Machine Virtualization for Better Hardware Utilization and Efficient Resource Management (first part)

DAAD Summer School: Aspects of Large Scale High Speed Computing
17th March 2011

Dr. Dirk von Suchodoletz Faculty of Engineering, University Freiburg

Last Lecture / Recap

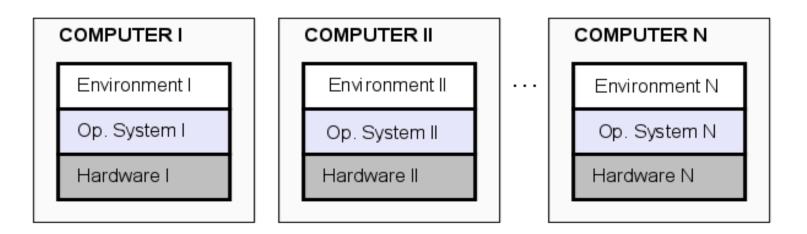
- FREIBUR
- Motivation, concept and ideas of Stateless Booting
- Client and server sides in network booting
- Network planning and network boot protocols
- Client side root filesystem, options and challenges for read-write configuration and runtime data
- Overview on system monitoring challenges and solutions

Plan for this Lecture

Albert-Ludwigs-Universität Freiburg

- Introduction to the topic: Motivation, why virtualize?
- Administrative and economic advantages
- Talk of history and main ideas
- Distinguish full, hardware assisted, para virtualization and tools using it, partitioning, emulation
- Practical application: Running Windows without pain
- Flexible Lecture Pools, server consolidation
- Experiences and other usage scenarios
- Digital preservation

Structure: Motivation


Albert-Ludwigs-Universität Freiburg

Why Virtualize? Advantages of Cloud Computing

- Economic and administrative driving forces
 - Consolidation of server installations
 - Many companies and organizations want to reduce the number of servers installed, less different hardware to manage
 - Traditional paradigm: One service one server

- Economic and administrative driving forces
 - Avoiding conflicts (software versions, conflicting applications)
 - Energy and resource savings
 - Most server hardware is under-utilized and typically runs on low load (DHCP, DNS, MS AD, ...)
 - Servers capacity calculated for peak usage
 - Installed number of servers much greater than compute power needed
 - Concerns with rack + floor space and energy consumption (systems plus cooling)

Albert-Ludwigs-Universität Freiburg

- Economic and administrative driving forces (cont.)
 - Protection
 - Commercial virtualization often coupled with (low-cost) SAN solutions offering better reliability than average server disk installations
 - Cost and complexity of implementing disaster recovery is reduced
 - Image deployment and creation of snapshots on the host is easier than running backup software within each machine
 - Protection against malware

- Economic and administrative driving forces (cont.)
 - Deployment
 - Most small and midsize organization and businesses have limited administrative resources
 - Virtualization for them provides less effort and greater speed
 - Stateful cloning/live migration
 - Protecting long running jobs from system changes
 - Snapshot or suspend them for planned maintenance
 - Park long running jobs suspended, when urgent job is to be run on the cluster

Albert-Ludwigs-Universität Freiburg

- Economic and administrative driving forces (cont.)
 - Reproducing situations
 - Start several times exactly from same system status
 - Freeze systems states to be inspected by others
 - Malware research, ...

Albert-Ludwigs-Universität Freiburg

- Economic and administrative driving forces (cont.)
 - Agility
 - Virtualization and cloud computing helps organizations and businesses adapt server resources to address changes in workload demands
 - Makes it easier to bring up new services
 - Changing capacity requirements (different demand in peak/off-peak business)
 - Changing capacity offering/availability
 - Metering of job/machine resource consumption
 - Resource consumption enforcement

Motivation to Move into Clouds

- Economic and administrative driving forces (cont.)
 - Freedom of choice
 - Virtualization allows organizations and enterprises purchases based on competitive pricing without worrying about the overhead of supporting multiple hardware vendors
 - Planned maintenance easier to replace hardware parts if machine is not directly attached to it
 - Emulating an environment for legacy software

Motivation to Move into Clouds

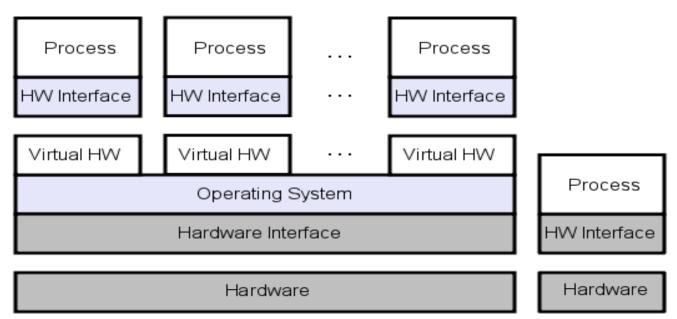
- + UNI FREIBURG
- Virtualization is prerequisite to cloud operation, as it allows/provides
 - Live migration
 - Dynamic resizing
 - Taking snapshots
 - Isolation
 - Provisioning
- Clouds seen as a chance to enable solutions that otherwise would be difficult and expensive
- IaaS, SaaS, infrastructure/software as a service, ...

Structure: X86 Virtualization

Albert-Ludwigs-Universität Freiburg

History of Virtualization Full, Hardware Assisted, Para Virt. Partitioning, Emulation Examples

History of Resource Virtualization



- Idea not really new concept but just repetition of / driven by the old dream: Better utilization of hardware
- Concepts already known
 - Introduction of operating systems helped with resource sharing for applications
 - Introduction of schedulers to manage limited CPU resources and run processes in "parallel"
 - Virtual address space to extend expensive physically available RAM

Operating System Resource Sharing

Albert-Ludwigs-Universität Freiburg

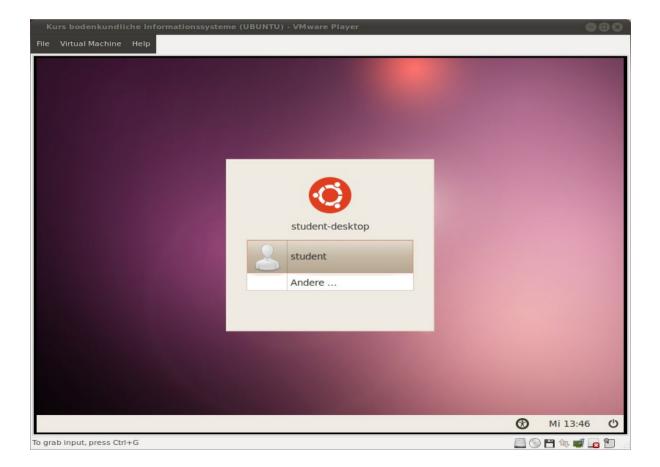
- One process does not reserves the complete hardware
 - Processes get virtual hardware assigned and get isolated from each other
 - CPU might run other process when first one is waiting for IO (e.g. on periphery)

History of Virtualization

- Idea pretty old used by IBM zSeries mainframes since 30 years
- Logical Partitioning (LPAR)
- Complete separation of I/O from processing
- Dynamic sharing of network and I/O adapters

Old Idea for New Architecture

- Introduced stuff like Parallel Sysplex : Virtualization across servers via Coupling Facility
- DB2: Parallel database with shared data access and unlimited scalability
- z/VM: 2nd level of system virtualization
 - Virtualization of processor, memory, network, I/O, hardware emulation, ...
- Founders of VMware members of the z/VM group from IBM
 - In theory X86 was not virtualizable
 - VMware Workstation (end of 1990ies) was the first X86 virtual machine


Virtualization Concepts

- Virtualization can be realized on different layers:
 "Real" virtualization or para virtualization on layer 1
 - Partitioning of the real hardware into several virtual hardware sets
 - Virtual hardware is pretty much of the same type the real hardware
 - Several (unmodified) operating systems run on the same physical hardware without interfering each other
 - Operating systems have not to be of the same type but need to be executable on the real hardware

Albert-Ludwigs-Universität Freiburg

FREIBURG

 Using binary translation, e.g. VMware product suite (VMware Player Linux on Linux)

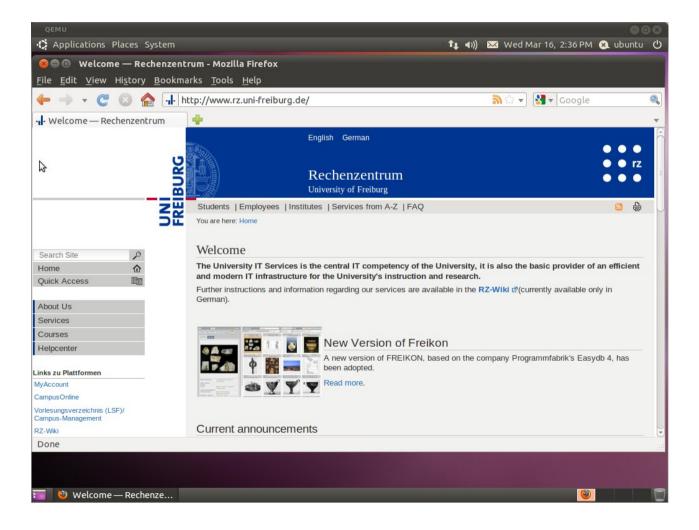
Albert-Ludwigs-Universität Freiburg

- Advantage: Every standard X86 CPU could be used
- Disadvantage: Privileged operations have to be captured and to be translated
 - More complex
 - Instructions are analyzed / translated on the fly
- Thus more popular and used in other commercial products like Microsoft Virtual PC, Parallels, ...

Albert-Ludwigs-Universität Freiburg

 Popular commercial, Open Source solution is VirtualBox (Innotek, Sun Microsystems, Oracle)

LSfKS - Communication Systems WS2						000
<u>M</u> aschine <u>G</u> eräte <u>H</u> ilfe						
🛟 Anwendungen Orte System					4)) 🔀 Mi, 16. Mär, 13:55 😠 o	commsys 🖒
the second s						
File Edit V	View Go Capture Analyze Statistics	i Telephony Tools Help				
en en en		x C 😐 🔍 🔶			000 1	_
			· • • • • • • •			· · ·
			Turner land Character			
Filter:		V	Expression Clear Apply			
No	Time	Source	Destination	Protocol	Info	
14	12.744256	132.230.200.200	10.0.2.15	DNS	Standard query response	. No
	12.744887	10.0.2.15	132.230.200.200	DNS	Standard query A kernel	
	12.759378	132.230.200.200	10.0.2.15	DNS	Standard query response	
17	12.760955	10.0.2.15	199.6.1.164	ТСР	35451 > http [SYN] Seq=	
18	12.773997	199.6.1.164	10.0.2.15	ТСР	http > 35451 [SYN, ACK]	Seq=
19	12.774204	10.0.2.15	199.6.1.164	ТСР	35451 > http [ACK] Seq=	1 Acl
20	12.775289	10.0.2.15	199.6.1.164	HTTP	GET / HTTP/1.0	
21	12.775913	199.6.1.164	10.0.2.15	TCP	http > 35451 [ACK] Seq=	1 Ack
	12.789069	199.6.1.164	10.0.2.15	тср	[TCP segment of a reass	
	12.789112	10.0.2.15	199.6.1.164	TCP	35451 > http [ACK] Seq=	
	12.789143	199.6.1.164	10.0.2.15	тср	[TCP segment of a reass	
	12.789160	10.0.2.15	199.6.1.164	TCP	35451 > http [ACK] Seq=	
26	12.789497	199.6.1.164	10.0.2.15	ТСР	[TCP segment of a reass	emble 🗸
<						-
+ Frame	1 (68 bytes on wire, 68 by	tes captured)				
	net II, Src: CadmusCo 9e:de		c), Dst: RealtekU 12:3	5:02 (52:	54:00:12:35:02)	
	net Protocol, Src: 10.0.2.1					
+ User I	Datagram Protocol, Src Port	: 36040 (36040), Dst I	Port: domain (53)			
+ Domain	n Name System (query)					
0000 52	2 54 00 12 35 02 08 00 27 9	e de 1c 08 00 45 00	RT5 'E.			
0010 00	36 8c c2 40 00 40 11 54 3	37 0a 00 02 0f 84 e6	.6@.@. T7			
	3 c8 8c c8 00 35 00 22 59 1		5." Y			
0030 00	0 00 00 00 00 00 05 68 65 6	59 73 65 02 64 65 00	h eise.de.			-
eth0: <li< td=""><td>ive capture in progress> File: /tmp = F</td><td>ackets: 80 Displayed: 80 Marke</td><td>d: 0</td><td></td><td>Profile: Default</td><td></td></li<>	ive capture in progress> File: /tmp = F	ackets: 80 Displayed: 80 Marke	d: 0		Profile: Default	
ei 💽 [commsys@commsys: ~] 🕅 ei	th0: Capturing - Wires					8
	the capturing - wires					
					😂 🕢 🖉 🗗 📖 💟 🔞 💽 F	Rollen Lock

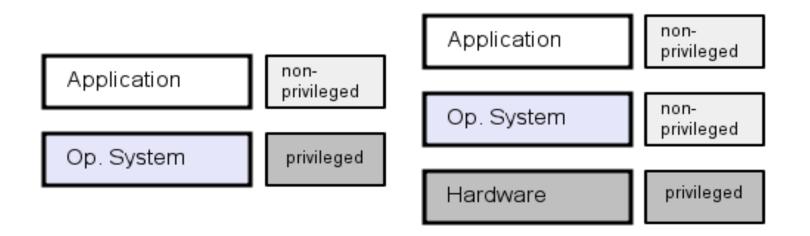


- Hardware-assisted virtualization
 - Newer than binary translation
 - Requires hardware support, CPU has to provide virtualization extension (just check it on your linux machine via the /proc/cpuinfo interface)
 - Intel: vmx, AMD: svm
 - Still not standard in value CPUs
- QEMU/KVM popular choice on Linux, split into
 - Kernel part (KVM, different modules/abstractions for Intel/AMD)
 - Peripheral/user mode part: Modified QEMU

Albert-Ludwigs-Universität Freiburg

FREIBURG

QEMU/KVM (Linux on Linux)

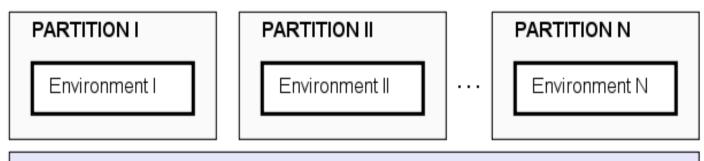

Para Virtualization

Albert-Ludwigs-Universität Freiburg

- Paravirtualization supports high performance
- Using modified operating systems kernel
 - Guest OS is aware of the virtualization
 - Guest OS performs hypercalls instead of system calls
- XEN the standard example around for a while
 - Allows exclusive hardware allocation to virtual machines, e.g. network interfaces

Real vs. Para Virtualization

- FREIBURG
- Kernel is judge on resource assignment kernel mode and user mode
- Privileged / non-privileged access


- Virtualization could be realized on a higher layer instead of running completely different operating systems, do partitioning within running OS
 - Different partitions run on the same kernel, no different operating systems possible
 - Creation of different environments with its own users, processes and filesystems
 - Kernel has to isolate partitions from each other
 - Less overhead than full virtualization

Albert-Ludwigs-Universität Freiburg

Examples: Linux Virtuozzo, Linux OpenVZ

OPERATING SYSTEM WITH PARTITIONING FEATURES

COMMON HARDWARE OF ENTIRE SYSTEM

. . .

- Short break, then continue with
 - Desktop virtualization
 - Other usage scenarios
 - Networking experiments
 - CPU "cycle stealing"
 - Digital preservation scenarios