Introdução

- A interpolação é outra técnicas bem conhecida e básica do cálculo numérico.
- Muitas funções são conhecidas apenas em um conjunto finito e discreto de pontos de um intervalo [a,b]. A tabela abaixo, por exemplo, informa o número de carros que passam por um determinado pedágio em um determinado dia.

X	X ₁	X ₂	X ₃	X_4	X ₅	X ₆
Horário	10:00	11:00	12:00	13:00	14:00	15:00
Número (em mil)	2,69	1,64	1,09	1,04	1,49	2,44

Cl202 - Métodos Numéricos

Introdução

- A partir desses dados suponhamos que se queira calcular:
 - o número de carros que passariam pelo pedágio às 11:30.
- A interpolação tem o objetivo de ajudar na resolução deste tipo de problema.
- E também pode ser aplicada sobre um conjunto de valores obtidos através de experimentos.

- Interpolar uma função f(x) consiste em aproximar essa função por uma outra função g(x).
- g(x) é escolhida entre uma classe de funções definidas a priori e que satisfaçam algumas propriedades.
- A função g(x) é então usada em substituição à função f(x).

Introdução

- A necessidade de se efetuar esta substituição surge em várias situações, como por exemplo:
 - Quando são conhecidos somente os valores numéricos da função por um conjunto de pontos (não dispondo de sua forma analítica) e é necessário calcular o valor da função em um ponto não tabelado (exemplo anterior).

Introdução

- Quando a função em estudo tem uma expressão tal que operações como a diferenciação e a integração são difíceis ou impossíveis de serem realizadas.
- Neste caso, podemos procurar uma outra função que seja uma aproximação da função dada e cujo manuseio seja bem mais simples.

- As funções que substituem as funções dadas podem ser de tipos variados, tais como:
 - polinomiais;
 - trigonométricas;
 - exponenciais;
 - logarítmicas.
- Porém, será considerado apenas o estudo das funções polinomiais.

Seja a função y = f(x), dada pela tabela 1. Deseja-se determinar $f(\ddot{X})$, sendo:

• a)
$$\ddot{X} \in (x_0, x_6)$$
 e $\ddot{X} \neq x_i, i = 0, 1, ..., 6$

•b)
$$\ddot{X} \notin (x_0, x_6)$$

- Para resolver (a) tem-se que fazer uma interpolação.
- Sendo assim, determina-se o polinômio interpolador, que é uma função tabelada.
- Porém, para resolver (b), deve-se realizar uma extrapolação.

Cl202 - Métodos Numéricos

Conceito de Interpolação

- Consideremos (n+1) pontos distintos: x₀, x₁, ..., x_n chamados *nós da interpolação*, e os valores de f(x)nesses pontos: $f(x_0)$, $f(x_1)$, ..., $f(x_n)$.
- Uma forma de interpolação de f(x) consiste em se obter uma determinada função g(x) tal que:

$$g(x_0) = f(x_0)$$

$$g(x_1) = f(x_1)$$

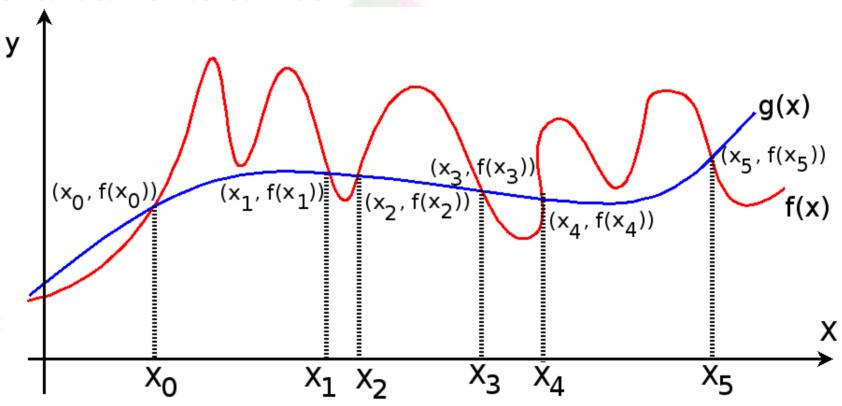
$$g(x_2) = f(x_2)$$

$$\vdots$$

$$g(x_n) = f(x_n)$$

Conceito de Interpolação

• Graficamente temos:



Interpretação geométrica para n = 5

- Interpolação Linear
 - Obtenção da fórmula
 - Dados dois pontos distintos de uma função y = f(x): (x₀,y₀) e (x₁,y₁), deseja-se calcular o valor de ȳ para um determinado valor de X̄ entre x₀ e x₁, usando a interpolação polinomial.
 - O polinômio interpolador é uma unidade menor que o número de pontos conhecidos.
 - Assim, o polinômio interpolador nesse caso terá grau 1, isto é:

$$P_1(x) = a_1 x + a_0$$

- Interpolação Linear
 - Obtenção da fórmula
 - Para determinar este polinômio, os coeficientes a e a devem ser calculados de forma que se tenha:

•
$$P_1(x_0) = f(x_0) = y_0$$
 e $P_1(x_1) = f(x_1) = y_1$

Ou seja, basta resolver o sistema linear abaixo:

$$a_1 x_0 + a_0 = y_0$$

$$a_1 x_1 + a_0 = y_1$$

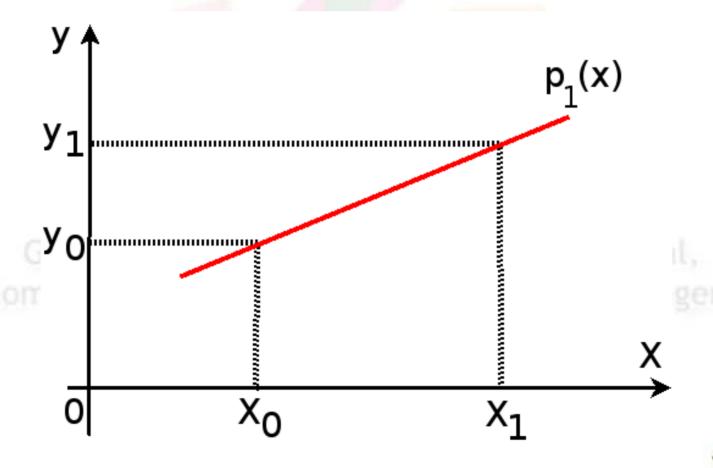
• $a_1x_1 + a_0 = y_1$ onde a_1ea_0 são as incógtas e

$$A = \begin{bmatrix} x_0 & 1 \\ x_1 & 1 \end{bmatrix}$$
 é a matriz dos coeficientes.

- Interpolação Linear
 - Obtenção da fórmula
 - O determinante da matriz A é diferente de zero, sempre que $x_0 \neq x_1$, logo para pontos distintos o sistema tem solução única.
 - O polinômior interpolador $P_1(x) = a_1x + a_0$ tem como imagem geométrica uma reta, portanto a função f(x) está sendo aproximada por uma reta que passa pelos pontos conhecidos (x_0, y_0) e (x_1, y_1) .

Interpolação Linear

• O gráfico abaixo, mostra geometricamente, os dois pontos (x_0, y_0) e (x_1, y_1) , e a reta que passa por eles.



• Exemplo – Seja a função y = f(x) definida pelos pontos da tabela baixo. Determinar o valor de f(15).

$$P_1(15) = 341$$

Interpolação Linear

Exercício – Na fabricação de determinadas cerâmicas é muito importante saber as condições de temperatura em que o produto foi assado no forno. Como não é possível medir a temperatura do forno a todo instante, ela é medida em intervalos periódicos de tempo e esses dados são interpolados para o instante em que cada peça foi "queimada" a fim de se conhecer a temperatura do forno nesse instante. Em um dia de funcionamento do forno, os seguintes dados foram coletados:

Horário	10:00	13:00	16:00	19:00
Temperatura (10 ² °C)	2,51	2,63	2,55	2,41

Estime a temperatura do forno ás 14:30.

- Interpolação Quadrática
 - Obtenção da fórmula
 - Se conhecermos três pontos distintos de uma função, então o polinômio interpolador será:

$$P_2(x) = a_2 x^2 + a_1 x + a_0$$

- O polinômio P₂(x) é conhecido como função quadrática cuja imagem geométrica é uma parábola.
- Portanto, a função f(x) é aproximada por uma parábola que passa pelos três pontos conhecidos (x_0,y_0) , (x_1,y_1) e (x_2,y_2) .

- Interpolação Quadrática
 - Obtenção da fórmula
 - Para determinar os valores de a₀ ,a₁ e a₂ é necessário resolver o sistema:

$$a_2 x_0^2 + a_1 x_0 + a_0 = y_0$$

$$a_2 x_1^2 + a_1 x_1 + a_0 = y_1$$

$$a_2 X_2^2 + a_1 X_2 + a_0 = y_2$$

onde a_1, a_0 e a_2 são as incógnitas e os pontos $(x_0, y_0), (x_1, y_1)$ e (x_2, y_2) são conhecidos.

- Interpolação Quadrática
 - Obtenção da fórmula
 - A matriz dos coeficientes é:

$$A = \begin{bmatrix} x_0^2 & x_0 & 1 \\ x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \end{bmatrix}$$

 Como os pontos são distintos, então o sistema terá solução única.

 Exemplo – A velocidade do som na água varia com a temperatura de acordo com a tabela abaixo:

X _i	X ₁	X ₂	X ₃	X ₄	X ₅
Temperatura (°C)	86,0	93,3	98,9	104,4	110,0
Velocidade (m/s)	1552	1548	1544	1538	1532
Tabela 4					

 Pretende-se estimar a velocidade do som na água a uma temperatura de 100 °C, com quatro casas decimais com arredondamento.

$$P_2(100) = 1542,9645$$

Interpolação Quadrática

 Exercício – A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio. A partir de uma experiência registaram-se os seguintes valores:

	X ₁	X ₂	X ₃	X ₄
Diâmetro	1,5	2,0	3,0	4,0
f(x _i)	4,9	3,3	2,0	1,5
Tabela 5	are Pi	ocess	amen	to de l

 Estime a resistência de um fio com o diâmetro de 2,7, com quatro casas decimais com arredondamento.

CI202 - Métodos Numéricos

Interpolação de Lagrange

 As interpolações vistas anteriormente são casos particulares da interpolação de Lagrange. Vamos estudar agora o polinômio interpolador de grau menor ou igual a n, sendo dados n + 1 pontos distintos.

- Interpolação de Lagrange
 - Teorema: Sejam(x_i,y_i), i = 0, 1, 2, ..., n, n+1 pontos distintos, isto é, x_i ≠ x_j para i ≠ j. Existe um único polinômio P(x) de grau menor ou igual a n, tal que P(x_i) = y_i, para todo i.
 - O polinômio P(x) pode ser escrito na forma:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$\mathbf{OU} \quad P_n(x) = \sum_{i=0}^n a_i x^i$$

Interpolação de Lagrange

- P(x) é, no máximo, de grau n, se a_n ≠ 0 e, para determiná-lo, deve-se conhecer os valores de a₀, a₁, ..., a_n. Como P_n(x) contém os pontos (x_i,y_i), i = 0, 1, ..., n, pode-se escrever que P_n(x_i) = y_i.
- Então temos que:

$$a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

•••••

$$a_0 + a_1 x_n + a_2 x_n^2 + ... + a_n x_n^n = y_n$$

- Interpolação de Lagrange
 - Resolvendo o sistema, determina-se o polinômio P_n(x). Para provar que tal polinômio é único, basta que se mostre que o determinante da matriz A, dos coeficientes das incógnitas do sistema, é diferente de zero. A matriz A é:

$$A = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

Interpolação de Lagrange

 Mas o determinante da matriz A é conhecido como determinante das potências ou de Vandermonde e, da Álgebra Linear, sabe-se que seu valor é dado por:

$$det(A) = \prod_{i>j} (x_i - x_j)$$

- Como $x_i \neq x_j$ para $i \neq j$, vem que $det(A) \neq 0$.
- Logo, P(x) é único.

Interpolação de Lagrange

Exemplo: Sejam os valores: x₀ = 5, x₁ = 3, x₂ = 2 e
 x₃ = 4 (elementos característicos).

$$\prod_{i>j} (x_i - x_j) = (x_1 - x_0)(x_2 - x_0)(x_2 - x_1)(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)$$

$$\prod_{i>j} (x_i - x_j) = (-2)(-3)(-1)(-1)(1)(2) = 12$$

Este valor é igual ao determinante da matriz:

- Interpolação de Lagrange
 - Obtenção da fórmula
 - Sejam $x_0, x_1, x_2, ..., x_n, (n + 1)$ pontos distintos e $y_i = f(x_i)$, i = 0, 1, ..., n.
 - Seja P_n(x) o polinômio de grau ≤ n que interpola f em x₀, ..., x_n.
 - Podemos representar P_n(x) na forma:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$$

onde os polinômios $L_k(x)$ são de grau n.

- Obtenção da fórmula
 - Para cada i, queremos que a condição P_n(x) = y_i seja satisfeita, ou seja:

$$P_n(x_i) = y_0 L_0(x_i) + y_1 L_1(x_i) + ... + y_n L_n(x_i) = y_i$$

 A forma mais simples de se satisfazer esta condição é impor:

$$L_k(x_i) = \begin{cases} 0 & se & k \neq i \\ 1 & se & k = 1 \end{cases}$$

- Interpolação de Lagrange
 - Obtenção da fórmula
 - E para isso, definimos $L_{k}(x)$ por:

$$L_{k} = \frac{(x - x_{0})(x - x_{1})...(x - x_{k-1})(x - x_{k+1})...(x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1})...(x_{k} - x_{k-1})(x_{k} - x_{k+1})...(x_{k} - x_{n})}$$

Como o numerador de L_k(x) é um produto de n fatores da forma: (x - x_i), i = 0, 1, 2, ..., n, i ≠ k, então L_k(x) é um polinômio de grau n e, assim, P_n(x) é um polinômio de grau menor ou igual a n.

- Interpolação de Lagrange
 - Obtenção da fórmula
 - Além disso, para $x = x_i$, i = 0, ..., n temos:

$$P_n(x_i) = \sum_{k=0}^{n} y_k L_k(x_i) = y_i L_i(x_i) = y_i$$

 Então, a interpolação de Lagrange para o polinômio interpolador é:

$$P_{n}(x) = \sum_{k=0}^{n} y_{k} L_{k}(x), onde L_{k}(x) = \prod_{j=0, j \neq k}^{n} \frac{(x - x_{j})}{(x_{k} - x_{j})}$$

Interpolação de Lagrange

Fórmula da interpolação lagrangeana:

$$P_{n}(x) = \sum_{k=0}^{n} \left[y_{k} \prod_{j=0, j \neq k}^{n} \frac{(x - x_{j})}{(x_{k} - x_{j})} \right]$$

Grupo de Pesquisa em Visão Computacional, Computação Gráfica e Processamento de Imagen:

Interpolação de Lagrange

 Exemplo – A velocidade do som na água varia com a temperatura de acordo com a tabela abaixo:

X _i	X ₁	X_2	X ₃	X_4	X ₅
Temperatura (°C)	86,0	93,3	98,9	104,4	110,0
Velocidade (m/s)	1552	1548	1544	1538	1532
Tabela 6	sa em	Visão	Comp	utacio	nal,

 Pretende-se estimar a velocidade do som na água a uma temperatura de 100 °C, utilizando para tal 3 pontos.