
Modelling and implementation of
algorithms in applied mathematics using

MPI
Lecture 2: Poisson Problem and Finite Differences, First

Steps in MPI

G. Rapin

Brazil
March 2011

Outline

1 Poisson Problem and Finite Differences

2 First Steps in MPI

Outline

1 Poisson Problem and Finite Differences

2 First Steps in MPI

Poisson Problem

Let Ω ⊂ Rd be a bounded domain.
The Laplace-Operator is given by

4u :=
d∑

i=1

∂2u
∂x2

i

for a function u : Ω → R.
The Poisson Problem is defined as follows: Find a function
u ∈ C2(Ω) ∩ C(Ω) satisfying{

−4u = f in Ω
u = 0 on ∂Ω

(1)

Applications in electrostatics, mechanical engineering and
theoretical physics

One-dimensional Poisson Problem in (0,1)

Find a function
u : [0,1] → R,

such that

−u′′(x) = ex , x ∈ (0,1)

u(0) = u(1) = 0

Problem: In general there is no analytical solution.

Goal: Approximation of the solution.

Finite Differences

Discretisation: 0 = x0 < · · · < xn = 1 with xi = i
n

Differential quotient:

u′′(xi) ∼
u(xi−1)− 2u(xi) + u(xi+1)

h2 , h :=
1
n

Inserting of −u′′(x) = ex yields

−u(xi−1) + 2u(xi)− u(xi+1) = h2exi , i = 1, . . . ,n − 1

Boundary Conditions⇒ u(x0) = u(xn) = 0.
⇒ linear system for u(x1), . . . ,u(xn−1).

Discrete Problem

Set z = (z1, . . . , zn−1)t = (u(x1), . . . ,u(xn−1))t .
Solve the linear system Az = F with

A :=


2 −1 0
−1 2 −1

.
−1 2 −1

0 −1 2

 , F := h2


e

1
n

...
e

n−1
n

 .

Solution for n = 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Two-dimensional Poisson Problem in Ω = (0,1)2

For simplicity we consider Ω = (0,1)× (0,1).
Define a grid on Ω using the grid size h = 1

N , N ∈ N.

Set of grid points

Zh := {(x , y) ∈ Ω | x = z1h, y = z2h with z1, z2 ∈ Z}.

Let ωh := Zh ∩ Ω be the interior points.
Set of points on the boundary are defined by γh := Zh ∩ ∂Ω.

Discretisation of the 2D-Poisson Problem

Let O be the Landau symbol. g = O(hk) means
limh→0 sup |g(h)|

|hk | <∞.
Differential quotient w.r.t. x

u(x − h, y)− 2u(x , y) + u(x + h, y)

h2 =
∂2u
∂x2 (x , y) +O(h2).

Differential quotient w.r.t. y

u(x , y − h)− 2u(x , y) + u(x , y + h)

h2 =
∂2u
∂y2 (x , y) +O(h2).

Therefore, 4u can be approximated by

4u − 1
h2

(
u(x , y − h) + u(x − h, y)

−4u(x , y) + u(x , y + h) + u(x + h, y)
)

= O(h2).

Discretisation of the 2D-Poisson Problem

Setting ui,j := u(ih, jh) we get for −4u = f on ωh

−ui,j−1−ui−1,j+4ui,j−ui+1,j−ui,j+1 = h2fij , i , j ∈ {1, . . . ,N−1}

with fij := f (ih, jh).
The boundary conditions yield

u0,i = uN,i = ui,0 = ui,N = 0, i = 0, . . . ,N.

Sorting the unknown in a lexicographic order

(h,h), (2h,h), . . . ((N − 1)h,h)
(h,2h) (2h,2h), . . . ((N − 1)h,2h)

...
...

...
...

(h, (N − 1)h) (2h, (N − 1)h) . . . ((N − 1)h, (N − 1)h).

we get the unknowns Ui+(N−1)(j−1) = ui,j .

Discretisation of the 2D-Poisson Problem

We obtain the following linear system for U = (Ui)
(N−1)2

i=1 :

AU = F . (2)

with F := (fi)
(N−1)2

i=1 , fi+(N−1)(j−1) = f (ih, jh),
i , j ∈ {1, . . . ,N − 1} and

A :=
1
h2 tridiag(−IN−1,T ,−IN−1) ∈ R(N−1)2×(N−1)2

,

T := tridiag(−1,4,−1) ∈ R(N−1)×(N−1).

Ik is the k -dimensional identity matrix.

Solution of 2D-Poisson Problem

Theorem

The linear system possesses a unique solution. For sufficiently
smooth solutions u of the continuous problem we get

‖Rhu − U‖∞ ≤ Ch2‖u‖C4(Ω).

C is a constant independent of h and u. Rhu ∈ R(N−1)2
is the

restriction of the solution on the interior grid points.

Thus, the approximation is of second order.
The linear system possesses (N − 1)2 unknowns. In three
dimensions we would get (N − 1)3 unknowns.

Excursion to Finite Elements

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

structured grid
1

2

3

4

5

6

7

8

9 10 11 12

13 14 15 16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42
43

44

45

46

47

48

49

50

unstructured grid

Remarks
Finite Element methods are the most popular approach for
solving this kind of problems.
Finite Element methods are defined on grids and are
equipped with certain local basis functions.

Sparsity Pattern of the corresponding matrices

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 206

structured grid

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 304

unstructured grid

A sparsity pattern is given by the non-zero entries of a
matrix
Typically, matrices arising in finite differences or finite
elements are sparse.

Sparsity Pattern and CSR

Storage of non-zero elements and structure using
compressed sparse row (CSR) format.
CSR format stores 3 vectors

1 The first vector contains all non-zero entries. The data is
sorted row-wise.

2 The second vector contains the corresponding column
indices.

3 The third vector stores one entry for each row containing
the starting position of the corresponding data in the first
vector.

CSR format is well suited for matrix vector products.

Example

Store the matrix 
2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


in CSR-format

Start. points 1 3 6 9 12
Column Ind. 1 2 1 2 3 2 3 4 3 4 5 4 5

Data 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2

Example of a Finite Element Solution

Consider the diffusion reaction problem

−4u + u = f in Ω := (0,1)2,
∂u
∂n

= 0 on ∂Ω

with f (x , y) := exp
(
100(−(x − 0.6)2 − (y − 0.6)2)

)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

8

9

x 10
−3

Solution

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 4916

Sparsity Pattern

Outline

1 Poisson Problem and Finite Differences

2 First Steps in MPI

First Example - Hello World Program (I)

#include <stdio.h>
#include <string.h>
#include <mpi.h>

main(int argc, char** argv)
{

int my_rank; /* Rank of process */
int p; /* Number of processes */
int source; /* Rank of sender */
int dest; /* Rank of receiver */
int tag=50; /* Tag for messages */
char message[100]; /* Storage for the message */
MPI_Status status; /* Return status for receive */
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Get_processor_name(processor_name,&namelen);

First Example - Hello World Program (II)

if (my_rank!=0) {
sprintf(message,"Greetings from process %d from %s",
my_rank, processor_name);

dest=0;
MPI_Send(message,strlen(message)+1,

MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
else
{
for (source=1; source <p ; source ++)
{

MPI_Recv(message,100,MPI_CHAR,source,
tag,MPI_COMM_WORLD, &status);

printf("%s\n",message);
}
}

MPI_Finalize();
}

First example

We start the program with p processes. Then there exists
processes with ranks 0,1, . . . ,p − 1.
Each process not equal to 0 sends a message containing
the process number to process 0. Process 0 prints the
message on the screen
Output for 8 process:
Greetings from process 1 from eraping-ThinkPad-X60s
Greetings from process 2 from eraping-ThinkPad-X60s
Greetings from process 3 from eraping-ThinkPad-X60s
Greetings from process 4 from eraping-ThinkPad-X60s
Greetings from process 5 from eraping-ThinkPad-X60s
Greetings from process 6 from eraping-ThinkPad-X60s
Greetings from process 7 from eraping-ThinkPad-X60s

Structure of a MPI program

...
#include <mpi.h>

...
main(int argc, char* argv[]) {

...
/* No MPI functions called before this */
MPI_Init(&argc, &argv);

...
MPI_Finalize();
/* No MPI function called after this */

...
} /* end main */

...

Some Explanations

The global structure is always the same.
All MPI commands start with MPI_. Predefined constants
in MPI are given in capital letters.
Include header file for MPI
#include <mpi.h>

Initialization of MPI
MPI_Init(&argc, &argv);

This has to be the first MPI call in a program!
Finalization of MPI
MPI_Finalize();

This must be the last MPI call in the program.
Almost all MPI commands return an error code using an
integer value.

Communication Environment

int MPI Comm rank (MPI COMM comm, int *rank);
IN:
comm Communicator (handle)
OUT:
rank Number of the process in group comm

The processes reads information about the parallel environment.
For p processes each process will be provided with a rank
between 0 and p − 1.

The first parameter is a communicator. A communicator is a
group of processes, who are able to send messages to each
other.

The communicator MPI_COMM_WORLD is pre-defined.
MPI_COMM_WORLD consists of all used processes.

The second parameter is a pointer to an int. Here, the rank
number of the process is returned. A value between 0 and p− 1.

Communication Environment

int MPI Comm size(MPI Comm comm, int *size)
IN:
comm Communicator (Handle)
OUT:
size Number of processes in comm

returns the number of processes size in the communicator
group comm.

Within this course we will just use MPI_COMM_WORLD. We will
not build our own groups.

Communication Environment

int MPI Get processor name(char *name, int
*resultlen)

IN:

OUT:
name Name of the processor
resultlen Length of the name of the processor

returns the name and length of the processor name.

The maximum length of the processor name is given by
MPI_MAX_PROCESSOR_NAME.

Sending/ Receiving Messages

Sending and receiving from messages is the heart of MPI.
We start with the standard form of sending/receiving of
messages. Alternative possibilities will be discussed later.
Necessary information for sending/ receiving messages

The sender and receiver of the message must be known.
Here, the rank within the communicator group is used.
message
data type of message
In order to distinguish messages, a tag is used. This is an
integer between 0 and at least 215 − 1.

Sending messages

int MPI Send(void* message, int count,
MPI Datatype datatype, int dest, int tag, MPI Comm
comm)

IN:
message Initial address of message
count Length of message
datatype MPI data type of each element of the message
dest Rank number of the receiver
tag Tag of the message
comm Communicator
OUT:

The message is contained in an array starting at the address
message.

The next parameters count and datatype define the required
storage demand of the message.

MPI data types

MPI data types are related to the corresponding C data types.

MPI data type C data type
MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

Receiving Messages

int MPI Recv(void* message, int count,
MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Status *status)

IN:
count maximum length of message
datatype MPI datatype of the elements of the message
source Rank number of the sender
tag Tag of the message
comm Communicator
OUT:
message Initial address of message
status Information about received message

Receiving Messages

The only new object is the status message. The data type
of the status is MPI Status.
MPI Status contains information about the received data.
Using for instance MPI Get count returns the size of the
message. The user does not need to know the size of the
message in advance.
tag does not need to be specified. One can use the
wild-card MPI ANY TAG.
The rank of the sender can be replaced by
MPI ANY SOURCE .

Compiling and starting of parallel programs

Compiling
mpicc Example01.c -o Example01

The name of executive can be determined with the help of
the option −o.
Execution with p processes
mpirun -np p ./Example01

The used CPUs can be determined with the help of
-machinefile file. file contains the names of the
processors.

Point-to-Point Communication

Definition

We call the communication between ONE sender and ONE
receiver point-to-point communication.

Classification of point-to-point communication
Blocking/ non-blocking communication
Buffered/ non-buffered communication
Synchronous/ asynchronous communication

Blocking/ non-blocking communication

Most of the MPI point-to-point routines can be used in
either blocking or non-blocking mode.
A blocking send routine will only return after it is safe to
modify the application buffer (your send data) for reuse.
A blocking receive only returns after the data has arrived
and is ready for use by the program.
Non-blocking send and receive will return almost
immediately. They do not wait for any communication
events to complete.
Non-blocking communications are primarily used to
overlap computation with communication and exploit
possible performance gains.
There are waiting routines to guarantee that the data is
sent.

Buffered/ non-buffered communication

In a buffered communication the data will be buffered.
Then, the sender of a message has not to wait until the
receiver has confirmed sending.
The disadvantage is that the data must be copied twice.
Memory problems for large messages can occur.
The user can control an own address space. This space is
called application buffer.

Synchronous/ asynchronous communication

If there is no communication buffer, the communication has
to be synchronous. The sender cannot send until the
receiver of the message is ready to get the message.
In synchronous mode sender and receiver can only
proceed after sending an receiving of the message is
complete.

	Poisson Problem and Finite Differences
	First Steps in MPI

