Tolerant Computing Symp., pages 173–
175, 1981.

[22] G. Montassier, T. Cholez, G. Doyen, R. Khatoun, I. Chris-
ment, and O. Festor. Content Pollution Quantification in
Large P2P Networks : A Measurement Study on KAD.
IEEE Intl. Conf. on Peer-to-Peer Computing (P2P’2011),
pages 30–33, 2011.

[23] J. Oliveira, A. Borges, and S. Campos. Content Pollution
on P2P Live Streaming Systems. Proc. of the 15th Brazil-
ian Symposium on Multimedia and the Web (WebMedia’09),
2009.

[24] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. E.
Mohr, and E. E. Mohr. Chainsaw: Eliminating Trees from
Overlay Multicast. Proc. of the 4th Intl. Workshop on Peer-
To-Peer Systems (IPTPS’05), pages 127–140, 2005.

[25] K. Walsh and E. G. Sirer. Experience with an Object Repu-
tation System for Peer-to-Peer Filesharing. Proc. of the 3rd
USENIX Symp. on Networked Systems Design and Imple-
mentation (NSDI’06), 3, 2006.

[26] M. Wang and B. Li. Lava: A Reality Check of Net-
work Coding in Peerto-Peer Live Streaming. Proc. of the
26th IEEE Intl. Conf. on Computer Communications (IN-
FOCOM’2007), 2007.

[27] Q. Wang, L. Vu, K. Nahrstedt, and H. Khurana. MIS:
Malicious Nodes Identification Scheme in Network-Coding-
Based Peer-to-Peer Streaming. Proc. of the 29th IEEE Intl.
Conf. on Computer Communications (INFOCOM’2010),
pages 1–5, 2010.

[28] C. K. Wong and S. S. Lam. Digital Signatures for Flows and
Multicasts. IEEE/ACM Trans. on Networking, 7(4):502–
513, 1999.

[29] S. Yang, H. Jin, B. Li, X. Liao, H. Yao, and X. Tu. The
Content Pollution in Peer-to-Peer Live Streaming Systems:
Analysis and Implications. Proc. of the 37th Intl. Conf. on
Parallel Processing (ICPP’08), pages 652–659, 2008.

[30] P. Zhang and B. E. Helvik. Modeling and Analysis of P2P
Content Distribution under Coordinated Attack Strategies.
IEEE Consumer Communications and Networking Confer-
ence (CCNC’2011), pages 131–135, 2011.

[31] R. P. Ziwich, E. P. Duarte Jr., and L. C. P. Albini. Distributed
Integrity Checking for System with Replicated Data. Proc.
of the 11th IEEE Intl. Conf. on Parallel and Distributed Sys-
tems, pages 363–369, 2005.

57

