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Part 1: Crowdsourcing Basics 
l  Examples 
l  Definitions 

l  Marketplaces 
l  Computational Crowdsourcing 

l  Preliminaries 

l  Transcription 
l  Sorting 

l  Demo 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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New Challenges 
l  Open-world 

assumption (OWA) 
 

l  Non-deterministic 
algorithmic behavior 

 
 
l  Trade-off among cost, 

latency, and accuracy 
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Crowdsourcing DB Projects 
l  CDAS @ NUS 

l  CrowdDB @ UC Berkeley    
 & ETH Zurich 

l  MoDaS @ Tel Aviv U. 

l  Qurk @ MIT 

l  sCOOP @ Stanford & UCSC 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 
l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Sort Operation 
l  Rank N items using crowdsourcing w.r.t some 

criteria 

l  Assuming pair-wise comparison of 2 items 
l  Eg, “Which of two images is better?” 

l  Cycle: A > B, B > C, and C > A 

l  If no cycle occurs 
l  Naïve all pair-wise comparisons takes        

comparisons 

l  If cycle exists 
l  More comparisons are required 
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Sort [Marcus-VLDB11]  
l  Proposed 3 crowdsourced sort algorithms 
l  #1: Comparison-based Sort 

l  Workers rank S items (          ) per HIT 
l  Each HIT yields        pair-wise comparisons 

l  Build a directed graph using all pair-wise 
comparisons from all workers 
o  If i > j, then add an edge from i to j 

l  Break a cycle in the graph: “head-to-head” 
o  Eg, If i > j occurs 3 times and i < j occurs 2 times, keep 

only i > j  

l  Perform a topological sort in the DAG 
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Sort [Marcus-VLDB11]  
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Sort [Marcus-VLDB11]  
l  N=5, S=3 
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Sort [Marcus-VLDB11]  
l  N=5, S=3 
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Sort [Marcus-VLDB11]  

l  #2: Rating-based Sort 
l  W workers rate each item along a numerical scale 

l  Compute the mean of W ratings of each item 
l  Sort all items using their means 

l  Requires W*N HITs: O(N)  
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Sort [Marcus-VLDB11]  
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Sort [Marcus-VLDB11]  
l  #3: Hybrid Sort 

l  First, do rating-based sort à sorted list L 
l  Second, do comparison-based sort on S (         ) 

l  How to select the size of S 
o  Random 
o  Confidence-based 

o  Sliding window 
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Sort [Marcus-VLDB11]  
15 

Worker agreement Rank correlation btw.  
Comparison vs. rating 



Sort [Marcus-VLDB11]  
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Part II: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Select Operation 
l  Given N items, select k items that satisfy a 

predicate P 

l  ≈ Filter, Find, Screen, Search 
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Select Operation 
l  Examples 

l  [Yan-MobiSys10] uses crowds to search an 
image relevant to a query 

l  [Parameswaran-SIGMOD12] develops human-
powered filtering algorithms 

l  [Franklin-ICDE13] efficiently enumerates items 
satisfying conditions via crowdsourcing 

l  [Sarma-ICDE14] finds a bounded number of 
items satisfying predicates using the optimal 
solution by the skyline of cost and time 
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Select [Yan-MobiSys10] 
l  Improving mobile image search using 

crowdsourcing 
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Select [Yan-MobiSys10] 
l  Ensuring 

accuracy 
with majority 
voting 

l  Given 
accuracy, 
optimize cost 
and latency 

l  Deadline as 
latency in 
mobile 
phones 
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Select [Yan-MobiSys10] 
l  Goal: For a query image Q, find the first 

relevant image I with min cost before the 
deadline 
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Select [Yan-MobiSys10] 
l  Parallel crowdsourced validation 
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Select [Yan-MobiSys10] 
l  Sequential crowdsourced validation 
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Select [Yan-MobiSys10] 
l  CrowdSearch: using early prediction on the 

delay and outcome to start the validation of 
next candidate early 
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Select [Yan-MobiSys10] 
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Select [Parameswaran-SIGMOD12] 
l  Novel grid-based visualization 
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Select [Parameswaran-SIGMOD12] 
l  Common strategies 

l  Always ask X questions, return 
most likely answer à Triangular 
strategy 

l  If X YES return “Pass”, Y NO return 
“Fail”, else keep asking à 
Rectangular strategy 

l  Ask until |#YES - #NO| > X, or at 
most Y questions à Chopped off 
triangle 
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Select [Parameswaran-SIGMOD12] 
l  What is the best strategy? Find strategy with 

minimum overall expected cost s.t. 
1.  Overall expected error is less than threshold  

2.  # of questions per item never exceeds m	
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Count Operation 
l  Given N items, estimate a fraction of items M 

that satisfy a predicate P 

l  Selectivity estimation in DB à crowd-
powered query optimizers 

l  Evaluating queries with GROUP BY + 
COUNT/AVG/SUM operators 

l  Eg, “Find photos of females with red hairs” 
l  Selectivity(“female”) ≈ 50% 

l  Selectivity(“red hair”) ≈ 2% 
l  Better to process predicate(“red hair”) first 
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Count Operation 
32 

l  Q: “How many teens are participating in the 
Hong Kong demonstration?” 



Count Operation 
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http://www.faceplusplus.com/demo-detect/ 

10 - 56 20 - 30 15 - 29 

l  Using Face++, guess the age of a person 



Count [Marcus-VLDB13] 
l  Hypothesis: Humans can estimate the 

frequency of objects’ properties in a batch 
without having to explicitly label each item 

l  Two approaches 
l  #1: Label Count 

o  Sampling based 
o  Have workers label samples explicitly 

l  #2: Batch Count 
o  Have workers estimate the frequency in a batch 
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Count [Marcus-VLDB13] 
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l  Label Count (via sampling) 



Count [Marcus-VLDB13] 
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l  Batch Count 



Count [Marcus-VLDB13] 
l  Findings on accuracy 

l  Images: Batch count > Label count 
l  Texts: Batch count < Label count 

l  Further Contributions 
l  Detecting spammers 
l  Avoiding coordinated attacks 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Top-1 Operation 
l  Find the top-1, either MAX or MIN, among N 

items w.r.t. some criteria 

l  Objective 
l  Avoid sorting all N items to find top-1 
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Top-1 Operation 
l  Examples 

l  [Venetis-WWW12] introduces the bubble max 
and tournament-based max in a parameterized 
framework  

l  [Guo-SIGMOD12] studies how to find max using 
pair-wise questions in the tournament-like setting 
and how to improve accuracy by asking more 
questions 
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Max [Venetis-WWW12] 

l  Introduced two Max algorithms 
l  Bubble Max 
l  Tournament Max 

l  Parameterized framework 
l  si: size of sets compared at the i-th round 
l  ri: # of human responses at the i-th round 
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Which is better? 

si = 2 
ri = 3 

si = 3 
ri = 2 

Which is the best? 



Max [Venetis-WWW12] 

l  Bubble Max Case #1 
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s1 = 2 
r1 = 3 

s2 = 3 
r2 = 3 

s3 = 2 
r3 = 5 

•  N = 5 
•  Rounds = 3 
•  # of questions =  

 r1 + r2 + r3 = 11  



Max [Venetis-WWW12] 

l  Bubble Max Case #2 
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s1 = 4 
r1 = 3 

•  N = 5 
•  Rounds = 2 
•  # of questions =  

 r1 + r2  = 8  

s2 = 2 
r2 = 5 



Max [Venetis-WWW12] 

l  Tournament Max 
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•  N = 5 
•  Rounds = 3 
•  # of questions 

  = r1 + r2 + r3 + r4 = 10  

s1 = 2 
r1 = 1 

s3 = 2 
r3 = 3 

s4 = 2 
r4 = 5 

s2 = 2 
r2 = 1 



Max [Venetis-WWW12] 
l  How to find optimal parameters?: si and ri 
l  Tuning Strategies (using Hill Climbing) 

l  Constant si and ri 
l  Constant si and varying ri 

l  Varying si and ri 

45 



Max [Venetis-WWW12] 
l  Bubble Max 

l  Worst case: with si=2, O(N) comparisons needed 

l  Tournament Max 
l  Worst case: with si=2, O(N) comparisons needed 

l  Bubble Max is a special case of Tournament 
Max 
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Max [Venetis-WWW12] 
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Max [Venetis-WWW12] 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Top-k Operation 
l  Find top-k items among N items w.r.t. some 

criteria 

l  Top-k list vs. top-k set 

l  Objective 
l  Avoid sorting all N items to find top-k 
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Top-k Operation 
l  Examples 

l  [Davidson-‐ICDT13]	  inves&gates	  the	  variable	  user	  
error	  model	  in	  solving	  top-‐k	  list	  problem 

l  [Polychronopoulous-‐WebDB13]	  proposes	  
tournament-‐based	  top-‐k	  set	  solu&on	  
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Top-k Operation 
l  Naïve solution is to “sort” N items and pick 

top-k items 
l   Eg, N=5, k=2, “Find two best Bali images?” 

l  Ask         = 10 pair-wise questions to get a total 
order 

l  Pick top-2 images 
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l  Phase 1: Building a tournament tree 
l  For each comparison, only winners are promoted 

to the next round 

Top-k: Tournament Solution (k = 2) 
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Round 1 

Round 2 

Round 3 

Total, 4 questions  
with 3 rounds 



l  Phase 2: Updating a tournament tree 
l  Iteratively asking pair-wise questions from the 

bottom level 

Top-k: Tournament Solution (k = 2) 
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l  Phase 2: Updating a tournament tree 
l  Iteratively asking pair-wise questions from the 

bottom level 

Top-k: Tournament Solution (k = 2) 
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Round 4 

Round 5 

Total, 6 questions  
With 5 rounds 



l  This is a top-k list algorithm 
l  Analysis 

 
l  If there is no constraint for the number of 

rounds, this tournament sort based top-k 
scheme yields the optimal result 

k = 1	 k ≥ 2	

# of questions	 O(n)	

# of rounds	

Top-k: Tournament Solution 
56 



Top-k [Polychronopoulous-‐WebDB13] 
l  Top-k set algorithm 

l  Top-k items are “better” than remaining items 
l  Capture NO ranking among top-k items  

l  Tournament-based approach 

l  Can become a Top-k list algorithm 
l  Eg, Top-k set algorithm, followed by [Marcus-

VLDB11] to sort k items  
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Top-k [Polychronopoulous-‐WebDB13] 
l  Algorithm 

l  Input: N items, integer k and s (ie, s > k) 
l  Output: top-k set 
l  Procedure: 

o  O ß N items 
o  While |O| > k 

§  Partition O into disjoint subsets of size s 

§  Identify top-k items in each subset of size s: s-rank(s) 

§  Merge all top-k items into O 

o  Return O 

l  More effective when s and k are small 
l  Eg, s-rank(20) with k=10 may give poor accuracy 
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Top-k [Polychronopoulous-‐WebDB13] 
l  Eg, N=10, s=4, k=2 
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Top-k [Polychronopoulous-‐WebDB13] 
l  s-rank(s) 

// workers rank s items and aggregate 
l  Input: s items, integer k (ie, s > k), w workers 
l  Output: top-k items among s items 

l  Procedure: 
o  For each of w workers 

§  Rank s items ≈ comparison-based sort [Marcus-VLDB11] 

o  Merge w rankings of s items into a single ranking 
§  Use median-rank aggregation [Dwork-WWW01] 

o  Return top-k item from the merged ranking of s items 
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Top-k [Polychronopoulous-‐WebDB13] 
l  Eg, s-rank(): s=4, k=2, w=3 
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Top-k [Polychronopoulous-‐WebDB13] 
l  Comparison to Sort [Marcus-VLDB11] 
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Top-k [Polychronopoulous-‐WebDB13] 
l  Comparison to Max [Venetis-WWW12]  
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Join Operation 
l  Identify matching records or entities within or 

across tables 
l  ≈ similarity join, entity resolution (ER), record 

linkage, de-duplication, … 
l  Beyond the exact matching 

l  [Chaudhuri-ICDE06] similarity join  
l  R JOINp S, where p=sim(R.A, S.A) > t 
l  sim() can be implemented as UDFs in SQL 

l  Often, the evaluation is expensive 
o  DB applies UDF-based join predicate after Cartesian 

product of R and S 
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Join Operation 
l  Examples 

l  [Marcus-VLDB11] proposes 3 types of joins  
l  [Wang-VLDB12] generates near-optimal 

cluster-based HIT design to reduce join cost 

l  [Wang-SIGMOD13] reduces join cost further 
by exploiting transitivity among items 

l  [Whang-VLDB13] selects right questions to 
ask to crowds to improve join accuracy 

l  [Gokhale-SIGMOD14] proposes the hands-off 
crowdsourcing for join workflow 
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Join [Marcus-VLDB11]  
l  To join tables R and S 
l  #1: Simple Join 

l  Pair-wise comparison HIT 
l  |R||S| HITs needed 

l  #2: Naïve Batching Join 
l  Repetition of #1 with a batch factor b 
l  |R||S|/b HITs needed 

l  #3: Smart Batching Join 
l  Show r and s images from R and S 
l  Workers pair them up 

l  |R||S|/rs HITs needed 
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Join [Marcus-VLDB11]  
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#1 Simple 
Join 



Join [Marcus-VLDB11]  
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#2 Naïve 
Batching 

Join 

Batch factor 
b = 2 



Join [Marcus-VLDB11]  
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#3 Smart 
Batching 

Join 

r images 
from R 

s images 
from S 



Join [Marcus-VLDB11]  
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MV: Majority Voting 
QA: Quality  Adjustment 



Join [Marcus-VLDB11]  
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Last 50% of wait time is  
spent completing  

the last 5% of tasks 



Join [Wang-VLDB12] 
l  [Marcus-VLDB11] proposed two batch joins 

l  More efficient smart batch join still generates 
 |R||S|/rs # of HITs 

l  Eg, (10,000 X 10,000) / (20 x 20) = 250,000 HITs 
à Still too many ! 

l  [Wang-VLDB12] contributes CrowdER: 
1.  A hybrid human-machine join 

o  #1 machine-join prunes obvious non-matches 

o  #2 human-join examines likely matching cases 
§  Eg, candidate pairs with high similarity scores 

2.  Algorithm to generate min # of HITs for step #2 
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Join [Wang-VLDB12] 
l  Hybrid idea: generate candidate pairs 

using existing similarity measures (eg, 
Jaccard) 
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Main Issue: HIT Generation Problem 



Join [Wang-VLDB12] 
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Pair-based HIT Generation 
≈ Naïve Batching in  
[Marcus-VLDB11] 

Cluster-based HIT Generation 
≈ Smart Batching in  
[Marcus-VLDB11] 



Join [Wang-VLDB12] 
l  HIT Generation Problem 

l  Input: pairs of records P, # of records in HIT k 
l  Output: minimum # of HITs s.t. 

1.  All HITs have at most k records 

2.  Each pair (pi, pj)    P must be in at least one HIT 

1.  Pair-based HIT Generation 
l  Trivial: P/k # of HITs s.t. each HIT contains k pairs 

in P 

2.  Cluster-based HIT Generation 
l  NP-hard problem à approximation solution 
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Join [Wang-VLDB12] 
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Cluster-based 
HIT #1 

 
r1, r2, r3, r7 

Cluster-based 
HIT #2 

 
r3, r4, r5, r6 

Cluster-based 
HIT #3 

 
r4, r7, r8, r9 

k = 4 

This is the minimal # of cluster-based HITs 
satisfying previous two conditions 



Join [Wang-VLDB12] 
l  Two-tiered Greedy Algorithm 

l  Build a graph G from pairs of records in P 
l  CC ß connected components in G 

o  LCC: large CC with more than k nodes 

o  SCC: small CC with no more than k nodes 

l  Step 1: Partition LCC into SCCs 
l  Step 2: Pack SCCs into HITs with k nodes 

o  Integer programming based 
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Join [Wang-VLDB12] 
l  Eg, Generate cluster-based HITs (k = 4) 

1.  Partition the LCC into 3 SCCs 
o  {r1, r2, r3, r7}, {r3, r4, r5, r6}, {r4, r7} 

2.  Pack SCCs into HITs 
o  A single HIT per {r1, r2, r3, r7} and {r3, r4, r5, r6} 

o  Pack {r4, r7} and {r8, r9} into a HIT 
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Join [Wang-VLDB12] 
l  Step 1: Partition 

l  Input: LCC, k  Output: SCCs 
l  rmax ß node in LCC with the max degree 
l  scc ß {rmax} 

l  conn ß nodes in LCC directly connected to rmax 

l  while |scc| < k and |conn| > 0 
o  rnew ß node in conn with max indegree (# of edges to 

scc) and min outdegree (# of edges to non-scc) if tie 
o  move rnew from conn to scc 

o  update conn using new scc 

l  add scc into SCC 
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Join [Wang-VLDB12] 
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Join [Wang-VLDB12] 
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Join [Wang-VLDB12] 
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Join [Wang-SIGMOD13]  
l  Use the same hybrid machine-human 

framework as [Wang-VLDB12] 
l  Aim to reduce # of HITs further 

l  Exploit transitivity among records 
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Join [Wang-SIGMOD13]  
l  Positive transitive relation 

l  If a=b, and b=c, then a=c 

l  Negative transitive relation 
l  If a = b, b ≠ c, then a ≠ c	  
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iPad	  2nd	  Gen	  =	  iPad	  Two	  

iPad	  Two	  =	  iPad	  2	  
iPad	  2nd	  Gen	  =	  iPad	  2	  

iPad	  2nd	  Gen	  =	  iPad	  Two	  
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iPad	  2nd	  Gen	  ≠	  iPad	  3	  



Join [Wang-SIGMOD13]  
l  Three transitive relations 

l  If there exists a path from o to o’ which only 
consists of matching pairs, then (o, o’) can be 
deduced as a matching pair 

l  If there exists a path from o to o’ which only 
contains a single non-matching pair, then (o, o’) 
can be deduced as a non-matching pair 

l  If any path from o to o’ contains more than one 
non-matching pairs, (o, o’) cannot be deduced. 
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Join [Wang-SIGMOD13]  
87 

(o3, o5) à match 
 

(o5, o7) à non-match 
 

(o1, o7) à ? 
  



Join [Wang-SIGMOD13]  
l  Given a pair (oi, oj), to check the transitivity 

l  Enumerate path from oi to oj à exponential ! 
l  Count # of non-matching pairs in each path 

l  Solution: Build a cluster graph 
l  Merge matching pairs to a cluster 
l  Add inter-cluster edge for non-matching pairs 
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(o5, o6) à ? 

 
(o1, o5) à ?   

   
  



Join [Wang-SIGMOD13]  
l  Problem Definition: 

l  Given	  a	  set	  of	  pairs	  that	  need	  to	  be	  labeled,	  
minimize	  the	  #	  of	  pairs	  requested	  to	  crowd	  
workers	  based	  on	  transiCve	  relaCons  
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Join [Wang-SIGMOD13]  
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(o1, o2), (o1, o6), (o2, o6) 
 

vs.  
 

(o1, o6), (o2, o6), (o1, o2)  
  

N 

l  Labeling order matters ! 

è Given a set of pairs to label, how to order 
them affects the # of pairs to deduce using the 
transitivity 



Join [Wang-SIGMOD13]  
l  Theorem: Optimal labeling order 

 w = <p1, …, pi-1, pi, pi+1, …, pn> 
 w’ = <p1, …, pi-1, pi+1, pi, …, pn> 

l  If pi is a matching pair and pi+1 is a non-matching 
pair, then C(w) ≤ C(w’) 
o  C(w): # of crowdsourced pairs required for w 

l  That is, always better to first label a matching 
pair and then a non-matching pair 

l  In reality, optimal label order cannot be 
achieved 
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Join [Wang-SIGMOD13]  
l  Expected optimal labeling order 

l  w	  =	  <p1,	  p2,	  …,	  pn>	  
l  C(w)	  =	  # of crowdsourced pairs required for w 

l  P(pi = crowdsourced) 
o  Enumerate all possible labels of <p1,	  p2,	  …,	  pi-‐1>,	  
and	  for	  each	  possibility,	  derive	  whether	  pi  is 
crowdsourced or not 

o  Sum of the probability of each possibility that 
whether	  pi  is crowdsourced 
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Join [Wang-SIGMOD13]  
l  Expected optimal labeling order 

l  w1	  =	  <p1,	  p2,	  p3>	  
l  E[C(w1)]	  =	  1	  +	  1	  +	  0.05	  =	  2.05	  	  

o  P1:	  P(P1	  =	  crowdsourced)	  =	  1	  
o  P2:	  P(P2	  =	  crowdsourced)	  =	  1	  
o  P3:	  P(P3	  =	  crowdsourced)	  =	  P(both	  P1	  and	  P2	  are	  non-‐
matching)	  =	  (1-‐0.9)(1-‐0.5)	  =	  0.05	  
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o1 

o2 

o3 

p1 p2 

p3 

Probability 
of matching 

P1 0.9 

P2 0.5 

P3 0.1 

Expected value 

w1 = <p1, p2, p3> 2.05 

w2 = <p1, p3, p2> 2.09 

w3 = <p2, p3, p1> 2.45 

w4 = <p2, p1, p3> 2.05 

… … 



Join [Wang-SIGMOD13]  
l  Theorem: Expected optimal labeling order 

l  Label	  the	  pairs	  in	  the	  decreasing	  order	  of	  	  
the	  probability	  that	  they	  are	  a	  matching	  	  
pair	  

l  Eg,	  p1,	  p2,	  p3,	  p4,	  p5,	  p6,	  p7,	  p8	  
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Join [Wang-SIGMOD13]  
l  Two data sets 

l  Paper: 997 (author,	  &tle,	  venue,	  date,	  and	  pages) 
l  Product: 1081	  product	  (abt.com),	  1092	  product	  
(buy.com) 
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Join [Wang-SIGMOD13]  
96 

l  Transitivity 



Machine vs. Human 
l  Human-Powered Crowdsourcing à “Human-

in-the-loop” Crowdsourcing 
l  Should use machine to process majority of big 

data 
l  Should use human to process a small fraction of 

challenging cases in big data 

l  How to split tasks and combine results for 
machines and human automatically is an 
open issue 
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http://www.theoddblog.us/2014/ 
02/21/damienwaltershumanloop/ 



Conclusion 
l  New opportunities 

l  Open-world assumption 
l  Non-deterministic algorithmic behavior 
l  Trade-off among cost, latency, and accuracy 

l  Crowdsourcing for Big Data? 
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This slide is available at 
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