
Human-Powered
Database Operations:

Part 2

Dongwon Lee

Penn State University, USA
dongwon@psu.edu!

!
Slide available @ http://goo.gl/UEUEBh

SBBD 2014 Tutorial

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

2

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

3

New Challenges
l  Open-world

assumption (OWA)

l  Non-deterministic
algorithmic behavior

l  Trade-off among cost,

latency, and accuracy

4

Latency

Cost

Accuracy

http://www.info.teradata.com

Crowdsourcing DB Projects
l  CDAS @ NUS

l  CrowdDB @ UC Berkeley
 & ETH Zurich

l  MoDaS @ Tel Aviv U.

l  Qurk @ MIT

l  sCOOP @ Stanford & UCSC

5

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort
l  Select
l  Count
l  Top-1
l  Top-k
l  Join

6

Sort Operation
l  Rank N items using crowdsourcing w.r.t some

criteria

l  Assuming pair-wise comparison of 2 items
l  Eg, “Which of two images is better?”

l  Cycle: A > B, B > C, and C > A

l  If no cycle occurs
l  Naïve all pair-wise comparisons takes

comparisons

l  If cycle exists
l  More comparisons are required

7

N
2

A

C

B

Sort [Marcus-VLDB11]
l  Proposed 3 crowdsourced sort algorithms
l  #1: Comparison-based Sort

l  Workers rank S items () per HIT
l  Each HIT yields pair-wise comparisons

l  Build a directed graph using all pair-wise
comparisons from all workers
o  If i > j, then add an edge from i to j

l  Break a cycle in the graph: “head-to-head”
o  Eg, If i > j occurs 3 times and i < j occurs 2 times, keep

only i > j

l  Perform a topological sort in the DAG

8

S ⊂ N
S
2

!

"
#

$

%
&

Sort [Marcus-VLDB11]
9

5 4 3 1 2

2 1 3 5 4

Error

Sort [Marcus-VLDB11]
l  N=5, S=3

10

W1

W2

W3

W4

✖

A

C

B E

D

2

1

1

1

1

1

1

1

1

1

1

A

B

C

D

E

> >

> >

> >

> >

1

Sort [Marcus-VLDB11]
l  N=5, S=3

11

A

C

B E

D

Topological
Sort

DAG

A

B

C

D

E

A

B

C

E

D

Sorted
Result

∨

∨

∨

∨

Sort [Marcus-VLDB11]

l  #2: Rating-based Sort
l  W workers rate each item along a numerical scale

l  Compute the mean of W ratings of each item
l  Sort all items using their means

l  Requires W*N HITs: O(N)

12

. . .

1.3

3.6

8.2

Worker Rating

W1 4

W2 3

W3 4

Worker Rating

W1 1

W2 2

W3 1

. . .

Mean
rating

Sort [Marcus-VLDB11]
13

Sort [Marcus-VLDB11]
l  #3: Hybrid Sort

l  First, do rating-based sort à sorted list L
l  Second, do comparison-based sort on S ()

l  How to select the size of S
o  Random
o  Confidence-based

o  Sliding window

14

S ⊂ L

Sort [Marcus-VLDB11]
15

Worker agreement Rank correlation btw.
Comparison vs. rating

Sort [Marcus-VLDB11]
16

Part II: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

17

Select Operation
l  Given N items, select k items that satisfy a

predicate P

l  ≈ Filter, Find, Screen, Search

18

Select Operation
l  Examples

l  [Yan-MobiSys10] uses crowds to search an
image relevant to a query

l  [Parameswaran-SIGMOD12] develops human-
powered filtering algorithms

l  [Franklin-ICDE13] efficiently enumerates items
satisfying conditions via crowdsourcing

l  [Sarma-ICDE14] finds a bounded number of
items satisfying predicates using the optimal
solution by the skyline of cost and time

19

Select [Yan-MobiSys10]
l  Improving mobile image search using

crowdsourcing

20

Select [Yan-MobiSys10]
l  Ensuring

accuracy
with majority
voting

l  Given
accuracy,
optimize cost
and latency

l  Deadline as
latency in
mobile
phones

21

Select [Yan-MobiSys10]
l  Goal: For a query image Q, find the first

relevant image I with min cost before the
deadline

22

Select [Yan-MobiSys10]
l  Parallel crowdsourced validation

23

Select [Yan-MobiSys10]
l  Sequential crowdsourced validation

24

Select [Yan-MobiSys10]
l  CrowdSearch: using early prediction on the

delay and outcome to start the validation of
next candidate early

25

Select [Yan-MobiSys10]
26

Select [Parameswaran-SIGMOD12]
l  Novel grid-based visualization

27

No

Yes

A

B

D

C

Same person?

Yes No

Select [Parameswaran-SIGMOD12]
l  Common strategies

l  Always ask X questions, return
most likely answer à Triangular
strategy

l  If X YES return “Pass”, Y NO return
“Fail”, else keep asking à
Rectangular strategy

l  Ask until |#YES - #NO| > X, or at
most Y questions à Chopped off
triangle

28

Select [Parameswaran-SIGMOD12]
l  What is the best strategy? Find strategy with

minimum overall expected cost s.t.
1.  Overall expected error is less than threshold

2.  # of questions per item never exceeds m	

29

6 5 4 3 2 1

6

5

4

3

2

1

NOs

YESs

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

30

Count Operation
l  Given N items, estimate a fraction of items M

that satisfy a predicate P

l  Selectivity estimation in DB à crowd-
powered query optimizers

l  Evaluating queries with GROUP BY +
COUNT/AVG/SUM operators

l  Eg, “Find photos of females with red hairs”
l  Selectivity(“female”) ≈ 50%

l  Selectivity(“red hair”) ≈ 2%
l  Better to process predicate(“red hair”) first

31

Count Operation
32

l  Q: “How many teens are participating in the
Hong Kong demonstration?”

Count Operation
33

http://www.faceplusplus.com/demo-detect/

10 - 56 20 - 30 15 - 29

l  Using Face++, guess the age of a person

Count [Marcus-VLDB13]
l  Hypothesis: Humans can estimate the

frequency of objects’ properties in a batch
without having to explicitly label each item

l  Two approaches
l  #1: Label Count

o  Sampling based
o  Have workers label samples explicitly

l  #2: Batch Count
o  Have workers estimate the frequency in a batch

34

Count [Marcus-VLDB13]
35

l  Label Count (via sampling)

Count [Marcus-VLDB13]
36

l  Batch Count

Count [Marcus-VLDB13]
l  Findings on accuracy

l  Images: Batch count > Label count
l  Texts: Batch count < Label count

l  Further Contributions
l  Detecting spammers
l  Avoiding coordinated attacks

37

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

38

Top-1 Operation
l  Find the top-1, either MAX or MIN, among N

items w.r.t. some criteria

l  Objective
l  Avoid sorting all N items to find top-1

39

Top-1 Operation
l  Examples

l  [Venetis-WWW12] introduces the bubble max
and tournament-based max in a parameterized
framework

l  [Guo-SIGMOD12] studies how to find max using
pair-wise questions in the tournament-like setting
and how to improve accuracy by asking more
questions

40

Max [Venetis-WWW12]

l  Introduced two Max algorithms
l  Bubble Max
l  Tournament Max

l  Parameterized framework
l  si: size of sets compared at the i-th round
l  ri: # of human responses at the i-th round

41

Which is better?

si = 2
ri = 3

si = 3
ri = 2

Which is the best?

Max [Venetis-WWW12]

l  Bubble Max Case #1

42

s1 = 2
r1 = 3

s2 = 3
r2 = 3

s3 = 2
r3 = 5

•  N = 5
•  Rounds = 3
•  # of questions =

 r1 + r2 + r3 = 11

Max [Venetis-WWW12]

l  Bubble Max Case #2

43

s1 = 4
r1 = 3

•  N = 5
•  Rounds = 2
•  # of questions =

 r1 + r2 = 8

s2 = 2
r2 = 5

Max [Venetis-WWW12]

l  Tournament Max

44

•  N = 5
•  Rounds = 3
•  # of questions

 = r1 + r2 + r3 + r4 = 10

s1 = 2
r1 = 1

s3 = 2
r3 = 3

s4 = 2
r4 = 5

s2 = 2
r2 = 1

Max [Venetis-WWW12]
l  How to find optimal parameters?: si and ri
l  Tuning Strategies (using Hill Climbing)

l  Constant si and ri
l  Constant si and varying ri

l  Varying si and ri

45

Max [Venetis-WWW12]
l  Bubble Max

l  Worst case: with si=2, O(N) comparisons needed

l  Tournament Max
l  Worst case: with si=2, O(N) comparisons needed

l  Bubble Max is a special case of Tournament
Max

46

Max [Venetis-WWW12]
47

Max [Venetis-WWW12]
48

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

49

Top-k Operation
l  Find top-k items among N items w.r.t. some

criteria

l  Top-k list vs. top-k set

l  Objective
l  Avoid sorting all N items to find top-k

50

Top-k Operation
l  Examples

l  [Davidson-‐ICDT13]	 inves&gates	 the	 variable	 user	
error	 model	 in	 solving	 top-‐k	 list	 problem

l  [Polychronopoulous-‐WebDB13]	 proposes	
tournament-‐based	 top-‐k	 set	 solu&on	

51

Top-k Operation
l  Naïve solution is to “sort” N items and pick

top-k items
l  Eg, N=5, k=2, “Find two best Bali images?”

l  Ask = 10 pair-wise questions to get a total
order

l  Pick top-2 images

52

5
2

l  Phase 1: Building a tournament tree
l  For each comparison, only winners are promoted

to the next round

Top-k: Tournament Solution (k = 2)
53

Round 1

Round 2

Round 3

Total, 4 questions
with 3 rounds

l  Phase 2: Updating a tournament tree
l  Iteratively asking pair-wise questions from the

bottom level

Top-k: Tournament Solution (k = 2)
54

Round 1

Round 2

Round 3

l  Phase 2: Updating a tournament tree
l  Iteratively asking pair-wise questions from the

bottom level

Top-k: Tournament Solution (k = 2)
55

Round 4

Round 5

Total, 6 questions
With 5 rounds

l  This is a top-k list algorithm
l  Analysis

l  If there is no constraint for the number of

rounds, this tournament sort based top-k
scheme yields the optimal result

k = 1	 k ≥ 2	

# of questions	 O(n)	

# of rounds	

Top-k: Tournament Solution
56

Top-k [Polychronopoulous-‐WebDB13]
l  Top-k set algorithm

l  Top-k items are “better” than remaining items
l  Capture NO ranking among top-k items

l  Tournament-based approach

l  Can become a Top-k list algorithm
l  Eg, Top-k set algorithm, followed by [Marcus-

VLDB11] to sort k items

57

K	 items	

Top-k [Polychronopoulous-‐WebDB13]
l  Algorithm

l  Input: N items, integer k and s (ie, s > k)
l  Output: top-k set
l  Procedure:

o  O ß N items
o  While |O| > k

§  Partition O into disjoint subsets of size s

§  Identify top-k items in each subset of size s: s-rank(s)

§  Merge all top-k items into O

o  Return O

l  More effective when s and k are small
l  Eg, s-rank(20) with k=10 may give poor accuracy

58

Top-k [Polychronopoulous-‐WebDB13]
l  Eg, N=10, s=4, k=2

59

s-rank() s-rank()

s-rank()

s-rank()

Top-2 items

s-rank()

s-rank()

Top-k [Polychronopoulous-‐WebDB13]
l  s-rank(s)

// workers rank s items and aggregate
l  Input: s items, integer k (ie, s > k), w workers
l  Output: top-k items among s items

l  Procedure:
o  For each of w workers

§  Rank s items ≈ comparison-based sort [Marcus-VLDB11]

o  Merge w rankings of s items into a single ranking
§  Use median-rank aggregation [Dwork-WWW01]

o  Return top-k item from the merged ranking of s items

60

Top-k [Polychronopoulous-‐WebDB13]
l  Eg, s-rank(): s=4, k=2, w=3

61

W1

4 1 2 3

W2

4 2 1 3

W3

3 2 3 4

Median
Ranks 4 2 2 3

Top-2

Top-k [Polychronopoulous-‐WebDB13]
l  Comparison to Sort [Marcus-VLDB11]

62

Top-k [Polychronopoulous-‐WebDB13]
l  Comparison to Max [Venetis-WWW12]

63

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

64

Join Operation
l  Identify matching records or entities within or

across tables
l  ≈ similarity join, entity resolution (ER), record

linkage, de-duplication, …
l  Beyond the exact matching

l  [Chaudhuri-ICDE06] similarity join
l  R JOINp S, where p=sim(R.A, S.A) > t
l  sim() can be implemented as UDFs in SQL

l  Often, the evaluation is expensive
o  DB applies UDF-based join predicate after Cartesian

product of R and S

65

Join Operation
l  Examples

l  [Marcus-VLDB11] proposes 3 types of joins
l  [Wang-VLDB12] generates near-optimal

cluster-based HIT design to reduce join cost

l  [Wang-SIGMOD13] reduces join cost further
by exploiting transitivity among items

l  [Whang-VLDB13] selects right questions to
ask to crowds to improve join accuracy

l  [Gokhale-SIGMOD14] proposes the hands-off
crowdsourcing for join workflow

66

Join [Marcus-VLDB11]
l  To join tables R and S
l  #1: Simple Join

l  Pair-wise comparison HIT
l  |R||S| HITs needed

l  #2: Naïve Batching Join
l  Repetition of #1 with a batch factor b
l  |R||S|/b HITs needed

l  #3: Smart Batching Join
l  Show r and s images from R and S
l  Workers pair them up

l  |R||S|/rs HITs needed

67

Join [Marcus-VLDB11]
68

#1 Simple
Join

Join [Marcus-VLDB11]
69

#2 Naïve
Batching

Join

Batch factor
b = 2

Join [Marcus-VLDB11]
70

#3 Smart
Batching

Join

r images
from R

s images
from S

Join [Marcus-VLDB11]
71

MV: Majority Voting
QA: Quality Adjustment

Join [Marcus-VLDB11]
72

Last 50% of wait time is
spent completing

the last 5% of tasks

Join [Wang-VLDB12]
l  [Marcus-VLDB11] proposed two batch joins

l  More efficient smart batch join still generates
 |R||S|/rs # of HITs

l  Eg, (10,000 X 10,000) / (20 x 20) = 250,000 HITs
à Still too many !

l  [Wang-VLDB12] contributes CrowdER:
1.  A hybrid human-machine join

o  #1 machine-join prunes obvious non-matches

o  #2 human-join examines likely matching cases
§  Eg, candidate pairs with high similarity scores

2.  Algorithm to generate min # of HITs for step #2

73

Join [Wang-VLDB12]
l  Hybrid idea: generate candidate pairs

using existing similarity measures (eg,
Jaccard)

74

Main Issue: HIT Generation Problem

Join [Wang-VLDB12]
75

Pair-based HIT Generation
≈ Naïve Batching in
[Marcus-VLDB11]

Cluster-based HIT Generation
≈ Smart Batching in
[Marcus-VLDB11]

Join [Wang-VLDB12]
l  HIT Generation Problem

l  Input: pairs of records P, # of records in HIT k
l  Output: minimum # of HITs s.t.

1.  All HITs have at most k records

2.  Each pair (pi, pj) P must be in at least one HIT

1.  Pair-based HIT Generation
l  Trivial: P/k # of HITs s.t. each HIT contains k pairs

in P

2.  Cluster-based HIT Generation
l  NP-hard problem à approximation solution

76

∈

Join [Wang-VLDB12]
77

Cluster-based
HIT #1

r1, r2, r3, r7

Cluster-based
HIT #2

r3, r4, r5, r6

Cluster-based
HIT #3

r4, r7, r8, r9

k = 4

This is the minimal # of cluster-based HITs
satisfying previous two conditions

Join [Wang-VLDB12]
l  Two-tiered Greedy Algorithm

l  Build a graph G from pairs of records in P
l  CC ß connected components in G

o  LCC: large CC with more than k nodes

o  SCC: small CC with no more than k nodes

l  Step 1: Partition LCC into SCCs
l  Step 2: Pack SCCs into HITs with k nodes

o  Integer programming based

78

Join [Wang-VLDB12]
l  Eg, Generate cluster-based HITs (k = 4)

1.  Partition the LCC into 3 SCCs
o  {r1, r2, r3, r7}, {r3, r4, r5, r6}, {r4, r7}

2.  Pack SCCs into HITs
o  A single HIT per {r1, r2, r3, r7} and {r3, r4, r5, r6}

o  Pack {r4, r7} and {r8, r9} into a HIT

79

Join [Wang-VLDB12]
l  Step 1: Partition

l  Input: LCC, k Output: SCCs
l  rmax ß node in LCC with the max degree
l  scc ß {rmax}

l  conn ß nodes in LCC directly connected to rmax

l  while |scc| < k and |conn| > 0
o  rnew ß node in conn with max indegree (# of edges to

scc) and min outdegree (# of edges to non-scc) if tie
o  move rnew from conn to scc

o  update conn using new scc

l  add scc into SCC

80

Join [Wang-VLDB12]
81

Join [Wang-VLDB12]
82

Join [Wang-VLDB12]
83

Join [Wang-SIGMOD13]
l  Use the same hybrid machine-human

framework as [Wang-VLDB12]
l  Aim to reduce # of HITs further

l  Exploit transitivity among records

84

http://blogs.oc.edu/ece/transitivity/

Join [Wang-SIGMOD13]
l  Positive transitive relation

l  If a=b, and b=c, then a=c

l  Negative transitive relation
l  If a = b, b ≠ c, then a ≠ c	

85

iPad	 2nd	 Gen	 =	 iPad	 Two	

iPad	 Two	 =	 iPad	 2	
iPad	 2nd	 Gen	 =	 iPad	 2	

iPad	 2nd	 Gen	 =	 iPad	 Two	

iPad	 Two	 ≠	 iPad	 3	
iPad	 2nd	 Gen	 ≠	 iPad	 3	

Join [Wang-SIGMOD13]
l  Three transitive relations

l  If there exists a path from o to o’ which only
consists of matching pairs, then (o, o’) can be
deduced as a matching pair

l  If there exists a path from o to o’ which only
contains a single non-matching pair, then (o, o’)
can be deduced as a non-matching pair

l  If any path from o to o’ contains more than one
non-matching pairs, (o, o’) cannot be deduced.

86

Join [Wang-SIGMOD13]
87

(o3, o5) à match

(o5, o7) à non-match

(o1, o7) à ?

Join [Wang-SIGMOD13]
l  Given a pair (oi, oj), to check the transitivity

l  Enumerate path from oi to oj à exponential !
l  Count # of non-matching pairs in each path

l  Solution: Build a cluster graph
l  Merge matching pairs to a cluster
l  Add inter-cluster edge for non-matching pairs

88

(o5, o6) à ?

(o1, o5) à ?

Join [Wang-SIGMOD13]
l  Problem Definition:

l  Given	 a	 set	 of	 pairs	 that	 need	 to	 be	 labeled,	
minimize	 the	 #	 of	 pairs	 requested	 to	 crowd	
workers	 based	 on	 transiCve	 relaCons

89

?	

Join [Wang-SIGMOD13]
90

(o1, o2), (o1, o6), (o2, o6)

vs.

(o1, o6), (o2, o6), (o1, o2)

N

l  Labeling order matters !

è Given a set of pairs to label, how to order
them affects the # of pairs to deduce using the
transitivity

Join [Wang-SIGMOD13]
l  Theorem: Optimal labeling order

 w = <p1, …, pi-1, pi, pi+1, …, pn>
 w’ = <p1, …, pi-1, pi+1, pi, …, pn>

l  If pi is a matching pair and pi+1 is a non-matching
pair, then C(w) ≤ C(w’)
o  C(w): # of crowdsourced pairs required for w

l  That is, always better to first label a matching
pair and then a non-matching pair

l  In reality, optimal label order cannot be
achieved

91

Join [Wang-SIGMOD13]
l  Expected optimal labeling order

l  w	 =	 <p1,	 p2,	 …,	 pn>	
l  C(w)	 =	 # of crowdsourced pairs required for w

l  P(pi = crowdsourced)
o  Enumerate all possible labels of <p1,	 p2,	 …,	 pi-‐1>,	
and	 for	 each	 possibility,	 derive	 whether	 pi is
crowdsourced or not

o  Sum of the probability of each possibility that
whether	 pi is crowdsourced

92

Join [Wang-SIGMOD13]
l  Expected optimal labeling order

l  w1	 =	 <p1,	 p2,	 p3>	
l  E[C(w1)]	 =	 1	 +	 1	 +	 0.05	 =	 2.05	 	

o  P1:	 P(P1	 =	 crowdsourced)	 =	 1	
o  P2:	 P(P2	 =	 crowdsourced)	 =	 1	
o  P3:	 P(P3	 =	 crowdsourced)	 =	 P(both	 P1	 and	 P2	 are	 non-‐
matching)	 =	 (1-‐0.9)(1-‐0.5)	 =	 0.05	

93

o1

o2

o3

p1 p2

p3

Probability
of matching

P1 0.9

P2 0.5

P3 0.1

Expected value

w1 = <p1, p2, p3> 2.05

w2 = <p1, p3, p2> 2.09

w3 = <p2, p3, p1> 2.45

w4 = <p2, p1, p3> 2.05

… …

Join [Wang-SIGMOD13]
l  Theorem: Expected optimal labeling order

l  Label	 the	 pairs	 in	 the	 decreasing	 order	 of	 	
the	 probability	 that	 they	 are	 a	 matching	 	
pair	

l  Eg,	 p1,	 p2,	 p3,	 p4,	 p5,	 p6,	 p7,	 p8	

94

High

Join [Wang-SIGMOD13]
l  Two data sets

l  Paper: 997 (author,	 &tle,	 venue,	 date,	 and	 pages)
l  Product: 1081	 product	 (abt.com),	 1092	 product	
(buy.com)

95

Join [Wang-SIGMOD13]
96

l  Transitivity

Machine vs. Human
l  Human-Powered Crowdsourcing à “Human-

in-the-loop” Crowdsourcing
l  Should use machine to process majority of big

data
l  Should use human to process a small fraction of

challenging cases in big data

l  How to split tasks and combine results for
machines and human automatically is an
open issue

97

http://www.theoddblog.us/2014/
02/21/damienwaltershumanloop/

Conclusion
l  New opportunities

l  Open-world assumption
l  Non-deterministic algorithmic behavior
l  Trade-off among cost, latency, and accuracy

l  Crowdsourcing for Big Data?

98

This slide is available at

 http://goo.gl/UEUEBh

Reference
l  [Brabham-13] Crowdsourcing, Daren Brabham, 2013
l  [Cao-VLDB12] Whom to Ask? Jury Selection for Decision Making Tasks on

Microblog Services, Caleb Chen Cao et al., VLDB 2012

l  [Chaudhuri-ICDE06] A Primitive Operator for Similarity Join in Data
Cleaning, Surajit Chaudhuri et al., ICDE 2006

l  [Davidson-ICDT13] Using the crowd for top-k and group-by queries, Susan
Davidson et al., ICDT 2013

l  [Dwork-WWW01] Rank Aggregation Methods for the Web, Cynthia Dwork
et al., WWW 2001

l  [Franklin-SIGMOD11] CrowdDB: answering queries with crowdsourcing,
Michael J. Franklin et al, SIGMOD 2011

l  [Franklin-ICDE13] Crowdsourced enumeration queries, Michael J. Franklin
et al, ICDE 2013

l  [Gokhale-SIGMOD14] Corleone: Hands-Off Crowdsourcing for Entity
Matching, Chaitanya Gokhale et al., SIGMOD 2014

l  [Guo-SIGMOD12] So who won?: dynamic max discovery with the crowd,
Stephen Guo et al., SIGMOD 2012

l  [Howe-08] Crowdsourcing, Jeff Howe, 2008

99

Reference
l  [LawAhn-11] Human Computation, Edith Law and Luis von Ahn, 2011
l  [Li-HotDB12] Crowdsourcing: Challenges and Opportunities, Guoliang Li,

HotDB 2012

l  [Liu-VLDB12] CDAS: A Crowdsourcing Data Analytics System, Xuan Liu et
al., VLDB 2012

l  [Marcus-VLDB11] Human-powered Sorts and Joins, Adam Marcus et al.,
VLDB 2011

l  [Marcus-VLDB12] Counting with the Crowd, Adam Marcus et al., VLDB
2012

l  [Miller-13] Crowd Computing and Human Computation Algorithms, Rob
Miller, 2013

l  [Parameswaran-SIGMOD12] CrowdScreen: Algorithms for Filtering Data
with Humans, Aditya Parameswaran et al., SIGMOD 2012

l  [Polychronopoulous-WebDB13] Human-Powered Top-k Lists, Vassilis
Polychronopoulous et al., WebDB 2013

l  [Sarma-ICDE14] Crowd-Powered Find Algorithms, Anish Das Sarma et al.,
ICDE 2014

l  [Shirky-08] Here Comes Everybody, Clay Shirky, 2008

100

Reference
l  [Surowiecki-04] The Wisdom of Crowds, James Surowiecki, 2004
l  [Venetis-WWW12] Max Algorithms in Crowdsourcing Environments, Petros

Venetis et al., WWW 2012

l  [Wang-VLDB12] CrowdER: Crowdsourcing Entity Resolution, Jiannan
Wang et al., VLDB 2012

l  [Wang-SIGMOD13] Leveraging Transitive Relations for Crowdsourced
Joins, Jiannan Wang et al., SIGMOD 2013

l  [Whang-VLDB13] Question Selection for Crowd Entity Resolution, Steven
Whang et al., VLDB 2013

l  [Yan-MobiSys10] CrowdSearch: exploiting crowds for accurate real-time
image search on mobile phones, T. Yan et al., MobiSys 2010

101

