Traditional LAN Booting / OpenSLX Project

DAAD Summer School: Aspects of Large Scale
 High Speed Computing
 21st March 2011

Dr. Dirk von Suchodoletz, Sebastian Schmelzer, Michael Janczyk Faculty of Engineering, University Freiburg

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Albert-Ludwigs-Universität Freiburg

- Introduction / Motivation, why virtualize?
- Administrative and economic advantages
- History and main ideas
- Distinguish full, hardware assisted, para virtualization and tools using it, partitioning, emulation
- Practical application: Running Windows without pain in flexible lecture pools
- Classic server consolidation: Experiences and further usage scenarios
- Virtualization for preservation of complex digital objects

Overview of this Lecture

Albert-Ludwigs-Universität Freiburg

. . .

- Introduction
- Different Concepts of Operation
- Project Idea OpenSLX
- Getting started Tools to use for basic and advanced setups

Structure: LAN Booting Linux

Albert-Ludwigs-Universität Freiburg

Different Concepts of Operation Project Idea OpenSLX

Traditional LAN Boot

Albert-Ludwigs-Universität Freiburg

- INI
- Booting machines via PXE over Ethernet LAN connections
 - DHCP to provide basic IP setup
 - Next-Server and filename statements to provide information to load next stage bootloader via the net
 - Different variants possible PXE/SysLinux the most common combination
- Boot conceptually does not differ much from traditional kernel and InitRamFS load of a modern Linux system
 - InitRamFS loads all necessary components to enable rootfilesystem the system later runs off
 - Easiest setup: Root filesystem via NFS, later experiments could use NBD/SquashFS

Albert-Ludwigs-Universität Freiburg

- To generalize the stateless Linux setups OpenSLX project created
- Project focuses on Linux deployment in large setups
 - Active for a couple of years since end of 1990th
 - Developed mainly at Freiburg University
 - Deployed at some universities and public highschools in Germany
- Technologically based on the typical ingredients for diskless Linux systems

Albert-Ludwigs-Universität Freiburg

- FREIBURG
- Idea: Stateless clients offer all the functionality a user can expect
 - Exclusive CPU, direct and fast 3D/video output, direct hardware access to CD/DVS, for audio and periphery connectors
 - No restrictions regarding local USB, IEEE1394 devices
 - Easy deployment of virtual machines, like VirtualBox, VMware, QEMU/KVM as introduced in second lecture
- Standard Linux Workstation without a fixed disk installation of the the Operating System
- Abstraction layer for using standard Linux Distributions

Albert-Ludwigs-Universität Freiburg

- Different to projects like X2GO, LTSP, ThinStation, ...
 - Not a terminalserver but a full desktop/node setup
 - Complete stateless client with all tools and services for a workstation or cluster node

Albert-Ludwigs-Universität Freiburg

• PXE

- Requires properly configured pointer from DHCP to TFTP
- Difficult
 - If no PXE available on the client hardware and no PXE alternatives could be installed (too cheap, other architecture)
 - If subnet DHCP could not be reconfigured, offers no TFTP
 - Non-standard LAN media like WLAN, USB Ethernet, ...
- Mentioned projects handle typical LAN setups for large pools
- → OpenSLX offers with the introduction of it's PreBoot environment more generic boot options (other boot methods available – presented, experiments in 4th lecture)

Albert-Ludwigs-Universität Freiburg

- Provide standardized Linux Desktops Workdesk for students, employees, ...
- Flexible proprietary desktop environments untie software from hardware and run it on-demand easily in floating manner using virtualization
- Automatic maintenance and backup reboot normal desktop machines for malware checking and backup independent of the standard OS running
- Fast switch between day and night mode use optimal software configuration for comfortable desktop and number crunshing

OpenSLX Use-Cases

Albert-Ludwigs-Universität Freiburg

FREIBURG

- Easy distributed software testing every potential user simply reboots his/her machine to check new versions or applications in an additional setup
- Secure home banking terminal (TPM secured boot)
- Of course the standard terminal server features available too

- RDP, Citrix, XDMCP, ...

OpenSLX Implementation

Albert-Ludwigs-Universität Freiburg

- OpenSLX tools prepare the Linux distributions for export and deal with the setup of the clients
- Two major areas of action
 - Perl utilities for the interactive administration tasks on the server
 - Shell scripts for the automatic client setup
- Framework is meant to accommodate a larger number of different Linux variants and versions to boot with different options for the rootfilesystem

OpenSLX Implementation

Albert-Ludwigs-Universität Freiburg

BURG

The OpenSLX Software

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

- Structured by defining stages
 - PreBoot is a special stage to circumvent PXE/TFTP and boot media restrictions (discussed in fourth lecture)
 - Stage 1 is the base installation/preparation of a distribution to be exported in stage 2

The OpenSLX Software

Albert-Ludwigs-Universität Freiburg

- Structured by defining stages
 - Stage 1 allows for additional packages the OpenSLX plugins could be installed
 - Stage 2 defines (different) filesystem exports of Linux distributions mounted commonly by the clients
 - Stage 3 is the major client setup phase running within Initial RamFS preparing the root filesystem and configuration
 - Stage 4 is the client machine running the target Linux distribution allowing users to login graphically or running jobs of different types

Structure: OpenSLX

Albert-Ludwigs-Universität Freiburg

Getting Started

OpenSLX – Getting Started

Albert-Ludwigs-Universität Freiburg

INI

- After installation of the toolset Linux distributions are to ^{>□} be prepared for later export, remember:
 - Challenge generic filesystem mounted by a large number of different stateless clients read-only (hardware-, software-wise)
 - No per-client configuration possible at this level
- Several Linux distributions available for OpenSLX export depending on OpenSLX version
 - Ubuntu (8.04 ... 10.10), SuSE (11.2,3) well supported
 - Debian, Scientific Linux, Gentoo in several stages of development

OpenSLX – Getting Started

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

- **Stage 1** actions to be run initially and for updates by the administrator on the server or preparation machine
 - Staging and file servers could be hosted on different machines
 - Staging servers do not need to be a power horse and run 24/7
 - File server should be able to serve the required number of clients (remember discussion in first lecture)

OpenSLX – Getting Started

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

- Setting up Stage 1 preparing the Vendor OS (third party stuff)
 - slxos-setup two possible methods implemented
 - Cloning a running system with the configured distribution which should be deployed
 - Source system named as stage 0 in OpenSLX wording (we use virtual machines for it) installed rsync/ssh required
 - Easy to prepare, adapt to your needs on a running system
 - slxos-plugin to extend the base setup

OpenSLX – Prepare Exports

Albert-Ludwigs-Universität Freiburg

 Stage 2 prepares the actual exports (called Systems as² they later run on the clients)

- **slxos-exports** can produce different types
 - Classic NFS export
 - Producing SquashFS container file to be exported by Network Block Device (like NBD, DST, DNBD(2), ...)
- Yes lots of files are duplicated, but
 - Disk space is not really an issue nowadays
 - Unavoidable to prepare exports using SquashFS
 - Avoids problems generated by working on NFS exports

OpenSLX – Prepare Exports

Albert-Ludwigs-Universität Freiburg

- Tools add Vendor-OS and Systems to a configuration database
 - Accessed by slxconfig tool
 - Takes the several configuration options of them, e.g. plugins installed
 - Could define client options

Client Configuration

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

- General setups for all clients (like authentication and user home sources) is normally done within the exported filesystem
- Several entry points for configuration
 - Using the database possible for options made available by the base system and plugins
 - Switching off plugins
 - Defining different variable sets

Client Configuration

Albert-Ludwigs-Universität Freiburg

- Often not enough more flexibility and additional configuration required
 - thus additional list of files could be added to stage 4 filesystem
 - Per system and per client
 - Scripts for execution during (tool restricted) stage 3
 - Files to be copied to /etc, /var ...
 - Specific configuration directory for these files

Boot: InitRamFS – Configuration Phase

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

- Configuration of OpenSLX clients during every boot within InitRamFS – should be fast and efficient

 Remember first lecture: persistent storage is not desirable as adding overhead
- Provided bootscripts and the user land environment

 Distribution independent mini environment, using
 eglibc and busybox well known from embedded
 environments

Boot: InitRamFS – Configuration Phase

Albert-Ludwigs-Universität Freiburg

- Shell script init handling everything within InitRamFS
 - Loading of network adaptor module
 - IP configuration and mounting of the root filesystem via NFS or SquashFS NBD (DNBD2, ...)
 - Making all or parts of the later stage 4 root filesystem writeable (AUFS, UnionFS, COWloop or bind mounts)
 - Hardware autodetection and module loading
 - Distro specific configuration of software (servconfig script, client config via several methods)

Boot: InitRamFS – Configuration Phase

Albert-Ludwigs-Universität Freiburg

[x] Referenz-Client zum NW-Boot (1GB Ram)	
Remote Console Devices	
I 2.4884061 Write protecting the kernel read-only data: 1532k Debug shell started on second console (tty2) Sysloyd started on third console (tty3) Setting debuglevel to 3 Starting udhcpc for IP configuration udhcpc (v1.14.1) started Sending discover Sending select for 132.230.4.50 Lease of 132.230.4.50 obtained, lease time 1800 Letter cetal download of "client config whentu-9.04-clone::sfc/01-00-0c-29-ba-fc-0a teg" from "132.230.4.4" faile	
Ittp_get1 download of "Crient-Config/ubuntu-9.04-Clone::nfs/default.tgz" from "132.230.4.4" successful modprobe: module ide-cd not found modprobe: module sd_mod not found modprobe: module isr_mod not found modprobe: module ide-floppy not found modprobe: module ide-floppy not found Using AUFS for rw access on envoy occured during execution of cinit comint:	24
You decided not to recreate /etc/ld.so.cache file. That might cause errors if libraries are installed after this file was created on server. -> This error is not fatal - continuing	
Waiting for serveconfig to finish Bunning plugin starter /etc/plugin-init.d/30_bootsplash.sh ok Bunning plugin starter /etc/plugin-init.d/40_desktop.sh ok Bunning plugin starter /etc/plugin-init.d/50_kiosk.sh ok Bunning plugin starter /etc/plugin-init.d/50_syslog.sh ok Bunning plugin starter /etc/plugin-init.d/50_unchooser.sh ok Bunning plugin starter /etc/plugin-init.d/70_genukun.sh ok Bunning plugin starter /etc/plugin-init.d/70_genukun.sh ok	
Running plugin starter /etc/plugin-init.d/70_x11unc.sh ok Running plugin starter /etc/plugin-init.d/80_xserver.sh ok Running plugin starter /etc/plugin-init.d/82_profile.sh ok boot-runlevelscript mountkernfs.sh boot-runlevelscript mountdevsubfs.sh boot-runlevelscript keyboard-setup boot-runlevelscript procps boot-runlevelscript procps	
boot-runlevelscript bootroga boot-runlevelscript sudo boot-runlevelscript console-setup boot-runlevelscript udev boot-runlevelscript boot.slx Running script /bin/postinit.local ok DEBUGLEVEL>2: starting debug-shell, exit with CTRL+D	
To grab input, press Ctrl+G	_ © 🔂 💊 🕅

- Plugin setup
- At the end: switch_root into stage 4

JRG

2

Stage 4 – Booted OpenSLX Client

Albert-Ludwigs-Universität Freiburg

27

Structure: PXE Boot Menu

Albert-Ludwigs-Universität Freiburg

Configuring PXElinux

Boot: PXE Menu

Albert-Ludwigs-Universität Freiburg

- Using HPAs PXElinux suite – Really flexible:
 - Basic boot prompt (or just booting)
 - Offer sub menus, even on different TFTP servers
 - Standard menu
 - VGA menu
 - Add options like local boot, APM power off, installation of other OS via network

Boot: PXE Menu

Albert-Ludwigs-Universität Freiburg

Linux OpenSUSE 11.0 mit einem breiten Angebot an Software. Wahlweise können auch über UMware Player diverse Windows-XP-Images gestartet werden.

Practical Part

Albert-Ludwigs-Universität Freiburg

- Short break, then continue with
 - Network boot demonstration
 - DHCP configuration
 - TFTP setup
 - Simple PXE boot
 - More complex PXE menu setups

— ...

- Last lecture, Thursday
 - Double lecture starting 2pm again in Computer Lab #4
- Further practical part
 - Providing root filesystem via NFS or SquashFS on NBD
 - Demonstration of advanced booting via PreBoot environment
 - Configuring, extending PreBoot