
Modelling and implementation of
algorithms in applied mathematics using

MPI
Lecture 1: Basics of Parallel Computing

G. Rapin

Brazil
March 2011

Outline

1 Structure of Lecture

2 Introduction

3 Parallel Performance

4 Examples

Outline

1 Structure of Lecture

2 Introduction

3 Parallel Performance

4 Examples

Structure of Lecture

Thu: Basics of Parallel Computing, Fan-in method, parallel
treatment of vectors and matrices

Fri: Poisson Problem and Finite Differences; First Steps with
MPI

Fri: Exercises in MPI - Part I
Tue: Linear Systems: Simple Iterative Methods and their

parallelization, Prgramming MPI
Tue: Exercises in MPI - Part II

Wed: Conjugate Gradient (CG) method and preconditioning

Contents of the Lecture

Basics of Parallel Computing
Introduction to MPI
Algorithms of Numerical Linear Algebra
Paralellization of some algorithms
Poisson Problem as prototype application
Modern Iterative Solvers, like Krylov methods

Goals of the Lecture

Understanding and Usage of MPI
Explaining ideas of High Performance Computing
Discussion of the Interplay of Algorithms and their
Implementation
Give some insight in Numerical Linear Algebra
Show basic mathematical techniques to prove
convergence

Literature - MPI

Message Passing Interface Forum, MPI: A
message-passing interface standard. University of
Tennesse, Knoxville. download from
http://www.mpi-forum.org.
P.S. Pacheco. Parallel Programming with MPI. Morgan
Kaufmann Publishers. San Francisco. 1997.
W. Gropp, E. Lusk, A.Skjellum. Using MPI. Partable
Parallel Programming with the Message-Passing-Interface.
Second Edition. MIT Press. Cambridge. 1999
Blaise Barney, Introduction to Parallel Computing, On–Site
tutorial, https://computing.llnl.gov/tutorials/parallel comp
Blaise Barney, Introduction to Parallel Computing, On–Site
tutorial,https://computing.llnl.gov/tutorials/mpi/

Literature - Scientific Computing

G.H. Golub, J.M. Ortega: Scientific Computing: An
Introduction with Parallel Computing, Academic Press,
1993
A. Quarteroni, A. Valli. Domain Decomposition Methods for
Partial Differential Equations. Oxford University Press.
Oxford. 1999
J.W. Demmel, Applied Numerical Linear Algebra, SIAM,
1997
Y. Saad, Iterative Methods for Sparse Linear Systems,
Second Edition, SIAM, 2003
T. Mathew, Domain Decomposition Methods for the
Numerical Solution of Partial Differential Equations,
Springer, 2008

Outline

1 Structure of Lecture

2 Introduction

3 Parallel Performance

4 Examples

Serial/ Parallel Computing

Serial Computing
Software runs on a single computer with a single CPU.
Problem is broken into a set of instructions.
Instructions are executed one after another.
There is only one execution at the same time.

Parallel Computing
To be run on multiple CPUs
A problem is broken into discrete parts that can be solved
concurrently.
Each part is further broken down to a series of instructions.
Instructions from each part execute simultaneously on
different CPUs.

Why Parallel Computing?

Save Time
speed-up tasks
Save Money
faster hardware is quite expensive; for parallel computing
cheaper components can be used
Compute Larger Problems
Bottlenecks like limited memory can be circumvented
Combine existing Computational Resources
Existing Clusters can be used for parallel computing.

High Performance Computing (HPC)

Definition HPC (Wikipedia)

High-performance computing (HPC) uses supercomputers and
computer clusters to solve advanced computation problems.

Characteristics of typical HPC applications
parallelised
large demand of memory
requires large computing capacities
applications mostly run on clusters and supercomputers
handling of large data sets

Typical Applications for HPC

Simulation of fluid flows
Weather Forecasts
Climate Modelling
Chemical Models
(Molecular dynamics,
Combustion)
Data Mining
Physics (material science)

Classification of Parallel Computers

Popular Classification is Flynn’s Taxonomy (1966)
distinguish with respect to Instructions and Data
Instructions and Data have two categories Single or
Multiple
Single instruction: only one instruction stream is being
acted on by the CPU during any one clock cycle
Single data: only one data stream is being used as input
during any one clock cycle

Flynn’s Taxonomy

Examples for the four Possibilities

SISD older generation mainframes, minicomputers and
workstations; most single CPU PCs

SIMD most modern computers, particularly those with graphics
processor units (GPUs), vector pipelines like Cray Y-MP

MISD very rare, experimental Carnegie-Mellon C.mmp computer
(1971).

MIMD most current supercomputers, networked parallel computer
clusters and ”grids”, multi-core PCs

Memory Architecture

Shared Memory
All processors have access to a global memory address
space
Advantages: user-friendly programming models, Data
sharing between tasks is fast due to the proximity of
memory to CPUs
Disadvantages: lack of scalability between memory and
CPUs; the programmer is responsible for a synchronized
access to the data

Distributed Memory
Processors have their own local memory. Data transfer
requires a communication network.
Advantages: memory is scalable with number of
processors; cost effectiveness
Disadvantages: Programming is complicated; complex
data handling; almost all algorithms have to be adapted

Parallel Programming Models

Parallel programming models are on an abstraction level above
hardware and memory architecture; NOT specific to a particular
type of machine or memory architecture.

Shared memory
In a shared memory model, parallel tasks share a global
address space which they read and write to
asynchronously. This requires protection mechanisms
such as locks and semaphores to control concurrent
access. Example is OpenMP.
Message passing model
Parallel tasks exchange data through passing messages to
one another. Example is MPI.
Implicit model
In an implicit model, no process interaction is visible to the
programmer. The compiler is responsible for performing it.
Examples are MATLAB or High Performance Fortran
(HPF).

Message Passing Interface (MPI)

MPI is a specification for the developers and users of
message passing libraries.
It is NOT a library itself.
The described interface should be portable, practical,
efficient and flexible.
Interface descriptions exist for C/C++ and Fortran.
MPI is the ’de facto’ industry standard for message
passing.
There exist a couple of implementations. The most popular
MPI versions are OpenMPI, mpich2, IntelMPI or
platformMPI.
MPI is a single program with multiple data (SPMD). The
same program is started on all processors.

History of MPI

Before 1990 numerous approaches and libraries for
parallel computing exist. Many hardware producers provide
the customer with specialized implementations. Codes
were not portable and differ significantly in performance.
Starting point of MPI is a Workshop on Standards for
Message Passing in a Distributed Memory Environment in
Williamsburg, USA, in April 1992. A team working on a
proposal was founded.
First version of MPI was released in November 1992.
Official releases are published in June 1994 (MPI 1.0) and
June 1995 (MPI 1.1).
Foundation of the MPI Forum in 1995. The MPI Forum
publishes MPI 1.2 in 1997
Essential Extensions like I/O-interfaces and C++-interfaces
are defined in MPI 2. MPI 2.0 appeared 1998 in MPI 2.2 in
2009. The MPI 3 project was started in 2010.

Outline

1 Structure of Lecture

2 Introduction

3 Parallel Performance

4 Examples

Degree of Paralel ization

Definition

The degree of parallelisation of an algorithm is defined as the
maximum number of parallel tasks.

Examples:
Most parallel algorithms for the addition of two vectors with
n components have a degree of parallelisation of n. Each
component of the vector can be summed in parallel.
We consider an iterative sequence (xn)n of the type

xk+1 = f (xk), k ∈ N, x0 ∈ R

with f : R → R. The degree of parallelisation is 1 for
standard algorithms.

Speed-up

Definition

Let T1 be the time spent for the algorithm for the solution of a
given problem on a single processor and Tp the time, which is
needed for the algorithm on a parallel computer with p
processors of the same type. Then, the speed-up is defined as

S =
T1

TP
.

Remark
In the literature T1 can also be defined as the time spent
on a single processor for the solution of a given problem
using the best known algorithm.

Incremental Speed-up

In many applications it is not possible to compute the problem
on a single processor. Then, the incremental Speed-up can be
used:

Si(p) :=
Runtime on p

2 processors
Runtime on p processors

.

In the optimal case Si(p) is equal to 2. Normally, it holds.
2 ≥ Si(p) ≥ 1.

Parallel Efficiency

Definition

The Parallel Efficiency e of a parallel algorithm using p
processors is defined by

e :=
S
p

=
T1

TPp

where S is the speed-up.

It holds 0 ≤ e ≤ 1. For e next to 1 the algorithm is quite
efficient.
If it is not possible to compute the solution on a single
processor, the parallel efficiency can be approximated by

e ≈
Tpminpmin

Tpp
.

Armdahl’s Law

Theorem

Let α be the sequential part of the algorithm. The remaining
part 1− α is executed on p processors with efficiency 1. Then
the speed-up is

S =
1

α+ (1− α)/p
.

Remarks
The assumption, that the remaining part scales perfectly, is
essential.
Let us assume that 99% of the algorithm is parallelised.
Thus, we get a maximum speed-up of 9.17 for 10
processors and a speed-up of less than 50 for 100
processors.

Visualization of Armdahl’s Law

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Processors

S
p

e
e

d
−

u
p

α=0

α=0.01

α=0.05

Proof of Armdahl’s Law

Let T1 be the computational time on a single processor.
The computational time for the computation on p
processors assuming an efficiency of 1 for the parallel part
is

Tp = αT1 + (1− α)1
p

T1.

Then the speed-up is given by

S =
T1

TP
=

1
α+ (1− α)/p

.

Outline

1 Structure of Lecture

2 Introduction

3 Parallel Performance

4 Examples

Addition of Vectors

Let a = (a1, . . . ,an)
T and b = (b1, . . . ,bn)

T be two vectors.
Goal: Compute the addition

c := a + b =


a1
a2
...

an

+


b1
b2
...

bn

 =


a1 + b1
a2 + b2

...
an + bn


in parallel.
Usage of p processors. We assume p ≤ n.

Decomposition of the problem

The n additions have to distributed to the p processors.

Definition

The system IR = (Ir)r of sets Ir , r = 1, . . . ,R is called partition
of a set M, if

(i) Ir 6= ∅, r = 1, . . . ,R.
(ii)

Ir ∩ Iq = ∅ for r 6= s, r , s ∈ {1, . . . ,R}.

(iii)
R⋃

r=1

Ir = M.

Parallel Addition of Two Vectors

Let (Ip) be a partition of {1, . . . ,n}.

Algorithm 1: Parallel Addition of Two Vectors

Solve on processor k, k ∈ {1, . . . ,p}

ci = ai + bi , i ∈ Ik .

Remark
The subsets of the partition should almost have the same
size.

Addition of the entries of a vector

Let x = (x1, . . . , xn)
T be a vector.

Compute the sum

s =
n∑

i=1

xi .

Sequential Algorithm is almost trivial

Algorithm 2: Sequential Algorithm

s1 := x1,

sk+1 := sk + xk+1, k = 1, . . . ,n − 1.
s = sn

Idea of Parallel Algorithm

Compute s =
∑8

i=1 xi !

3x 4x 5x 7x 8x6x1x

5x

2x

3x 4x1x 2x

2x

7x 8x6x

1x 4x3x 5x 6x 8x7x

6x 7x 8x5x4x3x2x1x

+ +
+ +

+ ++ + + +

+ + + + + + +

Parallel Algorithm for n = 2k summands

Algorithm 3: Fan-in Summation

1 Set a0
i := xi for i = 1, . . . ,2k .

2 Compute for j = 1, . . . , k, i = 1, . . . ,2k−j

aj
i := aj−1

i + aj−1
i+2k−j .

3 The solution is s := ak
1.

Remarks for Fan-in Summation

Degree of Parallelisation is 2k−1.
The average degree of parallelisation is

n − 1
log2 n

,

since
1. Step degree of parallelisation 2k−1

2. Step degree of parallelisation 2k−2

...
...

(k − 1). Step degree of parallelisation 21

k . Step degree of parallelisation 20

Therefore we get

1
k

k−1∑
i=0

2i =
1
k

2k − 1
2− 1

=
1
k

(
2k − 1

)
=

1
log2 n

(n − 1).

Remarks for Fan-in Summation

Neglecting communication time the sum of n = 2k

numbers with 2k−1 processors can be computed in a time,
which needs one processor for k = log2 n additions.
Assume that communication needs the time κτ . τ is the
time for one addition (κ > 1). Then, 2kp processors need
for the sum of n = 2k numbers (with kp < k) the time

t(kp) =
(

2k−kp − 1
)
τ + (κτ + τ)kp.

The function t(kp) has a global minimum at

k0 := k − 1
log 2

log
(
κ+ 1
log 2

)
.

For κ = 10 we get k0 ≈ k − 3.99.

Other Applications for Fan-in

More general the Fan-in method can be applied to arbitrary
associative, commutative and binary operations

x = x1 ◦ x2 ◦ · · · ◦ xn.

Some Examples∏n
i=1 ai with a1 ◦ a2 = a · b,

max{ai |i = 1, . . . ,n} with a1 ◦ a2 = max{a1,a2},
min{ai |i = 1, . . . ,n} with a1 ◦ a2 = min{a1,a2},

lp norm, 1 < p <∞, i.e.
(∑n

i=1 |ai |p
) 1

p with

a1 ◦ a2 = (|a1|p + |a2|p)
1
p ,

gcd{ri |i = 1, . . . ,n} of numbers r1, . . . , rn with
r1 ◦ r2 = gcd(r1, r2).

Scalar products

Let x = (x1, . . . xn)
T and y = (y1, . . . , yn)

T be two vectors.
The scalar product is given by

(x,y) =
n∑

i=1

xiyi , x,y ∈ Rn

Algorithm 4: Parallel scalar product

1 Define a partition IP = (Ir)r of {1, . . . ,n}
2 Compute dk =

∑
i∈Ik xiyi for k ∈ {1, . . . ,p}.

3 Compute with Fan-in

d =

p∑
i=1

di .

Product of Matrices

Let two matrices be given:

A = (aij) ∈ Rn×m, B = (bij) ∈ Rm×q.

The goal is the computation of the matrix product

C = (cij) = AB ∈ Rn×q.

We define the sums

ck
ij :=

k∑
l=1

ailblj , i ∈ {1, . . . ,n}, j ∈ {1, . . . ,q}, k ∈ {1, . . . ,m}

and c0
ij := 0, i = 1, . . . ,n, j = 1, . . .q

We can compute cij using

ck
ij = ck−1

ij + aikbkj , k = 1, . . . ,m and cij = cm
ij .

Matrix Computation - Sequential Algorithm

Algorithm 5: Matrix Computation - ijk-Form

1 for i = 1 to n
2 for j = 1 to q
3 set cij = 0
4 for k = 1 to m
5 cij := cij + aikbkj
6 end k
7 end j
8 end i

Remark
Depending on the storage pattern of the matrices a
different order of the loops is better.

Parallel Matrix Multiplication

Idea :
Split the matrices in blocks

Assumptions
Let (IR) be a partition of {1, . . . ,n}, (KS) a partition of
{1, . . . ,m} and (JT) a partition of {1, . . . ,q}.
Assume that p = R · S · T processors are available.
Assume that processor P(r , s, t), r ∈ {1, . . . ,R},
s ∈ {1, . . . ,S}, t ∈ {1, . . . ,T} has the data

aik , i ∈ Ir , k ∈ Ks

bkj , k ∈ Ks, j ∈ JT .

Parallel Matrix Multiplication

Algorithm 6: Parallel Matrix Multiplication

1 Compute on each processor P(r , s, t)
(i) for i ∈ Ir
(ii) for j ∈ Jt
(iii) c̃s

ij :=
∑

k∈Ks
aikbkj

(iv) end j
(v) end i

2 Compute for all r ∈ {1, . . . ,R}, t ∈ {1, . . . ,T} the
additive Fan-ins

Crt =

(
S∑

s=1

c̃s
ij

)
i∈Ir ,j∈Jt

with S processors.

Explanation of the Parallel Algorithm

Processor P(r , s, t) computes the matrix product of the
blocks

Ars = (aik)i∈Ir ,k∈Ks , Bst = (bkj)k∈Ks,j∈Jt

in step 1.
During the Fan-in the blocks Crt =

∑S
s=1 ArsBst are

computed using processors P(r , σ, t), σ = 1, . . . ,S.
Since each process contributes to exactly one Fan-in, all
Fan-ins can be computed in parallel.
The load balancing is for instance optimal when all sets Ir ,
Ks and Jt contains the same number of elements.

Special Choices for R, S and T

Let be S = 1, thus K1 = {1, . . . ,m} .
Then there is no communication between the processors
necessary. The Fan-in can be neglected.
Let be R = 1, thus I1 = {1, . . . ,n} .
Each processor contains complete columns of A and a
sub-block of B. There are T Fan-ins with S processors.
Let be R = 1, T = 1, thus I1 = {1, . . . ,n}, J1 = {1, . . . ,q} .
There is only one Fan-in with all processors.
Let be R = n, S = m, T = q .
Each processor computes a product of numbers. There
are n · q parallel Fan-ins.

	Structure of Lecture
	Introduction
	Parallel Performance
	Examples

