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Part 1. Crowdsourcing Basics

e Examples
e Definitions

e Marketplaces

e Computational Crowdsourcing
e Preliminaries
e Transcription
e Sorting

e Demo
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Part 2: Crowdsourced Algo. in DB

e Preliminaries <
e Sort

e Select

e Count

e TOp-1

e Top-k

e Join



New Challenges

http://www.info.teradata.com

o Open-WorId Database Predicate
assumption (OWA)

1094A086

e Non-deterministic
algorithmic behavior

e Trade-off among cost, | Latency |
latency, and accuracy I

e

9[ Accuracy J
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Crowdsourcing DB Projects

e CDAS @ NUS 4 EL‘I_[

CROWDSOURCING DATA ANALYTICS SYSTEM

e CrowdDB @ UC Berkeley
& ETH Zurich ’ |
_rowdDEt

e MoDaS @ Tel Aviv U. @
S w @

®» «®

QURK
QUERY PROCESSING WITH

e Qurk @ MIT

Quer

e SCOOP @ Stanford & UCSC
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Part 2: Crowdsourced Algo. in DB

e Preliminaries
e Sort «

e Select

e Count

e TOp-1

e Top-k

e Join



Sort Operation

e Rank N items using crowdsourcing w.r.t some
criteria

e Assuming pair-wise comparison of 2 items

Eg, “Which of two images Is better?”
e Cycle:A>B,B>C,and C>A

e If no cycle occurs

Naive all pair-wise comparisons takes ( ';' )
comparisons

e If cycle exists
More comparisons are required




Sort [Marcus-VLDB11]

e Proposed 3 crowdsourced sort algorithms

e #1: Comparison-based Sort
Workers rank S items (SC N) per HIT
Each HIT yields ( g) pair-wise comparisons

Build a directed graph using all pair-wise
comparisons from all workers
If i > |, then add an edge from i to |
Break a cycle in the graph: “head-to-head”
Eg, If i > ] occurs 3 times and | < | occurs 2 times, keep
only i > |
Perform a topological sort in the DAG



Sort [Marcus-VLDB11]

There are 2 groups of squares. We want to order the squares
in each group from smallest to largest.

e FEach group is surrounded by a dotted line. Only compare the squares within a group.
+ Within cach group, assign a number from 1 to 7 to cach square, so that:
I represents the smallest square, and 7 represents the largest.
o We do not care about the specific value of each square, only the relative order of the squares.
> Some groups may have less than 7 squares. That is OK: use less than 7 numbers, and make sure they are ordered
according to size.
o If two squares in a group are the same size, you should assign them the same number.




10

Sort [Marcus-VLDB11]




Sort [Marcus-VLDB11]

e N=5 S=3

Topological
Sort

DAG

Sorted
Result

11



Sort [Marcus-VLDB11]

e #2: Rating-based Sort
o W workers rate each item along a numerical scale
o Compute the mean of W ratings of each item
o Sort all items using their means
e Requires W*N HITs: O(N)

W1 4
W2 3
W3 4 3.6
|
. W1 1
W2 2
W3 1 8.2
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Sort [Marcus-VLDB11]

There are 2 squares below. We want to rate squares by
their size.

* For each square, assign it a number from 1 (smallest) to 7 (largest) indicating its size.
e For perspective, here is a small number of other randomly picked squares:

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

........................................................................................................................................

........................................................................................................................................



Sort [Marcus-VLDB11]

e #3: Hybrid Sort

First, do rating-based sort - sorted list L
Second, do comparison-based sorton S (SC L)

How to select the size of S
Random
Confidence-based
Sliding window

14
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Sort [Marcus-VLDB11]

LN
o]

S

| |

A

Tu%f///%
J%/////J////////////JZ

%%é%

Q3

111

Q1

Kappa-Sample
Worker agreement

7 Kappa

Tau-Sample
Rank correlation btw.

™ Tau

Comparison vs. rating
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Sort [Marcus-VLDB11]

: / .
0.95 E———
= v 4
- 0.9 / /—/
s /f,
0.85 / ...........................................................
0.8
0.75 - | I 1 |
0 20 40 60 80
# HITs

==Random —Confidence * *Window(5) —Window(6) ““-Compare * -Rate
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Part Il: Crowdsourced Algo. in DB

e Preliminaries




Select Operation

e Given N items, select k items that satisfy a
predicate P

o = Filter, Find, Screen, Search | ~w WE

FILTER

\ 4

18



Select Operation

e Examples

[Yan-MobiSys10] uses crowds to search an
Image relevant to a query

Parameswaran-SIGMOD12] develops human-
oowered filtering algorithms

Franklin-ICDE13] efficiently enumerates items
satisfying conditions via crowdsourcing

[Sarma-ICDE14] finds a bounded number of

items satisfying predicates using the optimal
solution by the skyline of cost and time

19



Select [Yan-Mobi1Sys10]

e Improving mobile image search using
crowdsourcing

Validation

(query, candidate) pair

$0.01

rowdSearch é
Algorithm - N .

rﬁ
"
)

.

<l

.

13
=%
Fe—

ﬂj

20
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Select [Yan-Mobi1Sys10]

e Ensuring 100%
accuracy 0%
with majority  75%
voting

e Given >0%
accuracy,
optimize cost **
and latency

. 0%
O Deadllne as Faces  Flowers Buildings Books

Iatency in B Automated Search [ Single Validator
mobile B Majority(3) B Majority(5)

phones
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Select [Yan-Mobi1Sys10]

e Goal: For a query image Q, find the first
relevant image | with min cost before the
deadline

start I } Jl> time
g || —

wrong image

query image '
i1 -
2 :

candidate images First correct one!  Deadline




Select [Yan-Mobi1Sys10]

23

e Parallel crowdsourced validation

start

V
%‘.

ML — X

wrong image

query image

candidate images

A\

'----------.-l

Deadline
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Select [Yan-Mobi1Sys10]

e Sequential crowdsourced validation

|

V
%‘.

start

i —x
query image o= wrong image
& 2
- I |—1 -Lexceeds deadline

; . Deadline
candidate images

---- --------';




Select [Yan-Mobi1Sys10]

25

e CrowdSearch: using early prediction on the
delay and outcome to start the validation of

next candidate early

start

. < -
. L)

query image =
- 1 '

1

] 8 prediction

candidate images

X

wrong image

Deadline

V
%‘.



Select [Yan-Mobi1Sys10]

100%

5%

50%

2504

0%

Y % Parallel

<> CrowdSearch
«F Serial

10 15 20

7.
7~
A

> cost(cents)

25



Select [Parameswaran-SIGMOD12]

e Novel grid-based visualization

Yes B

Same person?




Select [Parameswaran-SIGMOD12]

e Common strategies
Always ask X gquestions, return

most likely answer - Triangular N\
strategy

If X YES return “Pass”, Y NO return
“Fall”, else keep asking =

Rectangular strategy

Ask until [#YES - #NO| > X, or at
most Y questions - Chopped off >

triangle



Select [Parameswaran-SIGMOD12]

e What is the best strategy? Find strategy with
minimum overall expected cost s.t.

Overall expected error is less than threshold
# of questions per item never exceeds m

YESs

1 2 3 4 5 6
NOs

29
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Part 2: Crowdsourced Algo. in DB

e Preliminaries
e Sort




Count Operation

e Given N items, estimate a fraction of items M
that satisfy a predicate P

e Selectivity estimation in DB - crowd-
powered guery optimizers

e Evaluating queries with GROUP BY +
COUNT/AVG/SUM operators
e Eg, “Find photos of females with red hairs”
Selectivity(“female™) = 50%
Selectivity(“red hair”) = 2%
Better to process predicate(“red hair”) first

31



Count Operation

e Q: “How many teens are participating in the
Hong Kong demonstration?”

32
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Count Operation

e Using Face++, guess the age of a person

10 - 56 20 - 30 M

http://www.faceplusplus.com/demo-detect/



Count [Marcus-VLDB13]

e Hypothesis: Humans can estimate the
frequency of objects’ properties in a batch
without having to explicitly label each item

e Two approaches

#1: Label Count
Sampling based
Have workers label samples explicitly

#2:. Batch Count
Have workers estimate the frequency in a batch

34



Count [Marcus-VLDB13]

e Label Count (via sampling)

There are 2 people below. Please identify the gender of each.

£

What is the gender of this person?
male -« female

What is the gender of this person?
male « female

=

35



Count [Marcus-VLDB13]

e Batch Count

There are 10 people below. Please provide rough estimates for how many of the people have various properties.
About how many of the 10 people are male? 4‘

About how many of the 10 people are female?

36



Count [Marcus-VLDB13]

e Findings on accuracy
Images: Batch count > Label count
Texts: Batch count < Label count

e Further Contributions
Detecting spammers
Avoiding coordinated attacks

37
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Part 2: Crowdsourced Algo. in DB

e Preliminaries
e Sort

e Select

e Count



Top-1 Operation

e Find the top-1, either MAX or MIN, among N
items w.r.t. some criteria

e Objective
Avoid sorting all N items to find top-1

39
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Top-1 Operation

e Examples

[Venetis-WWW12] introduces the bubble max
and tournament-based max in a parameterized
framework

[Guo-SIGMOD12] studies how to find max using
pair-wise questions in the tournament-like setting
and how to improve accuracy by asking more
guestions



Max [Venetis-WWW12]

e Introduced two Max algorithms

e Bubble Max
e Tournament Max

e Parameterized framework

e S size of sets compared at the I-th round
e 1 # of human responses at the i-th round

Which is better?
3. 384 .;5: ;_:» iu ) K ; ;

Which is the best?

i

41



Max [Venetis-WWW12]

e N=5

« Rounds =3

e # of questions =
n+r,+ry=11

42



Max [Venetis-WWW12]

e Bubble Max Case #2

e N=5

e Rounds =2

e # of questions =
r+r, =8

43
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Max [Venetis-WWW12]

e Tournament Max e N=5

Rounds = 3
# of questions
=rp+r,+ry3+r,=10




Max [Venetis-WWW12]

e How to find optimal parameters?: s, and
e Tuning Strategies (using Hill Climbing)
Constant s, and r;
Constant s, and varying .
Varying s; and r;

45



Max [Venetis-WWW12]

e Bubble Max
Worst case: with s=2, O(N) comparisons needed

e Tournament Max
Worst case: with s.=2, O(N) comparisons needed

e Bubble Max Is a special case of Tournament
Max

46



Max [Venetis-WWW12]

- |
Tournamen

N
S W

Pr[max item]
S © O

®
N

25 50 5
Budget (B)
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Max [Venetis-WWW12]

Tournament
'E' - T T T
Q 0-75_ | | = Varying r;, s
x 0.5 { | == Varying r;
%0_25_ ] Constant r;, s;
ol = | |
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Part 2: Crowdsourced Algo. in DB

e Preliminaries
e Sort

e Select

e Count

o'Opk «




Top-k Operation

e Find top-k items among N items w.r.t. some
criteria

e Top-k list vs. top-k set

e Objective
Avoid sorting all N items to find top-k

50



Top-k Operation

e Examples
[Davidson-ICDT13] investigates the variable user
error model in solving top-k list problem

[Polychronopoulous-WebDB13] proposes
tournament-based top-k set solution

51
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Top-k Operation

e Nailve solution is to “sort” N items and pick
top-k items
e Eg, N=5, k=2, “FIind two best Bali images?”

o Ask g ) = 10 pair-wise guestions to get a total
orde

o Pick top-2 images
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Top-k: Tournament Solution (k = 2)

e Phase 1: Building a tournament tree

e For each comparison, only winners are promoted
to the next round

Round 3

Total, 4 questions
with 3 rounds

Round 1
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Top-k: Tournament Solution (k = 2)

e Phase 2: Updating a tournament tree

o lteratively asking pair-wise questions from the
bottom level

Round 3
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Top-k: Tournament Solution (k = 2)

e Phase 2: Updating a tournament tree

o lteratively asking pair-wise questions from the
bottom level

Round 5

Round 4 Total, 6 questions
With 5 rounds




Top-k: Tournament Solution

e This is a top-k list algorithm

e Analysis
| k=1 k22
# of questions O(n) O(n + k [logynl)
# of rounds O(l'log,nl) O(k [log,nT)

e If there Is no constraint for the number of
rounds, this tournament sort based top-k
scheme yields the optimal result

56



Top-k [Polychronopoulous-WebDB13]

e Top-k set algorithm
Top-k items are “better” than remaining items
Capture NO ranking among top-k items

K items
Tournament-based approach

e Can become a Top-k list algorithm

Eg, Top-k set algorithm, followed by [Marcus-
VLDB11] to sort k items

57
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Top-k [Polychronopoulous-WebDB13]

e Algorithm
Input: N items, integer k and s (ie, s > k)
Output: top-k set
Procedure:
O €& N items
While |O] > k
= Partition O into disjoint subsets of size s

= |dentify top-k items in each subset of size s: s-rank(s)
= Merge all top-k items into O

Return O

e More effective when s and k are small
Eg, s-rank(20) with k=10 may give poor accuracy



Top-k [PolychronopouIous-WebDBl3]

e Eg, N=10, s=4, k=2

59



60

Top-k [Polychronopoulous-WebDB13]

e s-rank(s)
// workers rank s items and aggregate
Input: s items, integer Kk (ie, s > k), w workers
Output: top-k items among s items

Procedure:

For each of w workers
= Rank s items = comparison-based sort [Marcus-VLDB11]

Merge w rankings of s items into a single ranking
« Use median-rank aggregation [Dwork-WWWO01]

Return top-k item from the merged ranking of s items



Top-k [Polychronopoulous-WebDB13]

e Eg, s-rank(): s=4, k=2, w=3

Median
Ranks

61



Top-k [Polychronopoulous-WebDB13]

e Comparison to Sort [Marcus-VLDB11]
300 items,k=5,s=10, batch size 10, 20% spam

¢ sort alg. (1303 HITs) —¢—

7 | sort alg., 5 workers per batch(6516 HITs) -

6 top-k alg. adaptive, (425-554 B
st -
O
gb 4 |
5 3
>
L2

1|

OU__ ——




Top-k [Polychronopoulous-WebDB13]

e Comparison to Max [Venetis-WWW12]

0.55

10000 items.k=1, s=10

0.54

0.45

Avera ge CIrror

-
&

015_

0.4 |
50.35,
031
30.25 |

0.1

4000

top-k, adaptive (default spam) _e_

max (default spam)

~ 0

6000 8000
Budget

1000«

63
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Part 2: Crowdsourced Algo. in DB

e Preliminaries
e Sort

e Select

e Count

o TOp-1

e JOINn «
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Join Operation

e |dentify matching records or entities within or
across tables

= similarity join, entity resolution (ER), record
linkage, de-duplication, ...

Beyond the exact matching

e [Chaudhuri-ICDEOG6] similarity join
R JOIN, S, where p=sim(R.A, S.A) >t
sim() can be implemented as UDFs in SQL

Often, the evaluation is expensive

DB applies UDF-based join predicate after Cartesian
product of R and S



Join Operation

e Examples
[Marcus-VLDB11] proposes 3 types of joins

[Wang-VLDB12] generates near-optimal
cluster-based HIT design to reduce join cost

‘Wang-SIGMOD13] reduces join cost further
oy exploiting transitivity among items
'Whang-VLDB13] selects right questions to
ask to crowds to improve join accuracy

[Gokhale-SIGMOD14] proposes the hands-off
crowdsourcing for join workflow

66



Join [Marcus-VLDB11]

e TojointablesR and S
e #1: Simple Join
e Pair-wise comparison HIT
e |R||S| HITs needed
e #2: Nailve Batching Join
e Repetition of #1 with a batch factor b
e |R||S|/b HITs needed
e #3: Smart Batching Join

e Showrand simages fromR and S
o Workers pair them up
e |R||S|/rs HITs needed

67



Join [Marcus-VLDB11]

Is the same celebrity in the image on the left and
the image on the right?

#1 Simple
Join

68



Join [Marcus-VLDB11]

Is the same celebrity in the image on the left and the image

on the right?

#2 Nalve
Batching
Join

> Yes o No
|

Batch

factor

=2




Join [Marcus-VLDB11]

70

Find pairs of images with the same celebrity

To select pairs, chick on an image on the left and an image on the right. Selected pairs will appear in the Matched Celebrities list on the lefi.

To magnify a picturc, hover your pointcrlxbcwc it.
To unselect a selected parr, click on the pgi

1f nonc of the cckebritics match, check the
I'here may be multiple matches per page.

"I r images
" fromR

le !Il
v pairs

Che

S images
from S

Matched Celebrities
To remove a pair added n error, click on the
palir in the list below.,

LS. raf

#3 Smart
Batching
Join
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Join [Marcus-VLDB11]

V/g/ RN J/Jf/ J/

Z/J////////ﬁﬂfé

7 |_|1

Z

o

MV. Majority Voting
QA: Quality Adjustment
Z

%

N’ | | | | |
- © © < & O
o o () o
Slamsuy Pa440) JO uonoeld

Smart

Naive 3 Naive5 Naive 10 Smart

Simple

3x3

2x2

True Positives (QA)

M True Positives (MV)
% True Negatives (MV)

True Negatives (QA)




Join [Marcus-VLDB11]

72

Latency (hrs)

O
u

=
o)

(WY

0

spent completing e

I Last 50% of wait time is
the last 5% of tasks

Simple Naive 10 Naive 5 Naive 3 Smart 3x3 Smart 2x2
Join Implementations

HW50%  95% H100%




Join [Wang-VLDB12]

e [Marcus-VLDB11] proposed two batch joins

More efficient smart batch join still generates
IR||S|/rs # of HITs

Eg, (10,000 X 10,000) / (20 x 20) = 250,000 HITs
-> Still too many !

e [Wang-VLDB12] contributes CrowdER:

A hybrid human-machine join
#1 machine-join prunes obvious non-matches

#2 human-join examines likely matching cases
= Eg, candidate pairs with high similarity scores

Algorithm to generate min # of HITs for step #2

73



Join [Wang-VLDB12]

e Hybrid idea: generate candidate pairs

using existing similarity measures (eg,

Jaccard)

ID || Product Name Price
ry || 1Pad Two 16GB WiFi White $490
) I 1Pad 2nd generation 16GB WiF1 White $469
73 || iPhone 4th generation White 16GB 9545
r4 || Apple iPhone 4 16GB White §520
s I Apple iPhone 3rd generation Black 16GB | $375
g I] 1Phone 4 32GB Whte $599
rr || Apple iPad2 16GB WiFi White $499
s || Apple iPod shuffie 2GB Blue 549

rg || Apple iPod shuffle USB Cable §19

0.3

(a) Remove the pairs whose
likelihood < 0.3

(rq, r2, 0.57)
(r4, ls, 050)
(ry, r7,0.43)
(ry, rs, 0.43)
(rg, r7,0.43)
(rg. g, 0.43)
(Q,rm(l38)
(ry, r7, 0.38)
(l'3, ls, 038)

(rs, rs,0.38) |

(ra.gs, 0,29)
(r1, ’0.25)

p—

(ry, ry) @YES
(rs, rg) OYES

ONO |
®NO

r;) ©YES
l:) ®YES

(ry,
(rs,

]

(rs, r;) OYES
(rs, rg) OYES

@®NO
©NO

(r2, r3) OYES
(2, f7) ®YES

©NO
ONO’]

rs) OYES
rs) OYES

(ra,
(ra,

@NO
@NO

(b) Generate HITs to verify
the pairs of records

™

ONO
ONO +__

|
/

s
/

"\

| (r )
‘___\(rh r7)
\.

(ra, rs)

/(fz, r7)

pairs

Main Issue: HIT Generation Problem

74

¢) Output matching



Join [Wang-VLDB12]

Pair-based HIT Generation
= Naive Batching in
[Marcus-VLDB11]

Cluster-based HIT Generation
= Smart Batching in
[Marcus-VLDB11]

75

Decide Whether Two Products Are the Same (Show Instructions)

Product Pair #1
Product Name Price
Pad Two 16GB WiFi1 White $400

iPad 2nd generation 16GB WiFi White | $469

Your Choice (Required)
© They are the same product
_ They are different products

Reasons for Your Choice (Optional)

Product Name Price
iPad 2nd generation 16GB WiFi White | $469
iPhone 4th generation White 16GB [ $545

Your Choice (Required)
' They are the same product
*) They are different products

Reasons for Your Choice (Optional)

.............................................

------------------------------------------

Submit (1 left)

Find Duplicate Products In the Table. (Show Instructions)

Tips: you can (1) SORT the table by clicking headers;
(2) MOVE a row by dragging and dropping it

Label Product Name Price
1 'v|  |iPad 2nd generation 16GB WiFi White $469
1 |w|  |tPad Two 16GB WiFi White $490
_3 PPhone 4th generation White 16GB §545

Reasons for Your Answers (Optional)

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Submit (1 left)




76

Join [Wang-VLDB12]

e HIT Generation Problem

Input: pairs of records P, # of records in HIT k

Output: minimum # of HITs s.t.
All HITs have at most k records
Each pair (p;, p;) € P must be in at least one HIT

1. Pair-based HIT Generation

Trivial: P/k # of HITs s.t. each HIT contains k pairs
In P

2. Cluster-based HIT Generation
NP-hard problem - approximation solution



Join [Wang-VLDB12]

\_[[ Product Name

Pad Two 16GB Wi White $490
1Pad Ind generation 16GB WiF1 White | $469
1Phone 4th generation White 16GB §o45
Apple iPhone 4 16GB White $20
Apple iPhone rd generation Black 16GB | $375
1Phone 4 3JGB White §209
Apple 1Pad2 16GB WiFi White $40
Apple iPod shuffle 2GB Blue $49
Apple iPod shuffle USB Cable 319

-

(ry, r2, 0.57)
(rs, rs, 0.50)
(f1, 7, 043)
(ry, re, 0.43)
(h. rz, 043)
(rg, rg, 0.43)
(ra, 3, 038)
(ry, r7,0.38)
(ry, rs, 0.38)
(rg, rs, 0.38)

=~
[
AN

This is the minimal # of cluster-based HITs
satisfying previous two conditions

Cluster-based
HIT #1

Fy, Moy I3y 17

Cluster-based
HIT #2

I3, M4 I'sy I'g

Cluster-based
HIT #3

Fgs V7, Tgi g

1



Join [Wang-VLDB12]

e Two-tiered Greedy Algorithm
Build a graph G from pairs of records in P

CC < connected components in G
LCC: large CC with more than k nodes
SCC: small CC with no more than k nodes

Step 1: Partition LCC into SCCs

Step 2: Pack SCCs into HITs with k nodes
Integer programming based

78



Join [Wang-VLDB12]

e Eg, Generate cluster-based HITs (k = 4)
1. Partition the LCC into 3 SCCs

o {ry, Iy, gy 7} {3, T4 s, e} {140 17}

2. Pack SCCs into HITs
o Asingle HIT per {r, r,, r5, r;} and {rs, r,, s, I}
o Pack {r,, r-} and {rg, ro} into a HIT

(ry, r2)
(ra, r'e)
(r1, r7)
(r3v r4)
(rs, r7)
(r81 rg)
(r2, r3)
(r2, r7) _
(rs, rs) G ) T— r\'
(s, fs)




Join [Wang-VLDB12]

e Step 1: Partition
Input: LCC, k Output: SCCs
max € NOde in LCC with the max degree
SCC € {Tmand
conn < nodes in LCC directly connected to r
while |scc| < k and |conn| >0

[, € NOde in conn with max indegree (# of edges to
scc) and min outdegree (# of edges to non-scc) if tie

move r,,, from conn to scc
update conn using new scc

add scc into SCC

max

80



Join [Wang-VLDB12]

81



Join [Wang-VLDB12]

ry—\2—3—\s
(1,2) (LI)

(b) conn = {rs, rs, s, r7} (c) conn = {rs, rs, 17}
Add rg into scc Add rs mto Scc

70 N

(d) conn = {r3, ry}
Add rs into Scc

(e) Output scc (f) Output other scc




Number of HITs (*1 ()3)
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Join [Wang-VLDB12]

10 — | 1 I X 40 I | |
- Random —<— — : Random ES==
8 | DES-based —&8— 4 % : DEFS-based &=xzzzzs
BFS-based ——— ~ 30 F BFS-based
¢ L Approximation —e— 1 : Approximation C—]
Two-tiered -------- T . Two-tiered IE—
i 20 F
— o
4 1 © .
O il
o N ‘ E C
R~ { 5 E
0 . | 2 W) E

0.5 0.4 0.3 0.2 0.1 & A
Likelihood Threshold Cluster-size Threshold
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Join [Wang-SIGMOD13]

e Use the same hybrid machine-human
framework as [Wang-VLDB12]

e Aim to reduce # of HITs further

e Exploit transitivity among records

Scissors Paper
cut paper - b

Stone
blunts
scissors L

http://blogs.oc.edu/ece/transitivity/



Join [Wang-SIGMOD13]

e Positive transitive relation
If a=b, and b=c, then a=c

. iPad 2" Gen = iPad Two

iPad 2" Gen = iPad 2
iPad Two = iPad 2

_________________________________

e Negative transitive relation
Ifa=Db,b#c,thena#c

_________________________________

iPad 2" Gen = iPad Two
| iPad 2" Gen # iPad 3
iPad Two # iPad 3

_________________________________
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e Three transitive relations

o If there exists a path from o to o’ which only
consists of matching pairs, then (o, 0’) can be
deduced as a matching pair

o If there exists a path from o to o’ which only
contains a single non-matching pair, then (o, 0’)
can be deduced as a non-matching pair

e If any path from o to 0’ contains more than one
non-matching pairs, (0, 0’) cannot be deduced.
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(03, 0Oc) = match
(0g, 05) = non-match

(0, 07) 2 7
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e Given a pair (0;, 0;), to check the transitivity
Enumerate path from o; to o, > exponential !
Count # of non-matching pairs in each path

e Solution: Build a cluster graph

Merge matching pairs to a cluster
Add inter-cluster edge for non-matching pairs

(Og, Og) 2 ?

(01, 05) 2 7

7/
—————————————— -
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e Problem Definition:

e Given a set of pairs that need to be labeled,
minimize the # of pairs requested to crowd
workers based on transitive relations

ID Object ‘ ID | Object Pairs |Likelihood \
01 | iPhone 2nd Gen

0)) iPhone Two

O3 iPhone 2

Oy iPad Two

Osg iPad 2

O¢ iPad 3rd Gen Pe (04 : 06) 0.48

P7 (02,04) 0.45
Ps | (05,00 | 0.42

89



90

Join [Wang-SIGMOD13]

e Labeling order matters !

(01, 05), (04, Og), (05, O)

VS.

(01, 0g), (05, Og), (04, O,)

=» Given a set of pairs to label, how to order
them affects the # of pairs to deduce using the
transitivity
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e Theorem: Optimal labeling order

W = <Py1s -5 Picxs Pis Pis1y -+ Pp”
W' = <Py, ..oy Pigs Pivs Pis -5 P>
If p; IS @ matching pair and p;,, IS @ non-matching
pair, then C(w) < C(w’)
C(w): # of crowdsourced pairs required for w
e That Is, always better to first label a matching
pair and then a non-matching pair

e In reality, optimal label order cannot be
achieved
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e Expected optimal labeling order

W= <p1/ p2/ *ee) pn>
C(w) = # of crowdsourced pairs required for w

E|C(w)] = Z P(p; = crowdsourced)

=1

P(p; = crowdsourced)

Enumerate all possible labels of <p,, p,, ..., p;.;>,
and for each possibility, derive whether p; IS
crowdsourced or not

Sum of the probability of each possibility that
whether p; IS crowdsourced
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e Expected optimal labeling order

Probability
of matching

W1 = <p1/ p2/ p3>

E[C(w,)]=1+1+0.05=2.05
P,: P(P,= crowdsourced) = 1

P,: P(P,= crowdsourced) = 1

P,: P(P,= crowdsourced) = P(both P, and P, are non-
matching) = (1-0.9)(1-0.5) = 0.05

P, 09
P, 05
P, 0.1

Expected value

Wy - <Py, P2, P> 2.05
W, = <Py, P3; P2~ 2.09
W3- <Py, P3, P1~ 2.45
W, = <Py, P1, P3~ 2.05
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e Theorem: Expected optimal labeling order

e Label the pairs in the decreasing order of
the probability that they are a matching

pair
® Egl pl) p21 p31 p4r p5) p6) p71 p8
p3 ID Object Pairs |Likelihood | High
O¢

N Ps P1 (02, 03) 0.85 A

P2 (01, 02) .75

Ps Ps (01, 06) Q.72

D Pa (0., 03) 0.65

p Ps (04, 05) 0.55

’ Po | (04,00 | 0.48

o Pz (02 5 04) 0.45

E[C(w)] = Z P(p; = crowdsourced) [ Ps | (0s,00) | 042

1=1
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e TWoO data sets
o Paper: 997 (author, title, venue, date, and pages)
e Product: 1081 product (abt.com), 1092 product

(buy.com)
| | | | | | | | | | | |
2 % 1000 E E
Q L
7 @
- s
U O 100 E .
2 2 10k .
= = F 5
= =
Z Z
10 - | El l I L I =
[ 10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6
Cluster Size Cluster Size

(a) Paper (b) Product
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e Transitivity

# of Crowdsourced Pairs

160k
140k
120k
100k
80k
60k
40k
20k

| | |
Transitive —e—
Non-Transitive —8—

$ ‘=ﬁ—

&
0.5

04 @3 02
Likelihood Threshold

(a) Paper

0.1

# of Crowdsourced Pairs

40k
35k
30k
25k
20k
[5k
10k
5k
0

| | |
Transitive —e—
Non-Transitive —8—

0.5

0.4 0.3 0.2
Likelihood Threshold

(b) Product

0.1
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Machine vs. Human

e Human-Powered Crowdsourcing =2 “Human-
in-the-loop” Crowdsourcing

e Should use machine to process majority of big
data

e Should use human to process a small fraction of
challenging cases in big data
e How to split tasks and combine results for
machines and human automatically is an
open issue

http://www.theoddblog.us/2014/
02/21/damienwaltershumanloop/
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Conclusion

e New opportunities
e Open-world assumption
e Non-deterministic algorithmic behavior
e Trade-off among cost, latency, and accuracy

e Crowdsourcing for Big Data?
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