Modelling and implementation of

algorithms in applied mathematics using
MPI

Lecture 2: Poisson Problem and Finite Differences, First
Steps in MPI

G. Rapin

Brazil
March 2011

Bl Poisson Problem and Finite Differences

B First Steps in MPI

Bl Poisson Problem and Finite Differences

Poisson Problem

m Let Q c RY be a bounded domain.
m The Laplace-Operator is given by

d
92U
Au=) o

for a functionu: Q — R.

m The Poisson Prgb/em is defined as follows: Find a function
u € C?(Q) N C(Q) satisfying

—Au = f inQ (1)
u = 0 onodQ

m Applications in electrostatics, mechanical engineering and
theoretical physics

One-dimensional Poisson Problem in (0, 1)

Find a function

such that

-u'(x) = €, xe(0,1)
ul0) = u(1)=0

Problem: In general there is no analytical solution.

Goal: Approximation of the solution.

Finite Differences

m Discretisation: 0 = xo < -+ < X, = 1 with x; = £
m Differential quotient:
u(xi—1) — 2u(x;) + u(Xit1)]

U (x;) ~ s h=o

m Inserting of —u”(x) = e* yields
—u(xi_1) +2u(x) — u(xjp1) = e, i=1,....,n—1

m Boundary Conditions = u(xg) = u(xn) = 0.
m = linear system for u(xq), ..., u(xp_1).

Discrete Problem

W Setz=(z1,...,2p-1)" = (u(x1),..., u(xn1))".
m Solve the linear system Az = F with

Solution for n = 21

0.2 -

Two-dimensional Poisson Problem in Q = (0, 1)?

m For simplicity we consider Q = (0,1) x (0, 1).
m Define a grid on Q using the grid size h= 4, N € N.

Set of grid points
Zn:={(x,y) €Q| x=2z1h, y = zzhwith 1, 2, € Z}.

B Let wy := Z, N Q be the interior points.
m Set of points on the boundary are defined by ~j, := Z, N 0.

Discretisation of the 2D-Poisson Problem

m Let O be the Landau symbol. g = O(h*) means
limp_,0 sup 'ﬁ’,gf?' < 0.

m Differential quotient w.r.t. x

u(x — h,y) —2u(x,y) + u(x + h, 9%u
(.y) (h2 y) (.y) — axg(x’y)+o(h2)‘

m Differential quotient w.r.t. y

u(x,y —h) —2u(x,y) + u(x,y + h) d?u
h2 ~0y?

(x,y) + O(HP).
m Therefore, Au can be approximated by

Au— #(u(x,y—h)Jru(x— h,y)
—4u(x,y)+ u(x,y + h) + u(x + h, y)) = O(h?).

Discretisation of the 2D-Poisson Problem

m Setting u;; := u(ih, jh) we get for —Au = f on wy
—Ujj Ui AU = Uiy j=Uijer = WPy, 0 j e {1, N=1}

with f; := f(ih, jh).
m The boundary conditions yield

Up,i = Unj=Upog=Un=0, i=0,....,N.

m Sorting the unknown in a lexicographic order

(h, h), @2h,h), ... (N = 1)h, h)
(h,2h) (2h,2h), ... ((N—1)h2h)
(h,(N:—1)h) (2h,(A;—1)h) ((N—1)h,:(N—1)h).

we get the unknowns Ui (n_1)(j—1) = Uj;-

Discretisation of the 2D-Poisson Problem

m We obtain the following linear system for U = (U,-),(.’:\’;”Z:
AU = F. (2)

. _— 2 . .
with F:= (5)N, f vo1yg1) = F(ih, jh),

ije{l,...,N—1}and

1 . _ _
A = ﬁtrld/ag(—lN_1,T,—lN_1)GR(N 12x(N=1)%,
= tridiag(—1,4,—1) € RIN-Dx(N=1),

I is the k-dimensional identity matrix.

Solution of 2D-Poisson Problem

Theorem

The linear system possesses a unique solution. For sufficiently
smooth solutions u of the continuous problem we get

1Rt — Ulloo < CHPI|ul oy,

C is a constant independent of h and u. Ryu € RIN=1 js the
restriction of the solution on the interior grid points.

m Thus, the approximation is of second order.

m The linear system possesses (N — 1)? unknowns. In three
dimensions we would get (N — 1)3 unknowns.

Excursion to Finite Elements

structured grid unstructured grid

Remarks

m Finite Element methods are the most popular approach for
solving this kind of problems.

m Finite Element methods are defined on grids and are
equipped with certain local basis functions.

Sparsity Pattern of the corresponding matrices

structured grid unstructured grid

m A sparsity pattern is given by the non-zero entries of a
matrix

m Typically, matrices arising in finite differences or finite
elements are sparse.

Sparsity Pattern and CSR

m Storage of non-zero elements and structure using
compressed sparse row (CSR) format.
m CSR format stores 3 vectors
El The first vector contains all non-zero entries. The data is
sorted row-wise.
E The second vector contains the corresponding column
indices.
El The third vector stores one entry for each row containing
the starting position of the corresponding data in the first
vector.

m CSR format is well suited for matrix vector products.

Store the matrix

2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2
in CSR-format
Start. points || 1 3 6 9 12
ColumnInd. || 1 1 2 2 3 4|13 4 5| 4
Data 2 1/1 2 1/1 2 111 2 -1]-1

Example of a Finite Element Solution

Consider the diffusion reaction problem

—Au+u="finQ:=(0,1)2

ou
%_Oonaﬂ

with f(x, y) := exp (100(—(x — 0.6)® — (y — 0.6)?))

e,
s

Solution

100 200 300 200
nz - 4916

Sparsity Pattern

B First Steps in MPI

First Example - Hello World Program (1)

#include <stdio.h>
#include <string.h>
#include <mpi.h>

main (int argc, charx* argv)

{

int my_rank; /* Rank of process x/
int p; /* Number of processes */
int source; /* Rank of sender */
int dest; /+ Rank of receiver */
int tag=50; /+ Tag for messages */

char message[100]; /* Storage for the message */
MPI_Status status; /* Return status for receive */
int namelen;

char processor_name [MPI_MAX_PROCESSOR_NAME] ;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI_Comm_size (MPI_COMM_WORLD, &p);
MPI_Get_processor_name (processor_name, &namelen) ;

First Example - Hello World Program (ll)

if (my_rank!=0) {
sprintf (message, "Greetings from process %d from %s",
my_rank, processor_name);
dest=0;
MPI_Send(message, strlen(message) +1,
MPI_CHAR, dest, tag, MPI_COMM_WORLD) ;
}
else
{
for (source=1l; source <p ; source ++)
{
MPI_Recv (message, 100, MPI_CHAR, source,
tag,MPI_COMM_WORLD, &status);
printf ("$s\n",message) ;

MPI_Finalize();

First example

m We start the program with p processes. Then there exists
processes with ranks 0,1,..., p— 1.

m Each process not equal to 0 sends a message containing
the process number to process 0. Process 0 prints the
message on the screen

m Output for 8 process:

Greetings from process 1 from eraping-ThinkPad-X60s
Greetings from process 2 from eraping-ThinkPad-X60s
Greetings from process 3 from eraping-ThinkPad-X60s
Greetings from process 4 from eraping-ThinkPad-X60s
Greetings from process 5 from eraping-ThinkPad-X60s
Greetings from process 6 from eraping-ThinkPad-X60s
Greetings from process 7 from eraping-ThinkPad-X60s

Structure of a MPI program

finclude <mpi.h>
main (int argc, char* argv([]) {

/* No MPI functions called before this x/
MPI_Init (&argc, &argv);

MPI_Finalize();
/* No MPI function called after this =/

} /* end main x/

Some Explanations

m The global structure is always the same.

m All MPlI commands start with MP1_. Predefined constants
in MPI are given in capital letters.

m Include header file for MPI

#include <mpi.h>
m Initialization of MPI

MPI_Init (&argc, &argv);

This has to be the first MPI call in a program!
m Finalization of MPI

MPI_Finalize();

This must be the last MPI call in the program.

m Almost all MPI commands return an error code using an
integer value.

Communication Environment

int MPI_.Comm_rank (MPI_COMM comm, int *rank);

IN:

comm Communicator (handle)

OUT:

rank Number of the process in group comm

m The processes reads information about the parallel environment.
For p processes each process will be provided with a rank
between 0 and p — 1.

m The first parameter is a communicator. A communicator is a
group of processes, who are able to send messages to each
other.

® The communicator MPI_COMM_WORLD is pre-defined.
MPI_COMM_WORLD consists of all used processes.

m The second parameter is a pointer to an int. Here, the rank
number of the process is returned. A value between 0 and p — 1.

Communication Environment

int MPI_Comm_size(MPI_Comm comm, int *size)

IN:
comm Communicator (Handle)

OUT:
size Number of processes in comm

m returns the number of processes size in the communicator
group comm.

m Within this course we will just use MPI_coMM_WORLD. We will
not build our own groups.

Communication Environment

int MPI_Get_processor_name(char *name, int
*resultlen)

IN:

OUT:

name Name of the processor

resultlen Length of the name of the processor

m returns the name and length of the processor name.

m The maximum length of the processor name is given by
MPTI_MAX_PROCESSOR_NAME.

Sending/ Receiving Messages

m Sending and receiving from messages is the heart of MPI.

m We start with the standard form of sending/receiving of
messages. Alternative possibilities will be discussed later.
m Necessary information for sending/ receiving messages
m The sender and receiver of the message must be known.
Here, the rank within the communicator group is used.
B message
m data type of message
m In order to distinguish messages, a tag is used. This is an
integer between 0 and at least 2% — 1.

Sending messages

int MPI_Send(void®* message, int count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm
comm)

IN:

message Initial address of message

count Length of message

datatype = MPI data type of each element of the message

dest Rank number of the receiver

tag Tag of the message

comm Communicator

OUT:

m The message is contained in an array starting at the address
message.

m The next parameters count and datatype define the required
storage demand of the message.

MPI data types

MPI data types are related to the corresponding C data types.

MPI data type C data type
MPI_CHAR signed char
MPI_SHORT signed short int
MPLINT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR | unsigned char
MPI_UNSIGNED_SHORT | unsigned short int

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG | unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED

Receiving Messages

int MPI_Recv(void®* message, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

IN:

count maximum length of message

datatype MPI datatype of the elements of the message
source Rank number of the sender

tag Tag of the message

comm Communicator

OUT:

message Initial address of message
status Information about received message

Receiving Messages

m The only new object is the status message. The data type
of the status is MPI_Status.

m MPI_Status contains information about the received data.

m Using for instance MPI_Get_count returns the size of the
message. The user does not need to know the size of the
message in advance.

B tag does not need to be specified. One can use the
wild-card MPI_ANY _TAG.

m The rank of the sender can be replaced by
MPI_ANY_SOURCE .

Compiling and starting of parallel programs

m Compiling
mpicc ExampleOl.c -o ExampleOl
The name of executive can be determined with the help of
the option —o.
m Execution with p processes
mpirun -np p ./Example0l
The used CPUs can be determined with the help of

-machinefile file. file contains the names of the
processors.

Point-to-Point Communication

We call the communication between ONE sender and ONE
receiver point-to-point communication.

Classification of point-to-point communication
m Blocking/ non-blocking communication
m Buffered/ non-buffered communication
m Synchronous/ asynchronous communication

Blocking/ non-blocking communication

m Most of the MPI point-to-point routines can be used in
either blocking or non-blocking mode.

m A blocking send routine will only return after it is safe to
modify the application buffer (your send data) for reuse.

m A blocking receive only returns after the data has arrived
and is ready for use by the program.

m Non-blocking send and receive will return almost
immediately. They do not wait for any communication
events to complete.

m Non-blocking communications are primarily used to
overlap computation with communication and exploit
possible performance gains.

m There are waiting routines to guarantee that the data is
sent.

Buffered/ non-buffered communication

m In a buffered communication the data will be buffered.

m Then, the sender of a message has not to wait until the
receiver has confirmed sending.

m The disadvantage is that the data must be copied twice.
Memory problems for large messages can occur.

m The user can control an own address space. This space is
called application buffer.

Synchronous/ asynchronous communication

m If there is no communication buffer, the communication has
to be synchronous. The sender cannot send until the
receiver of the message is ready to get the message.

m In synchronous mode sender and receiver can only
proceed after sending an receiving of the message is
complete.

	Poisson Problem and Finite Differences
	First Steps in MPI

