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Propositional Logic
Albert-Ludwigs-Universität Freiburg

Definition (Propositional Logic and Syntax)

Given a set of variables x1, . . . ,xn we start to define our
propositional logic as follows:

1 Every variable xi is an atomic formula.
2 For all formulas F1 and F2 we have

the Conjunction (F1∧F2) and
the Disjunction (F1∨F2) propositional logic operators.

3 For every Formula F , we have its negation (¬F ).
4 The total set of Formulas we consider are only those that

can be generated using the above three rules.

Lewis / Schubert / Becker Verification and SAT Solving Satisfiability Solver 3 / 129



HI

Propositional Logic
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Definition (Semantics of Propositional Logic)

An assignment Ax : {x1, . . . ,xn}→ {0,1} is a mapping from all
the propositional variables x1, . . . ,xn to their assignment (0 or
1). Extending Ax to A : {F |F Formula}→ {0,1}, we map
every propositional formula F to the set {0,1} according to
the following rules:

1 For every F which contains variables xi , it holds that:
A (xi) = Ax (xi).

2 For all sub-formulas F1 and F2 from F , it holds that:
A (F1∧F2) = 1 ⇔ A (F1) = 1 and A (F2) = 1.
A (F1∨F2) = 1 ⇔ A (F1) = 1 or A (F2) = 1.

3 For every sub-formula F ′ of F :
A (¬F ′) = 1 ⇔ A (F ′) = 0.
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Propositional Logic
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Definition (Satisfiability)

A Formula F in propositional logic is satisfiable when a
mapping A for A (F ) = 1 exists.
Commonly, such a mapping is referred to as a model of
F , which is represented by A |= F .
If no assignment A for A (F ) = 1 exists, then F is
unsatisfiable, and for all assignments A , A 6|= F holds.
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Propositional Logic
Albert-Ludwigs-Universität Freiburg

Definition (Literal)

A literal L is the positive (L = xi ) or negative (L = ¬xi )
occurrence of a variable in a formula.

Definition (Clause)

A formula C = (L1∨ . . .∨Lk ), containing literals L1, . . . ,Lk will
from now on be referred to as a clause.

Lewis / Schubert / Becker Verification and SAT Solving Satisfiability Solver 6 / 129



HI

Propositional Logic
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Definition (Conjunctive Normal Form, CNF)

A formula F in propositional logic is in conjunctive normal
form when it consists of a conjunction of clauses:

F =
m∧

j=1

Cj with C1, . . . ,Cm clauses

Example: (x1∨¬x2∨x3)∧ (x2∨x4)

An assignment A satisfies a CNF formula F , only when it
also satisfies all the clauses in F .
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The Propositional Satisfiability Problem
Albert-Ludwigs-Universität Freiburg

Definition (SAT-Problem)

Given a formula F as defined earlier, the question we are now
considering is: Does there exists an assignment A for the
variables in F such that A (F ) = 1? If so, F is satisfiable.

This question/problem is commonly referred to as:
Satisfiability Problem
SAT-Problem

Similarly, the terms for propositional and Boolean
formulas will be used equally.
Also, a method or algorithm used to solve individual SAT
problems is called a SAT solver.
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SAT and Verification of Combinational Circuits
Albert-Ludwigs-Universität Freiburg

Given:
A specification and an implementation of a combinational
circuit.

Question:
Are the specification and implementation functionally
equivalent?

Using SAT based methods to prove equivalence
Using the specification and implementation, generate a
so called Miter circuit.
Convert the Miter circuit into a Boolean formula.
Solve the formula with SAT Algorithm (SAT Solver).

The specification and implementation of a combinational
circuit are functionally equivalent when the Boolean
formula representing the Miter circuit is unsatisfiable.
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Construction of the Miter Circuit
Albert-Ludwigs-Universität Freiburg

xn

xn

x1

x1

Implementation fI

fSSpecification

⇒ Connect the corrisponding inputs.
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Construction of the Miter Circuit
Albert-Ludwigs-Universität Freiburg

xn

x1

Implementation fI

fSSpecification

⇒ Compare the outputs using an XOR gate.
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Construction of the Miter Circuit
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xn

x1

M

Implementation fI

fSSpecification

⇒ Miter Circuit
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Construction of the Miter Circuit
Albert-Ludwigs-Universität Freiburg

xn

x1

M

Implementation fI

fSSpecification

Miter

⇒M = 1⇔ specification and implementation are not equal.
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Verification of Combination Circuits using SAT
Albert-Ludwigs-Universität Freiburg

Notes:
The outlined procedure can be extended to circuits with
more than one output.
Most SAT algorithms accept only formulas in CNF form
as an input. As such, our Miter circuits need to be
converted to, and represented as, a CNF formula.
Regarding equivalence checking algorithms, BDD based
approaches are memory restricted. In contrast, search
based SAT methods are time limited.
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Verification of Combination Circuits using SAT
Albert-Ludwigs-Universität Freiburg

Next:
Consider how to convert and represented the Miter circuit
as a Boolean formula in CNF form.
Complexity of solving SAT problems.
Describe how SAT solvers and algorithms work.
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Definition (Equivalence)

Two formulas F and G in propositional logic are equivalent
(F ≡G), iff for all possible assignments A , A (F ) = A (G)
holds.

Theorem
For every formula F in propositional logic, an equivalent
formula F ′ in CNF form can be produced.

Proof.
Using induction and our Formula constuction rules, we can
show that this is indeed the case.
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Given: a propositional logic F
Conversion

1 In F , replace every occurance of the sub-formalas having
the form:

¬¬F1 with F1;

¬(F1∧F2) with (¬F1∨¬F2);

¬(F1∨F2) with (¬F1∧¬F2);

until these types of sub-formulas in F no longer exist.

2 In F replace every occurance of the sub-formalas having
the form:

F1∨ (F2∧F3) with (F1∨F2)∧ (F1∨F3);

(F1∧F2)∨F3 with (F1∨F3)∧ (F2∨F3);

until these types of sub-formulas in F no longer exist.
Results: A formula F ′ in CNF form that is equivalent to F .
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Definition (Size of a Formula)

The size of a formula F of our declared logic (shown as |F |),
is defined as the number of operators ♦ in F , where
♦ ∈ {∧,∨,¬}.

Theorem
For every propositional logic formula of our form, with a size
of (2 ·m−1), there exist an equivalent formula in CNF form
with a maximum size of (m ·2m−1).
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Proof.
Consider the following conversion method:

Fm =
m∨

j=1

(Lj ,1 ∧Lj ,2)

where Lj ,1 6= Lj ,2, and in this case only containing positive literals L1,1, L1,2, . . ., Lm,1,
Lm,2. The size of such a formula is obviously (2 ·m−1). A minimal formula that is
equivalents, and in conjunctive normal is shown in F ′m.

F ′m =
∧

k1 ,...,km ∈{1,2}
(L1,k1 ∨ . . .∨Lm,km )

F ′m has a total of 2m clauses. For the conjunctions of all the clauses, (2m−1) AND
operators are needed. Since every clause has m literals, (m−1) OR operators are
needed for every clause. Therefore, the size of formula F ′m is:

|F ′m|= 2m−1+2m · (m−1) = m ·2m−1.
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Example 1
Given:

F1 = x1 x2∨x3 x4

m = 2
|F1|= (2 ·m−1) = 3

Conversion of F1 into an equivalent CNF F ′, with F1 ≡ F ′:

F ′ = (x1∨x3)∧ (x2∨x3)∧ (x1∨x4)∧ (x2∨x4)

|F ′|= (m ·2m−1) = 7
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Converting a Propositional Formula into CNF
Albert-Ludwigs-Universität Freiburg

Example 2
Given

F2 = x1 x2∨x3 x4∨ . . .∨x17 x18∨x19 x20

m = 10
|F2|= 19 = (2 ·m−1)

For F2, the CNF representation F ′′ has a size of:
|F ′′|= (m ·2m−1) = (10 ·210−1) = (10 ·1024−1) = 10239
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Tseitin-Transformation
Albert-Ludwigs-Universität Freiburg

To avoid the possible exponential size of the CNF
representation of a circuit (represented by a function F), the
following alternative approach can be applied:

Construct a formula F ′ that is satisfiably equivalent to F .
Meaning if F is satisfiable, then F ′ is satisfiable.
For each gate, intermediate “helper” variables are
introduced into the CNF F ′, which do not appear in F .
For each gate a “characteristic function” which is in CNF
form will be substituted for every occurrence of that
particular gate. The "characteristic function" will evaluate
to 1, iff the assignments of the respective gate signal
would also cause the output gate to go to 1.
To generate the final CNF for the entire circuit, all the
gate functions that are used will be ANDed together.

⇒ Tseitin-Transformation
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Tseitin-Transformation
Albert-Ludwigs-Universität Freiburg

Gate Function CNF Formula

x1

x2
x3 x3 ≡ x1∧x2

(¬x3∨x1)∧ (¬x3∨x2)∧
(x3∨¬x1∨¬x2)

x1

x2
x3 x3 ≡ x1∨x2

(x3∨¬x1)∧ (x3∨¬x2)∧
(¬x3∨x1∨x2)

x1

x2
x3 x3 ≡ x1⊕x2

(¬x3∨x1∨x2)∧ (¬x3∨¬x1∨¬x2)∧
(x3∨¬x1∨x2)∧ (x3∨x1∨¬x2)

x1 x2 x2 ≡ ¬x1 (x2∨x1)∧ (¬x2∨¬x1)
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Tseitin-Transformation
Albert-Ludwigs-Universität Freiburg

x1

x2

x3

x4

x6

x5

FSK = (x1∧x2)∨¬x3

F CNF
SK = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧

(x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)
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Tseitin-Transformation
Albert-Ludwigs-Universität Freiburg

As long as the CNF representation of each gate only consist
of a fixed number of clauses, the number of clauses required
for the entire CNF formula will grow linearly with respect to the
number of gates in the circuit (also valid for the size of the
formula).
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Tseitin-Transformation
Albert-Ludwigs-Universität Freiburg

Equivalence checking using satisfiably equivalent CNF
representations.

Given:
F = x1 x2∨x3 x4∨ . . .∨x17 x18∨x19 x20

|F |= 19 = (2 ·m−1) with m = 10

Conversion of F into an equivalent CNF F ′ with F ≡ F ′ :
|F ′|= (m ·2m−1) = (10 ·210−1) = (10 ·1024−1) = 10239

Tseitin-Transformation from F into satisfiably equivalent
CNF F ′′:

|F ′′|= 100︸︷︷︸
10UND−Gatter

+ 81︸︷︷︸
9ODER−Gatter

+ 18︸︷︷︸
18∧

= 199
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Verification of Combinational Circuit using SAT
Albert-Ludwigs-Universität Freiburg

Given the following specification and implementation of a
combinational circuit:

x1

x2

x3

x7 x8x1

x2

x3

x9

Implementation

x ′4

x5

x6

Specification

x4

Question: Are the specification and implementation
functionally equivalent?
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Verification of Combinational Circuit using SAT
Albert-Ludwigs-Universität Freiburg

x7 x8

M

x5

x6

x1

x2

x3

x4

x9
x ′4

Specification

Implementation

FM = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)∧ (x6∨x3)∧ (¬x6∨¬x3)∧
(x4∨¬x5)∧ (x4∨¬x6)∧ (¬x4∨x5∨x6)∧ (¬x7∨x1)∧ (¬x7∨x2)∧
(x7∨¬x1∨¬x2)∧ (x7∨x8)∧ (¬x7∨¬x8)∧ (¬x9∨x3)∧ (¬x9∨x8)∧
(x9∨¬x3∨¬x8)∧ (x9∨x ′4)∧ (¬x9∨¬x ′4)∧ (¬M ∨¬x4∨¬x ′4)∧
(¬M ∨x4∨x ′4)∧ (M ∨¬x4∨x ′4)∧ (M ∨x4∨¬x ′4)∧ (M)

FM is unsatisfiable⇒ specification and implementation equivalent!
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Verification of Combinational Circuit using SAT
Albert-Ludwigs-Universität Freiburg
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Complexity and SAT Problems
Albert-Ludwigs-Universität Freiburg

A CNF formula belongs to the class of “k-SAT” problems
iff each clause in the formula has exactly k literals.
S.A. Cook, 1971: 3-SAT Problem is NP-Complete
Therefore, in “general”, the SAT problem is NP-Complete
as all CNF formulas can be converted into a 3-SAT
problem.
In special cases, we can solve the problems in linear or
polynomial time:

2-SAT (formulas contain only binary clauses).
Horn-Formula (every clause in the formula contains a
maximum of one positive literal).
...
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Complexity and SAT Problems
Albert-Ludwigs-Universität Freiburg

Observations in practice:
Modern SAT algorithms are now able to solve many
industrially relevant and academically interesting
problems in a reasonable amount of time.
Commonly, industrial problems with 100,000’s of
variables, and millions of clauses can be solved.

Applications for SAT algorithms:
Combinational Equivalence Checking
Automatic Test Pattern Generation
Bounded Model Checking, Model Checking
AI Planning
. . .
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Overview of SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Complete Algorithms (vs Incomplete)
Ability - Can prove the unsatisfiability of a CNF-formula
due to a systematic approach the solver uses.
DP Algorithm

M. Davis, H. Putnam, 1960
Based on resolution

DLL Algorithm
M. Davis, G. Logemann, D. Loveland, 1962
Based on a depth first search

Modern SAT Algorithms
Based on the DLL Algorithm, however, they include
powerful resolution techniques, efficient data structures,
and many more acceleration techniques.
zChaff, MiniSat, MiraXT, precosat, lingeling, antom
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Overview of SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Incomplete Algorithms
Normally based on local searches.
Basic concept:

Generate an initial variable assignment.
Until the formula is satisfied, keep modifying the
assignments using some heuristic (i.e. “flip” the value of a
specific variable).

GSat, WSat (H.A. Kautz, B. Selman, 1992 & 1996)
Cannot in general prove a formula is unsatisfiable.

⇒ Will not be considered further in these talks!
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Notation
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A clause C = (L1∨ . . .∨Ln) can be regarded as a set of
literals: C = (L1, . . . ,Ln) .

The empty clause, represented by �, describes the
empty set of literals and is by definition unsatisfiable.

Lewis / Schubert / Becker Verification and SAT Solving Satisfiability Solver 30 / 129



HI

Notation
Albert-Ludwigs-Universität Freiburg

The union of two clauses (C1 and C2) results in a new
clause (C3) that contains all the literals of both previous
clauses:

C3 = C1∪C2 = {L |(L ∈ C1)∨ (L ∈ C2)}

Literals that occur in both C1 and C2, only appear once in
C3. This is a form of simplification.

The difference of two clauses is defined as follows:

C1−C2 = {L |(L ∈ C1)∧ (L 6∈ C2)}
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Notation
Albert-Ludwigs-Universität Freiburg

A CNF formula F = C1∧C2∧ . . .∧Cm can be regarded as
a set of clauses: F = {C1,C2, . . . ,Cm}

An empty Formula describes an empty set of clauses,
and by definition is satisfiable.

The union of two CNF formulas (F1 and F2) results in a
CNF formula F3 that contains all the clauses from both
previous formulas:

F3 = F1∪F2 = {C |(C ∈ F1)∨ (C ∈ F2)}

Again, clauses that appear in both F1 and F2 will only be
represented once in F3.
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Resolution
Albert-Ludwigs-Universität Freiburg

Definition (Resolution)

Given two clauses C1 and C2, and a literal L with the following
property: L ∈ C1 and ¬L ∈ C2, then it is possible to build a
clause R:

R = (C1−{L})∪ (C2−{¬L})

R is referred to as the resolvent of the clauses C1 and C2 on
literal L. Using our notation, this is represented by:

R = C1⊗L C2
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Resolution
Albert-Ludwigs-Universität Freiburg

Example 3

C1 = (x1,x2,x3), C2 = (x4,¬x2)⇒ R1 = C1⊗x2 C2 = (x1,x3,x4)

C3 = (x4,x2,x3), C4 = (x4,¬x2)⇒ R2 = C3⊗x2 C4 = (x3,x4)

C5 = (x4,x2), C6 = (¬x4,¬x2)⇒ R3 = C5⊗x2 C6 = (x4,¬x4)

(x4,¬x4) is for every assignment of x4 satisfied, and is therefore
referred to as a tautological clause.
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Resolution
Albert-Ludwigs-Universität Freiburg

Lemma (Resolution Lemma)

Given a CNF formula F and the resolvent R of two clauses C1
and C2 from F, then it must be the cast that F and F ∪{R}
are equivalent: F ≡ F ∪{R}.
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Resolution
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Proof.
Given a set of assignments A that satisfies the formula F ∪{R}: A |= F ∪{R}. Then
it must also be the case that A |= F .

So assume that the assignments A satisfies the formula F . This means that all the
clauses Ci ∈ F are also satisfied. Furthermore, assume the resolvent R was
constructed as R = (C1−{L})∪ (C2−{¬L}), with C1,C2 ∈ F , L ∈ C1 and ¬L ∈ C2.

To prove the equivalence of the two, we have to distinguishes between two cases in
A |= F . Either A |= L or A |= ¬L.

1 A |= L. Because A |= C2 and A 6|= ¬L it follows that A |= (C2−{¬L}). As
such, the resolvent R is satisfied by A , and then of course F ∪{R} is also
satisfied.

2 A |= ¬L. Because A |= C1 and A 6|= L it follows that A |= (C1−{L}). As such,
the resolvent R is satisfied by A , and then of course F ∪{R} is also satisfied.
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Resolution
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Definition
Given a formula F in CNF form, we define Res(F ) as:

Res(F ) = F ∪{R |R is the Resolvent of two clauses in F}.

Furthermore, we define:

Res0(F ) = F

Rest+1(F ) = Res(Rest(F )) for t ≥ 0

Res∗(F ) =
⋃

t≥0 Rest(F )
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Theorem (Resolutions Theorem)

A CNF formula F is unsatisfiable when � ∈ Res∗(F ).
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Proof.
Assume � ∈ Res∗(F ). In this case it is enough to prove their that resolution is
correct, and therefore, F is unsatisfiable. First, the empty clause can only be
produced from two clauses of the form C1 = (L) and C2 = (¬L). Since � is
contained in Res∗(F ), it must be the case that for some t ≥ 0:

�,C1,C2 ∈ Rest+1(F ) and C1,C2 ∈ Rest (F )

Obviously there is no assignment to the literals that can solve both C1 and C2, and
as such, Rest (F ) is unsatisfiable. Furthermore, with the help of the
Resolutions-Lemmas, you can argue that:

F ≡ Res1(F )≡ Res2(F )≡ . . .≡ Rest (F )≡ Rest+1(F )≡ . . .

Which allows us to reason that the unsatisfiability of Rest (F ) is equal to the
unsatisfiability of F .

Now, all that is left is to show that resolution is complete for all possible CNF
formulas. Using induction, it can be shown that for any unsatisfiable CNF formula F ,
we can recursively apply the resolution rule to arrive at the empty clause...
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Using the resolutions lemmas and proofs described earlier, it
is now possible to construct a simple complete SAT solver.

Given:
A CNF formula F

Procedure:
Calculate F = Res0(F ) for t > 0, and keep increasing t
until the empty clause is produced, or there are no
clauses left to resolve.

Result:
In the case that t > 0: � ∈ Rest(F )⇒ F is unsatisfiable.
Or, in the case that t > 0: � 6∈ Rest(F ) = Rest+1(F )⇒ F
is satisfiable.
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Complexity of this naive procedure:
Since variables can only appear as positive Literals,
negative Literals, or not at all in a clause, the run time of
this algorithm for a formula with n Variables is in the worst
case O(3n). In other words, with n variables there is a
maximum of 3n clauses that can be produced.
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Example 4
Is the following CNF formula F satisfiable?
F = (x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)

Using the procedure outlined earlier:

Res0(F ) = F

Res1(F ) = Res0(F )∪{(x2,x3),(x1,x3),(¬x2,¬x3),(x1,¬x2),(¬x1,x2),(¬x1,¬x3)}
Res2(F ) = Res1(F )∪{. . . ,(x1), . . . ,(¬x1), . . .}
Res3(F ) = Res2(F )∪{�}

⇒ F is unsatisfiable!
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Example 5
Is the following CNF formula F satisfiable?
F = (x1,x2,x3)∧ (x2,¬x3,¬x4)∧ (¬x2,x5)

Using the procedure outlined earlier:

Res0(F ) = F

Res1(F ) = Res0(F )∪{(x1,x3,x5),(¬x3,¬x4,x5),(x1,x2,¬x4)}
Res2(F ) = Res1(F )∪{(x1,¬x4),(x1,¬x4,x5),(x1,¬x4,x2,x5)}
Res3(F ) = Res2(F ) = Res∗(F )

⇒ F is satisfiable!
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The SAT algorithm introduced by M. Davis und H. Putnam in
1960 was based on the previous procedures but included the
following optimizations:

Subsumption
Pure Literal
Variable Elimination

Note: these optimizations improve the run time of the solver,
and can decrease the average complexity. However, the worst
case complexity remains the same as the naive approach.
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“The superiority of the present procedure over those
previously available is indicated in part by the fact
that a formula on which Gilmore’s routine for the IBM
7041 causes the machine to compute for 21 minutes
without obtaining a result was worked successfully
by hand computation using the present method in
30 minutes.”

– M. Davis and H. Putnam

1The IBM 704 was one of the first commercial scientific computers. It
had a maximum memory capacity of 4096 × 36 bit words (excluding
magnetic tape storage), and could execute up to 40,000 instructions per
second. Between 1955 and 1960, IBM sold over 120 of these machines.
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Definition (Subsumption)

Assume we have two clauses C1 and C2. C1 then subsumes
C2 when all the literals in C1 are also in C2: C1 ⊆ C2.

Idea: To satisfy a CNF formula F , we must satisfy all the
clauses. Therefore, if F is satisfiable, both C1 and C2.
Since C1 ⊆ C2, every satisfying assignment for C1 will
automatically solve C2. This means that we can delete C2
from F without changing the satisfiability of the formula.

The idea of subsumption is used in all modern SAT
solvers. Most only perform subsumption checks during
preprocessing, but other do it continually.
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Re-examine Example 5
Is the following CNF formula F satisfiable?
F = (x1,x2,x3)∧ (x2,¬x3,¬x4)∧ (¬x2,x5)

Using the naive procedure outlined earlier:

Res0(F ) = F

Res1(F ) = Res0(F )∪{(x1,x3,x5),(¬x3,¬x4,x5),(x1,x2,¬x4)}
Res2(F ) = Res1(F )∪{(x1,¬x4),(x1,¬x4,x5),(x1,¬x4,x2,x5)︸ ︷︷ ︸

subsummed from(x1,¬x4)

}

Res3(F ) = Res2(F ) = Res∗(F )

⇒ F is satisfiable!
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Definition (Pure Literal)

Let F be a CNF formula and L a literal contained in F . We say
L is pure literal iff it is only present in its positive or negative
form in F . In other words, F contains L or ¬L, but not both.

Idea: Remove all the clauses from F that contain the
pure literal L. This can be done because L will only
satisfy clauses if assigned correctly. ¬L on the other
hand will only “unsatisfy” clauses.

Normally, this step is only used during the preprocessing
of a CNF formula for a SAT solver, and is no longer used
during the solving process. However, on harder QBF
problems, this technique is still used.
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Again, repeating example 5
Is the following CNF formula F satisfiable?
F = (x1,x2,x3)∧ (x2,¬x3,¬x4)∧ (¬x2,x5)

⇒ x1, ¬x4 und x5 are pure literals.

⇒ Delete clauses containing x1, ¬x4 or x5.

⇒ F = {}

⇒ F is satisfiable!
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Within the DP algorithm resolution is used to completely
remove a variable xi from the formula (i.e. delete all positive
and negative occurances of xi from a CNF formula F ). ⇒
Variable Elimination

Goal: Reduce the number of variables occuring in the CNF
formula F , while maintaining a relatively constant number of
clauses.
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Definition
Let F be a CNF formula, and xi the variable we wish to
eliminate (where L = xi and ¬L = ¬xi ). Then we need to
define P, N and W as follows:

Let P be the set of all clauses in F that include L:

P = {C |(L ∈ C)∧ (C ∈ F )}

Let N be the set of all clauses in F that include ¬L:

N = {C |(¬L ∈ C)∧ (C ∈ F )}

Let W be the set of all clauses in F that do not contain L
or ¬L:

W = {C |(L 6∈ C)∧ (¬L 6∈ C)∧ (C ∈ F )}

As such: F = P ∧N ∧W .
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Definition
Given the clause partitioning mentioned previously, P⊗xi N
defines the set of clauses that are generated through the
pairwise resolution on variable xi from all combinations of
clauses from P and N:

P⊗xi N = {R |(R = C1⊗xi C2)∧ (C1 ∈ P)∧ (C2 ∈ N)}
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Theorem
Let F be a CNF formula, and let xi be a Variable. Assume the
possitve occurance (L = xi ) and the negative occurance
¬L = ¬xi of the variable xi appear in the formula F .
Futhermore, let the clause sets P, N and W be used as
defined earlier. Then, it must be the case that F = P ∧N ∧W
and F ′ = (P⊗xi N)∧W are equally satisfiable.
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Conclusion of the previous sentence:

The question of the satisfiability of a formula F can be
attributed to the satisfiability of F ′, where F ′ is the constructed
from F through the elimination of the variable xi . As such, if
F ′ is unsatisfiable, so is F . Otherwise both are satisfiable.
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Basic procedure for variable elimination:
Select a variable xi , then perform resolution between all
the pairs of clauses containing xi and ¬xi . Then replace
all the clauses in the sets P and N with the new clauses
generated during resolution.
If done blindly, the amount of new clauses that are
produced normally is much greater than the sum of P
and N. As such, the total number of clauses in the
formula usually increases.
Variable elimination is done in modern SAT solvers
during preprocessing. Furthermore, using heuristics,
variables are only selected for removal when they results
in the total number of clauses remaining the same or
decreasing.
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Example 6
Is the following CNF formula F satisfiable?
F = (x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)

Elimination of x1 from formula F :
P = {(x1,x2),(x1,¬x3)}
N = {(¬x1,x3),(¬x1,¬x2)}
W = {(x3,¬x2),(¬x3,x2)}
P⊗x1 N = {(x2,x3),(x2,¬x2),(¬x3,x3),(¬x3,¬x2)}
F ′ = (P⊗x1 N)∧W = (x2,x3)∧ (¬x3,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)

Elimination of x2 from formula F :
P ′ = {(x2,x3),(¬x3,x2)}
N ′ = {(¬x3,¬x2),(x3,¬x2)}
W ′ = /0

P ′⊗x2 N ′ = {(x3,¬x3),(x3),(¬x3),(¬x3,x3)}
F ′′ = (P ′⊗x2 N ′)∧W ′ = (x3)∧ (¬x3)⇒ F ′′ and F are unsatisfiable!
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Davis-Putnam Algorithm
bool DP(CNF F )
{

if (F = /0) { return SATISFIABLE; } // Empty clause set.
if (� ∈ F ) { return UNSATISFIABLE; } // Empty clause.

if (F contains a unit clause (L)) // Unit clause rule.
{

// Unit Subsumption.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F )∧ (C 6= (L))};
// Unit Resolution.
P = {(L)};
N = {C |(¬L ∈ C)∧ (C ∈ F ′)};
W = F ′−P−N;
return DP([P⊗L N]∧W );

}

if (F contains a pure literal L) // Pure literal rule.
{

// Delete from F every clause containing L.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F )};
return DP(F ′);

}

L = SELECTLITERAL(F ); // Select a literal.
P = {C |(L ∈ C)∧ (C ∈ F ); // Variablen elimination.
N = {C |(¬L ∈ C)∧ (C ∈ F )};
W = F −P−N;
return DP([P⊗L N]∧W );

}
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Due to the possibly exponential growth in memory
requirements, the basic DP Algorithm has only seen little
use.

However, two years later in 1962, M. Davis, G. Logemann
und D. Loveland introduced the DLL-Algorithm, which
replaced the physical variable elimination with a depth
first search.

Idea: If a CNF formula F is satisfiable, a satisfying
assignment of the variables in F must included either
xi = 1 oder xi = 0⇒ Check both paths one after another.

In literature, the DLL algorithm is often referred to as the
DPLL algorithm.
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Davis-Logemann-Loveland Algorithm
bool DLL(CNF F )
{

if (F = /0) { return SATISFIABLE; } // Empty clause set.
if (� ∈ F ) { return UNSATISFIABLE; } // Empty clause.

if (F contains a unit clause (L)) // Unit clause rule.
{

// Unit Subsumption.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F )∧ (C 6= (L))};
// Unit Resolution.
P = {(L)};
N = {C |(¬L ∈ C)∧ (C ∈ F ′)};
W = F ′−P−N;
return DLL([P⊗L N]∧W );

}

if (F contains a pure literal L) // Pure literal rule.
{

// Delete from F every clause containing L.
F ′ = F −{C |(L ∈ C)∧ (C ∈ F )};
return DLL(F ′);

}

L = SELECTLITERAL(F ); // Select a literal.
if (DLL(F ∪{(L)}) == SATISFIABLE) // Path selection.

{ return SATISFIABLE; }
else

{ return DLL(F ∪{(¬L)}); }
}
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(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Path selection
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x1
1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Select path x1 = 1
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x1
1
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x1

x2

1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Select path x2 = 1
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1
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x1

x2

1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Unit clause rule x3 = 0 and x3 = 1
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x1

x2

1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Try opposite path
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x1

x2

0 1

1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Select path x2 = 0
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Select path x2 = 0
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x1

x2

0 1
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(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Select path x1 = 0
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(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Select path x1 = 0
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x1

x2

0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Pure literal rule x2 = 0
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(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Pure literal rule x2 = 0
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x1

x2

0 1

x2

10

0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)

Formula is satisfiable with x1 = x2 = 0
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Data structures and algorithmic implementation details
have so far been largely omitted.

⇒ Modern SAT algorithms

Preprocessing
Decision heuristics and strategies
Boolean constraint propagation
Conflict analysis & non-chronological backtracking
Conflict clause deletion
Restarts
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Summary: DLL-Algorithm
Albert-Ludwigs-Universität Freiburg

It is a recursive procedure where at every recursive step the
following are checked:

1 Termination:
Empty clause set⇒ formula is satisfiable
Empty clause⇒ Current (partial) formula unsatisfiable

2 Unit clause / pure literal rule
In the case that there is the unit clause (L) in the current
sub-formula F , we can simplify F to F ′ by deleting all
clauses containing L, and by removing all occurrences of
¬L in the formula.
In the case that the sub-formula F contains a pure literal,
we can delete the occurrence of these variables from all
clauses in F , and in the process, produce F ′.

3 Search both branches
For the current formula F which still contains the literal L,
we must call the DLL algorithm recursively on for both
F ∪{(L)} and F ∪{(¬L)}.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Approach:
DLL Algorithm

Recursive procedure
From one recursive level r to r +1 the algorithm modifies
the formula (satisfied clauses are deleted, and falsified
literals are removed from clauses).
When jumping back from recursive level r +1 to r , the
algorithm has to re-insert all deleted clauses and literal
occurrences in the formula.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Approach:
Modern SAT Algorithms

No longer a recursive procedure
Except for special cases, clauses and literals are not
physically removed from the CNF formula during the
search process.
In general, the pure literal rule is no longer used (QBF?)
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From the DLL to modern SAT Algorithms
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Unit Clause
DLL Algorithm

A clause which contains exactly one literal.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Unit Clause
Modern SAT Algorithms

In addition to the previous definition, a clauses that
contains only falsified literals and one unassigned literal
under the current search space evaluation is also a unit
clause.
Example: The assignments x1 = 0,x2 = 1 turns
(x1,¬x2,x3) into a unit clause.
In the example, by adding the assignment x3 = 1 to the
previous assignments x1 = 0,x2 = 1, the clause
(x1,¬x2,x3) becomes satisfied. This use of the unit clause
rule in this case implies x3 = 1. As such x3 = 1 is referred
to as an Implication.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Unit Clause
Modern SAT Algorithms

. . .
Determining all the implications (i.e. unit propagations) of
assigning a variable a value is in modern solvers done by
the Boolean Constraint Propagation (BCP) procedure. In
its original form, the DLL would recursively call itself after
every implication.
Example: In F = (x1,¬x2)∧ (x1,x2,x3)∧ (¬x3,x4) the
assignment x1 = 0 results in the implications
x2 = 0,x3 = 1,x4 = 1
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Unsatisfiable paths / Conflicts
DLL Algorithm:

Empty clause.
Modern SAT Algorithm:

A clause where all its literals are falsely assigned.
Example: The assignments x1 = 0,x2 = 1,x3 = 0 result in
the clause (x1,¬x2,x3) becoming falsified. Since all our
formulas are in CNF form, the entire formulas under this
assignment is also unsatisfied.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Unsatisfiable paths / Conflicts
DLL Algorithm

A conflict is always the result of the previous variable
selection, and the resulting unit implications.
Backtracking, to a previous recursion level, in which both
possible cases of a variable have not been checked,
allows the solver to remove the existing conflict.
In the case that their exist no unchecked path, and the
solver must recursive backtrack to its first call DLL call,
the CNF formula is unsatisfiable.
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From the DLL to modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Unsatisfiable paths / Conflicts
Modern SAT Algorithms

Current solvers perform a more indepth analysis of every
conflict as it is often the case that multiple variable
selections play a role in each conflict.
Generation (by resolution) and addition of new conflict
clauses to the formula allow the solver to learn important
information about the problem. These conflict clauses
contain a list of literals that are responsible for the current
conflict.
With the use of the conflict claues, the algorithm can in
many cases backtrack past multiple variable selections.
The procedure can also produce the the empty or null
clause resulting in a final evaluation of UNSATISFIABLE.
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Modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Basic procedures of a moderns SAT-Solver
Preprocessing
Main routines:. . .

Selection of decision variables
Boolean constraint propagation / unit propagation
Conflict analysis & backtracking

Ever now and then during the search:
Reduce size of conflict clause set (delete clauses)
Restarts

If the formula is satisfiable:
Output a variable assignment that satisfies all the clauses
(i.e. a model)
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Modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Main procedure of a modern sequential SAT algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean constraint propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.

Lewis / Schubert / Becker Verification and SAT Solving Satisfiability Solver 72 / 129



HI

Modern SAT Algorithms
Albert-Ludwigs-Universität Freiburg

Main procedure of a modern sequential SAT algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean constraint propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Preprocessing
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Goal:
Prior to actually starting the search, try to simplify the
formula as much as possible.

Practical observations:
In many cases, the size of the input formula directly
correlates to the run time of the SAT Algorithm.
A reduction of more than 75% in the number of clauses &
variables in the input formula can be achieved.

Identification and processing of unit clauses that are
contained with the original clause set has always been a
part of a modern SAT algorithm.
The trick is to find a balance between: the simplification
that preprocessing is able to achieve;the time required by
the preprocessor; and the performance increases gained
by the SAT search algorithm.
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Preprocessing
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Unit Propagation Lookahead (UPLA)
For a variable xi test xi = 0 and xi = 1. During the test
monitor what each assignment leads to:

(xi = 0→ conflict)∧ (xi = 1→ conflict)⇒ UNSAT
(xi = 0→ conflict)⇒ xi = 1
(xi = 1→ conflict)⇒ xi = 0
(xi = 0→ xj = 1)∧ (xi = 1→ xj = 1)⇒ xj = 1
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 0)⇒ xj = 0
(xi = 0→ xj = 0)∧ (xi = 1→ xj = 1)⇒ xi ≡ xj
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Preprocessing
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Unit Propagation Lookahead (UPLA)
Advantages

Uses procedures that are already implemented in most
SAT solvers.

Disadvantages
Formula needs to have binary clauses.
Model extraction is can be more complicated (e.g. when
xi ≡ xj is found, and all xi ’s are replaced with xj ’s).
Can be time consuming if ALL variables are tested.
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Preprocessing
Albert-Ludwigs-Universität Freiburg

Applying the resolution rule:
Advantages:

Can be performed on any formula in CNF form.
Possible to achieve far-reaching simplifications in
reasonable time.

Disadvantages:
Model expansion necessary.

Techniques (SatELite)
Self-Subsuming Resolution
Elimination by Clause Distribution
Variable Elimination by Substitution
Forward Subsumption
Backward Subsumption
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Preprocessing
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Self-Subsuming Resolution
Given formula:

F = (x1∨¬x3)∧ (x1∨x2∨x3)∧ . . .
Applying resolution to the first two clauses yields:

(x1∨¬x3)⊗x3 (x1∨x2∨x3) = (x1∨x2)
⇒ (x1∨x2) subsumes (x1∨x2∨x3)
⇒ Replace (x1∨x2∨x3) with (x1∨x2)

Simplified formula:
F ′ = (x1∨¬x3)∧ (x1∨x2)∧ . . .

Savings:
1 literal
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Preprocessing
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Elimination by Clause Distribution
Referred to as variable elimination earlier.
Given formula:

F = (x1∨x2)∧ (x1∨¬x3)∧ (¬x1∨x3)∧ (¬x1∨¬x2)

Performing variablen elimination on x1 leads to:
F ′ = (x2∨x3)∧ (¬x3∨¬x2)

Savings:
1 variable, 2 clauses, and 4 literals.

Only used if it actually simplifies the formula. A modern
SAT solver makes many checks before actually
eliminating a variable.
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Preprocessing
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Variable Elimination by Substitution
Given formula:

F = (¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2) ∧
(x4∨¬x5)∧ (¬x4∨x5∨x6)

The first three clauses represent a logical AND gate:
[(¬x5∨x1)∧ (¬x5∨x2)∧ (x5∨¬x1∨¬x2)]↔ [x5 ≡ x1∧x2]

Delete the first three clauses by substituting the variable
x5 with x1∧x2 in the remaining clauses:

F ′ = (x4∨¬(x1∧x2))∧ (¬x4∨ (x1∧x2)∨x6)

Restoring the CNF representation leads to:
F ′′ = (x4∨¬x1∨¬x2)∧ (¬x4∨x1∨x6)∧ (¬x4∨x2∨x6)

Savings: 1 variable, 2 clauses, and 3 literals.
Again, only used if it actually simplifies the formula.
For other gates we can do similar things.
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Preprocessing
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Forward Subsumption
Test to see if any of the newly generated clauses from the
preprocessing steps are already subsumed by existing
clauses in our current clause set.

Backward Subsumption
Test to see if the newly generated clauses from the
preprocessing steps subsumes any existing clause from
the current clause set.

⇒ Delete all subsumed clauses.
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Modern SAT Algorithms
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Main procedure of a modern sequential SAT algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Decision Stack
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x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1

Central data structure of modern SAT
solvers.

Decision stack saves the order of the
assignments and implications.

In a CNF formula is satisfiable, the
decision stack stores the model
(i.e. the satisfying assignment).
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Decision Stack
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x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1 x10 = 1

Each variable assignment is associated
with a decision level

The decision level variables starts at 0,
and for every decision variable it is
incremented. For backtracking, it is
decremented by one for every decision
the solver backtracks past.

Decision level 0 is important, as it
stores all implications that directly
result from unit claues (i.e. does not
contain decision variables).

A conflict on decision level 0 means
that the entire CNF formula is
unsatisfiable.
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1

x3 = 0x2 = 1

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 1 x2 = 0 x3 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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x2 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
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x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

(¬x1,¬x2,¬x3)∧ (¬x1,¬x2,x3)∧ (¬x1,x2,¬x3)∧ (¬x1,x2,x3)∧ (x1,¬x2,¬x3)
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Decision Stack
Albert-Ludwigs-Universität Freiburg

x2 = 0

x3 = 1

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x1 = 0

⇒ Formula is satisfiable with assignments: x1 = 0,x2 = 0,x3 = 1.
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Conflict!x1 = 0

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1

x2 = 1 x3 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

(x1,x2)∧ (x1,¬x3)∧ (¬x1,x3)∧ (¬x1,¬x2)∧ (x3,¬x2)∧ (¬x3,x2)∧ (x7)
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Decision Stack
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Conflict!

Level 0

Level 1

Level 2

Level 4

Level 5

Level 3

x7 = 1 x1 = 1 x3 = 1 x2 = 0

⇒ Formula is unsatisfiable as there is a conflict on decision level 0.
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Modern SAT Algorithms
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Main procedure of a modern sequential SAT algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Decision Heuristics
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Job: Select a free variable and assign it a value.
Selected variable is referred to as a Decision Variable.
Comparable to the branch selection in the DLL Algorithm.
Has a significant impact on the search process.
Modern SAT algorithms do not test if every clause in the
CNF formula is satisfied during the search. Instead, if the
are no more free variable to select as decision, and no
conflicts exist, the problem is satisfiable.

Example: F = (x1,x2,x3)∧ (¬x1,x4)
⇒ Satisfying assignment: x1 = 1,x4 = 1
⇒ Current solver do not test if x1 = x4 = 1 satisfies all the

clauses, instead they will continue until an are variables
are assigned (e.g. x2 = x3 = 0). Only then will they output
SATISFIABLE.
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Decision Heuristics
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“Classical” Decision Heuristics
Many variants:

Dynamic Largest Individual/Combined Sum
Maximum Occurrences on Clauses of Minimal Size

Selection criteria:
“How often does a unassigned variable appear in the
current remaining formula?”
Select the unassigned with the highest count as the next
decision variable.
Can always weigh each variables score with the size of
the clauses it appears in.

These are termed computationally expensive heuristics
as they must keep track of the current variable
distributions as clauses are
deleted/added/re-added/shortened/...
⇒ Computational complexity is determined by # of clauses
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Variable State Independent Decaying Sum (zChaff)
Standard heuristic used by most modern SAT solvers.
Computational complexity is determined by # of variables.
No computation required due to backtracking.
Every variable xi has two activity counters: Pxi and Nxi .
Each of these counters is incremented for every literal L
that appears in a clause C that is part of any new clause:

Pxi = Pxi +1, case L = xi
Nxi = Nxi +1, case L = ¬xi

The decision variable is selected to be the variable xi with
the largest activity (Pxi or Nxi ).
The positive or negative assignment of this variable
depends on if Pxi > Nxi .
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Variable State Independent Decaying Sum (zChaff)
The variable activity counters are periodically
“normalized” (e.g. divide by a constant).
⇒ Because of normalization, newly generated conflict

clauses have a larger impact on the current decision
process than older clauses.

⇒ The “history” of the search process is taken into account.
Many optimization opportunities:

By what amount should the activities be incremented?
How often should the activities be normalized?
During normalization, what division factor should be
used?
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Main procedure of a modern sequential SAT Algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Boolean Constraint Propagation
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Task:
Find all the implications that are the result of the current
decision variable.
Detect conflicts if they exist under the current assignment.

Comparable to the repeatedly called Unit clause rule in
the original DLL Algorithm.
An efficient implementation is required. Even today, with
special data structures and techniques, the BCP
procedure accounts for ≈ 80 of the total run time of the
solver.
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General procedure:
After ever variable assignment it must identify every
resulting implications. The resulting implications are then
stored in an Implication Queue, and processed one after
another.
As long as the implication queue is not empty:

1 Delete the first element in the queue.
2 Assign the the implied value of the variable in the decision

stack.
3 Check to see if this new assignment forces more

implications. If so, add them to the implication queue.
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x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Implication Queue

x8 = 1

x4 = 1

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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Task:
Find all the implications that are the result of the current
decision variable.
Detect conflicts if they exist under the current assignment.

Possible approaches to implement the BCP procedure:
Counter-Based schemes
Head/Tail list scheme
Watched literals / 2-literal watching scheme
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2-counter scheme
Two counters per clause:

One for the literals that satisfy the clause.
One for the literals that are still unassigned.

1-counter scheme
One counter per clause counting the number of falsely
assigned literals.

Disadvantages
“Unneeded” counter updates.
Counters must be updated during backtracking.
Requires a list for every polarity of every variable, that
maintains where each variable is stored in each clauses.
This list must be updated as clauses are added and
removed.
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Head/Tail List Scheme
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Two pointer per clause:
Head pointer
Tail pointer

Invariants:
In a clause, the literals contained left of the head pointer
and right of the tail pointer must be falsely assigned.
Literals that are pointed to by either the Head or Tail
pointers must be unassigned, or properly assigned and
fulfill the clause.

Advantages over counter based schemes:
Update operations are only needed when the invariants
about for the clause are broken.
For both polarities of each variable a list is needed so that
each clause knows its current head and tail pointers.

Disadvantages:
Pointers must be updated during backtracking.
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¬x1 x18 ¬x3 x5x17

(a) Initial state

¬x1 x18 ¬x3 x5x17

(b) x17 = 0

¬x1 x18 ¬x3x17 x5

(c) x5 = 0

¬x1x17 x5x18 ¬x3

(d) x3 = 1

x17 x5x18 ¬x3¬x1

(e) x1 = 1⇒ x18 = 1

x17 x5x18 ¬x3¬x1

(f) x18 = 0⇒ Conflict!
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Watched Literals
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For every clause we “watch” 2 literals.
Invariant:

The two watched literals in a clause must either be
unassigned, or at least one must be properly assigned.

Advantages over counter based schemes:
Update operations are only needed when the invariant
about a clause is broken.
For both polarities of each variable a list is needed so that
each clause knows its current head and tail pointers.

Advantages over Head/Tail list scheme:
No work to do during backtracking.

Disadvantages
Literals in every clauses are normally evaluated more
than once.
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¬x1 x18 ¬x3 x5x17

(a) Initial state

¬x1 x18 ¬x3 x5x17

(b) x17 = 0

¬x1 x18x17 ¬x3 x5

(c) x5 = 0

x17 ¬x3 x5x18¬x1

(d) x3 = 1

x17 ¬x3 x5x18¬x1

(e) x1 = 1 ⇒ x18 = 1

x17 ¬x3 x5x18¬x1

(f) x18 = 0 ⇒ Conflict!
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Possible optimizations:
Save the first two watched literals in the first two locations
of every clause.

Fast access to the “other” watched literal, so that its status
can be checked.
If the “other” watched literal is satisfied, the BCP can skip
its processing of this clause.

Watched literals have been used for quite some time and
are now standard in every modern SAT algorithm.
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Main procedure of a modern sequential SAT Algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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DLL Algorithm
Conflicts are always directly related to the current
selected branch.
Backtracking to the last branch, in which only one path
was searched (called Chronological Backtracking).
If all both cases of every variables have been tried, the
current CNF formula is unsatisfiable.
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Chronological Backtracking

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x8 = 1

x4 = 1

x12 = 0

x4 = 1

x11 = 0

x8 = 1

x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x23 = 1

x13 = 0

x19 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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Modern SAT algorithms:
Do a deeper analysis of the current conflict situation to
find out which decisions and implications are actually
involved in the conflict.
Generate (by resolution) and add a conflict clause to the
current formula. The conflict clause contains all the
literals that were responsible for the current conflict. The
conflict clause can now be used to alleviate the current
conflict, and possibly future conflicts.
Using the conflict clause, backtrack to a previous decision
level. In many cases, this is significantly earlier than the
current decision level). If the conflict clause cannot be
satisfied, the problem is UNSATISFIABLE. This process
is referred to as Non-chronological Backtracking.
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Nicht am Konflikt beteiligt

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x8 = 1

x4 = 1

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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Nicht am Konflikt beteiligt

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Klauseln 13 und 14 können miteinander resolviert werden,
die entstandene Resolvente wiederum mit Klausel 11, usw.

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x8 = 1

x4 = 1

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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To perform the conflict analysis in modern SAT
algorithms we use the implication graph:

Directed, acyclic graph.
Nodes represent variable assignments.
Edges reflect the relationship between decision and
implications.

The implication graph changes during the search process
and with every variable assignment an backtrack
operation. However, the decision stack contains all the
information we need to produce it when a conflict
happens.
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x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

x8 = 1

x4 = 1

x12 = 0 x16 = 1 x18 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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During the conflict analysis routine, the implication graph
is generated starting at the “conflict location”, and then
working backwards in a chronological fashion with
respect to the decision stack. The first clause to be
examined, is the one that is conflicting, and as such, it is
called the conflicting clause. Following all these
resolution steps to the focal point of the problem allows
us to generate a so called conflict clause.
Various “stopping criteria” used to end the analysis
process can result in different conflict clauses.
Approaches:

1UIP (Standard method, shown next)
RelSat
Grasp
. . .
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6,¬x11,¬x12)∧ (x13 ,x8)∧ (¬x11 ,x13 ,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19,x4)∧ (x10,¬x5)∧ (x10 ,x3)∧ (x10 ,¬x8 ,x1)∧ (¬x19 ,¬x18 ,¬x3)∧ (x17 ,¬x1 ,x18,¬x3,x5)∧ . . .

R1 = (x17,¬x1,x18,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1,¬x3 ,x5,¬x19)

R2 = (x17,¬x1,¬x3 ,x5,¬x19)⊗x1 (x1 ,x10,¬x8) = (x17,¬x3,x5 ,¬x19 ,x10 ,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10 ,x3) = (x17 ,x5 ,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19 ,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10,¬x8,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1,x18,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1 ,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3 ,x5,¬x19)⊗x1 (x1,x10,¬x8) = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10 ,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19 ,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10,¬x8,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1,x18,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1 ,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3 ,x5,¬x19)⊗x1 (x1,x10,¬x8) = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10 ,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19 ,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10,¬x8,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1,x18,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1 ,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3 ,x5,¬x19)⊗x1 (x1,x10,¬x8) = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10 ,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19 ,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10,¬x8,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1,x18,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1 ,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3 ,x5,¬x19)⊗x1 (x1,x10,¬x8) = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10 ,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x11 = 1@5

x13 = 0@2

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x8 = 1@2
x19 = 1@3

Conflict!

x4 = 1@3

x10 = 0@5
x2 = 0@5

x6 = 0@1

F = (x23)∧ (x7 ,¬x23)∧ (x6 ,¬x17)∧ (x6 ,¬x11 ,¬x12)∧ (x13,x8)∧ (¬x11,x13,x16)∧ (x12,¬x16,¬x2)∧ (x2 ,¬x4 ,¬x10)∧
(¬x19 ,x4)∧ (x10,¬x5)∧ (x10,x3)∧ (x10,¬x8,x1)∧ (¬x19,¬x18,¬x3)∧ (x17,¬x1,x18,¬x3 ,x5)∧ . . .

R1 = (x17,¬x1 ,x18 ,¬x3 ,x5)⊗x18 (¬x19,¬x18,¬x3) = (x17,¬x1 ,¬x3 ,x5 ,¬x19)

R2 = (x17,¬x1 ,¬x3 ,x5,¬x19)⊗x1 (x1,x10,¬x8) = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)

R3 = (x17,¬x3 ,x5 ,¬x19,x10,¬x8)⊗x3 (x10,x3) = (x17,x5,¬x19,x10,¬x8)

R4 = (x17,x5 ,¬x19 ,x10 ,¬x8)⊗x5 (x10 ,¬x5) = (x17,¬x19,x10,¬x8)⇐ Final conflict clause
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x2 = 0 x5 = 0 x3 = 1 x1 = 1

x12 = 0@5

x16 = 1@5

x3 = 1@5

x17 = 0@1

x18 = 1@5

x18 = 0@5

x5 = 0@5

x1 = 1@5

x4 = 1@3

x8 = 1@2
x19 = 1@3

Conflict!
x2 = 0@5

x10 = 0@5

x6 = 0@1

x11 = 1@5

x13 = 0@2

Konflikt-Klausel: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x16 = 1 x18 = 0

x8 = 1

x4 = 1

x12 = 0 x10 = 0

x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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Comments:
The first UIP (First Unique Implication Point) conflict
analysis strategy terminates it analysis when the
resolvent clause only contains one literal from the current
decision level (the so called UIP literal). this means all
other literals must be falsely assigned on previous levels.
The conflict clauses with the solvers current decision
strategy inevitably lead to a conflict.
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Conflict Analysis and Backtracking
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Comments:
The resolution lemmas allow us to add the conflict
clauses directly to the CNF formula. This enables us to
reduce the size of the total search space (i.e. the conflict
clause will force implication allowing us to avoid searches
in unsatisfiable parts of the search space).
The 1UIP method has been compared to other
approaches and is seen today as the most powerful in
the case of SAT. This is because it produces shorter,
more general clauses.
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Non-chronological backtracking
In modern SAT algorithms, the conflict clause determines
the backtrack level.
The backtrack level is related to the literal with the
highest decision level (with the exception of the UIP
literal) in the conflict clause.
Idea: “What would have happened had the conflict clause
been part of the original formula?”
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Non-chronological backtracking
Procedure:

1 Backtrack to the backtrack level calculated as proposed.
2 The conflict clause will then be a unit clause, and force

the UIP literal.
3 Continue the search process.

If a conflict clause’s UIP is already on decision level 0,
the current CNF formula is unsatisfiable.
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Conflict Analysis and Backtracking
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x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

x2 = 0 x5 = 0 x3 = 1 x1 = 1

Konflikt-Klausel: (x17,¬x19,x10,¬x8)

x17 = 0

Level 0

Level 1

Level 2

x6 = 0

Level 4

Level 5

Level 3

x7 = 1

Non-Chronological Backtrackingx8 = 1

x4 = 1

x12 = 0

x4 = 1 x10 = 1

x16 = 1 x18 = 0

x8 = 1
x23 = 1

x13 = 0

x19 = 1

x11 = 1

x54 = 0

x10 = 0

x23 = 1

x13 = 0

x19 = 1

F = (x23)︸ ︷︷ ︸
1

∧(x7 ,¬x23)︸ ︷︷ ︸
2

∧(x6 ,¬x17)︸ ︷︷ ︸
3

∧(x6,¬x11,¬x12)︸ ︷︷ ︸
4

∧(x13 ,x8)︸ ︷︷ ︸
5

∧(¬x11,x13,x16)︸ ︷︷ ︸
6

∧(x12 ,¬x16,¬x2)︸ ︷︷ ︸
7

∧(x2 ,¬x4 ,¬x10)︸ ︷︷ ︸
8

∧

(¬x19,x4)︸ ︷︷ ︸
9

∧(x10,¬x5)︸ ︷︷ ︸
10

∧(x10 ,x3)︸ ︷︷ ︸
11

∧(x10,¬x8 ,x1)︸ ︷︷ ︸
12

∧(¬x19,¬x18,¬x3)︸ ︷︷ ︸
13

∧(x17,¬x1 ,x18,¬x3 ,x5)︸ ︷︷ ︸
14

∧ . . .
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Main procedure of a modern sequential SAT Algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Deletion of Conflict Clauses
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A modern SAT solver generates and saves a conflict
clause for every conflict it encounters.
Problem:

Risk of memory requirements exploding.
Significant slowdown of the BCP procedure.

Solution:
Periodically delete conflict clauses.

When deleting clauses we must exclude:
Clauses that are part of the original CNF formula.
All clauses that are forcing implications in the current
decision stack.

We have to determine a balance between:
the deletion of information.
and the BCP and memory problems mention above.
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Strategies:
zChaff

Scheduled Lazy Clause Deletion / Relevance Based
Learning
A static approach used to determine when all clauses are
deleted.
For example: learnt clauses with more than 50 literals
would be deleted when 30 literals become undefined.

Grasp
Size-Bounded Learning / k-Bounded Learning
All clauses that exceed a predefined size would be
deleted as soon as possible.
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Strategies:
BerkMin

Delete “old” and “inactive” clauses first.
Similar to variable activities used in decision strategies.
The activity of a clause is determined by how often it is
used during resolution in the conflict analysis routine.
Idea: active clause are helping shrink the search space,
and inactive clauses are just slowly down the BCP
procedure.
The age of clause can have a similar effect, and can
easily be calculated by its position in the clause set.
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Strategies:
MiniSat

Irrespective of a clauses age, inactive clauses are
deleted.
The deletion procedure removes 50% of the learnt
information after ever run.
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Main procedure of a modern sequential SAT Algorithm
bool SEQUENTIALSATENGINE(CNF F)
{

if (PREPROCESSCNF(F) == CONFLICT) // Simplify the CNF formula.
{ return UNSATISFIABLE; } // Problem is unsatisfiable.

while (true)
{

if (DECIDENEXTBRANCH()) // Select a free variable and assign it a value.
{

while (BCP() == CONFLICT) // Boolean Constraint Propagation.
{

BLevel = ANALYZECONFLICT(); // Conflict analysis.
if (BLevel > 0)

{ BACKTRACK(BLevel); } // Backtrack to a previous decision.
else

{ return UNSATISFIABLE; } // Problem unsatisfiable.
}

}
else

{ return SATISFIABLE; } // All variables are assigned, problem satisfiable.
}

}

Not explicitly shown: Deletion of conflict clauses, restarts, or outputted model.
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Method to move the SAT solver if it is “stuck” in an hard
part of the search space.
Basic idea:

The longer a SAT solver search for a model to a CNF
problem, the higher the probability that:

The solver is in an unsatisfiable part of the search space.
On earlier decision, “bad” branches were taken.
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Approach to restart:
1 Stop the search process.
2 Undo all variable assignments with the exception of those

on decision level 0.
3 Begin searching again on decision level 0.

All previously learnt information is retained.
Variable activities remain unchanged.
Good chance that after a restart the solver will be in a
different situation than before because:

The solver will choose other variables for the first decision
levels.
The search process will be steered in other directions.
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To prevent a SAT solver from repeating infinite loops
because of restarting, the interval between each restart
is usually slowly increased.
Many optimization opportunities:

When should the first restart happen?
By how much should the interval between restart
increase?
Can we intelligently decided when would be a good time
to restart?

Restarts not only aid the solvers performance on
satisfiable instances, but on unsatisfiable ones as well.
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Consider:
Due to conflict analysis, learning, non-chronological
backtracking, and restarts, the solvers can “wildly” jump
around throughout the search space. So the question is:
“Is a modern SAT solver guaranteed to terminated?”

We need to consider the following when discussing
termination:

Let F be a CNF formula with n variables.
⇒ This problem requires at most n+1 Decision Level:

dl0, . . . ,dln
Let k(dli) be the number of variables that are assigned on
decision level dli .
⇒ For all dli with i ∈ {0, . . . ,n}, it follows k(dli )≤ n must be

true.
⇒ Similarly: ∑

n
i=0 k(dli )≤ n

In the following ds will represent the current decision
stack for the problem F .
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Continued ...
Let f : ds→ N be defined as f (ds) = ∑

n
d=0

k(dld )
(n+1)d

⇒ Since the lower decision levels trim off larger parts of the
search space, they are weighted higher in the formula.
Moreover, f (dsx ) has a higher weight than the sum of all
decision levels following it. As such the following holds:
f (ds1)> f (ds2) ⇔
∃i < n : kds1(dli )> kds2(dli ) ∧ ∀j < i : kds1(dlj ) = kds2(dlj )

⇒ Without restarts, f (ds) will increase during the search.
This is especially true with non-chronological backtracking.

⇒ It does not depend on the deletion of clauses
⇒ Because n is a fixed number, f (ds) can only be increased

so many times.
⇒ So modern SAT-Solver without restarts do terminate.
⇒ Restarts can be problematic in this regard. However, if the

interval between restarts always increases, so too will the
SAT solver.
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Aspects not covered here
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Proofs of (un-)satisfiability of a CNF formula
Incremental SAT solving
Local search algorithms / incomplete SAT Algorithms
Parallel SAT algorithms
Quantified Boolean Formulae
SAT Modulo Theory
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