Modelling and implementation of algorithms in applied mathematics using MPI

Lecture 3: Linear Systems: Simple Iterative Methods and their parallelization, Programming MPI

G. Rapin

Brazil March 2011

(日) (日) (日) (日) (日) (日) (日)

1 Simple Iterative Methods for linear systems

2 Parallelisation of Iterative Methods

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

1 Simple Iterative Methods for linear systems

2 Parallelisation of Iterative Methods

3 Programming MPI

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ○

Typical Properties of Linear Systems given by discretization of PDEs

Definitions

- We want to solve a linear system Ax = b where A is non-singular.
- The distance between grid points is *h*.
- In 3D applications there are $O(1/h^3)$ grid points.

Properties

The matrices are sparse with mostly non-regular patterns.

(ロ) (同) (三) (三) (三) (○) (○)

- The linear systems are huge with millions of unknowns.
- The condition numbers of the matrices are high.

Direct Methods

- Direct methods computes the exact solution in a finite number of steps; usually a factorization is computed.
- Gauss-elimination is given by

$$A = LR$$
,

where R is an upper right triangle matrix and L is a lower left triangle matrix with ones on the diagonal.

- Linear system Ax = LRx = b can be solved in two steps: Ly = b and then Rx = y.
- Approach is inefficient for sparse systems due to fill-in. The sparsity pattern of A will in general not be preserved.

General Iterative Methods

- We want to solve a linear system Ax = b with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.
- Let $B \in \mathbb{R}^{n \times n}$ a non-singular matrix.
- Using B + (A B) we can rewrite Ax = b as

$$x = B^{-1}(B - A)x + B^{-1}b$$

This is a fixed-point equation.

 Typically, one uses a simple iteration for the solution of the fixed-point iteration

$$x_{k+1} = B^{-1}(B-A)x_k + B^{-1}b, \quad k \in \mathbb{N}_0$$

where x_0 is an arbitrary initial guess.

Mathematical Conditions for B

- B⁻¹ must exist.
- The sequence $(x_n)_n$ converges.

Algorithmic Conditions for B

- Efficient solution of the system Bv = g,
- Fast computation of (B A)v,
- Fast convergence of sequence $(x_n)_n$.

(日) (日) (日) (日) (日) (日) (日)

Introducing

$$F(x) := B^{-1}(B - A)x + B^{-1}b.$$

we get
 $\|F(x) - F(y)\| = \|B^{-1}(B - A)(x - y)\|$
 $\leq \|B^{-1}(B - A)\|\|x - y\|$
 $= \delta \|x - y\|, \quad x, y \in \mathbb{R}^{n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $\delta := \|B^{-1}(B - A)\|$.

Then, the fixed-point theorem of Banach gives

Theorem

Let $\|\cdot\|$ be a vector norm in \mathbb{R}^n and

$$\|C\| := \sup_{x \in \mathbb{R}^n} \frac{\|Cx\|}{\|x\|}, \quad C \in \mathbb{R}^{n \times n}$$

the matrix norm. Assuming $\delta := \|B^{-1}(B - A)\| < 1$, then the sequence $(x_n)_n$ converges for all initial values $x_0 \in \mathbb{R}^n$ to the solution $x \in \mathbb{R}^n$ of Ax = b. The error is bounded by

$$||x_{k+1} - x|| \le \frac{\delta^k}{1-\delta} ||x_1 - x_0||, \quad k \in \mathbb{N}_0.$$

- We have to ensure that $\delta < 1$.
- The spectral radius $\rho(C)$ of a square matrix C is defined by

$$\rho(\boldsymbol{C}) := \max_i |\lambda_i|,$$

where λ_i are the eigenvalues of *C*.

- It can be proved that $(x_n)_n$ converges if and only if $\rho(C) < 1$.
- An upper bound for the convergence speed is given by δ .

(日) (日) (日) (日) (日) (日) (日)

Decompose matrix $A = (a_{ij})$ into

 $A = A_d + A_u + A_o, \quad A_d, A_u, A_o \in \mathbb{R}^{n \times n}$

 $A_d = diag(a_{11}, \ldots, a_{nn})$ is a diagonal matrix and

$$A_{U} := \begin{pmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ a_{31} & a_{32} & 0 & & \\ \vdots & \vdots & \ddots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{n,n-1} & 0 \end{pmatrix}, A_{O} := \begin{pmatrix} 0 & a_{12} & \cdots & \cdots & a_{1n} \\ 0 & a_{23} & \cdots & a_{2n} \\ & \ddots & \ddots & \vdots \\ & & 0 & a_{n-1,n} \\ & & & 0 \end{pmatrix}$$

Choose $B = A_d!$

Algorithm 1: Jacobi method (general)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Choose initial vector
$$u^0 \in \mathbb{R}^n$$

For $k = 1, 2, ...$
For $i = 1, 2, ..., n$
 $u_i^k = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} u_i^{k-1} \right)$.
end i

Inserting the matrix of the Finite Differences we get

Algorithm 2: Jacobi method (Poisson Problem)

Choose initial vector
$$u^0 \in \mathbb{R}^n$$

For $k = 1, 2, ...$
For $j = 1, 2, ..., (N - 1)$
For $i = 1, 2, ..., (N - 1)$
 $u_{ij}^k = \frac{1}{4} \left(u_{i,j-1}^{k-1} + u_{i-1,j}^{k-1} + u_{i,j+1}^{k-1} + u_{i+1,j}^{k-1} + h^2 f_{ij} \right)$
end i
end j

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with h = 1/N.

Choose
$$B = A_d + A_u$$
.

Algorithm 3: Gauss-Seidel method (general)

Choose initial vector
$$u^0 \in \mathbb{R}^n$$

For $k = 1, 2, ..., n$
For $i = 1, 2, ..., n$
 $u_i^k = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} u_i^k - \sum_{j=i+1}^n a_{ij} u_i^{k-1} \right)$.
end i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Gauss-Seidel method applied to the Poisson Problem

Algorithm 4: Gauss-Seidel method (Poisson Problem)

 $\begin{array}{l} \textit{Choose initial vector } u^0 \in \mathbb{R}^n \\ \textit{For } k = 1, 2, \dots \\ \textit{For } j = 1, 2, \dots, (N-1) \\ \textit{For } i = 1, 2, \dots, (N-1) \\ u^k_{ij} = \frac{1}{4} \left(u^k_{i,j-1} + u^k_{i-1,j} + u^{k-1}_{i,j+1} + u^{k-1}_{i+1,j} + h^2 f_{ij} \right) \\ \textit{end } i \\ \textit{end } j \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

M matrices

Definition

We call a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ a *M*-matrix if the following conditions are fulfilled.

■
$$a_{ij} \leq 0, i, j = 1, ..., n, i \neq j.$$

• $A^{-1} \ge 0$ exists.

Remark

The discretized matrices of the Poisson problem using Finite Differences are M-matrices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

If a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is strongly diagonal dominant, i.e.

$$q_\infty := \max_{i=1,...,n} q_i < 1, \quad q_i := \sum_{k=1 \atop k
eq i}^n \left| rac{a_{ik}}{a_{ij}} \right|,$$

then Gauss-Seidel and Jacobi method converges.

Let A be a M matrix. Then, Gauss-Seidel and Jacobi method converge. The spectral radius of the Gauss-Seidel method is smaller than the spectral radius of Jacobi method.

Convergence Criteria

Definition

A matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, n > 1 is called indecompasable, if there are no permutation matrices *P* satisfying

$$\mathsf{P}^t \mathsf{A} \mathsf{P} = \left(egin{array}{cc} \mathsf{A}_{11} & \mathsf{0} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array}
ight)$$

with quadratic matrices A_{11} and A_{22} .

For indecompasable matrices we can show

Theorem

Let A be indecompasable and weakly diagonal dominant, i.e.

$$q_i \leq 1 \qquad \exists j \in \{1, \ldots n\} \mid q_j < 1.$$

Then, Gauss-Seidel and Jacobi method converges.

Eigenvalues of the Poisson Problem

The matrix of the discretisation of the Poisson problem is

$$\begin{array}{lll} \mathcal{A} & := & \frac{1}{h^2} \textit{tridiag}(-I_{N-1}, T, -I_{N-1}) \in \mathbb{R}^{(N-1)^2 \times (N-1)^2}, \\ \mathcal{T} & := & \textit{tridiag}(-1, 4, -1) \in \mathbb{R}^{(N-1) \times (N-1)}. \end{array}$$

The iteration matrix $J := A_d^{-1}(A_u + A_o)$ of Jacobi method is given by

$$J := \frac{1}{4} tridiag(I_{N-1}, B, I_{N-1}) \quad \text{with} \quad B = tridiag(1, 0, 1).$$

The eigenvalues of *J* are

$$\mu^{(k,l)} := \frac{1}{2} \left(\cos \left(\frac{k\pi}{N} \right) + \cos \left(\frac{l\pi}{N} \right) \right), \quad k,l \in \{1,\ldots,N-1\}.$$

■ Using the taylor expansion of cos(·) at 0 yields

$$\cos(x) = 1 - \frac{1}{2}x^2 + \mathcal{O}(x^4)$$

Therefore we get for the spectral radius of J

$$\rho(J) = \max_{k,l} |\mu^{(k,l)}| = \cos(\frac{\pi}{N}) = \cos(\pi h) = 1 - \frac{1}{2}\pi^2 h^2 + \mathcal{O}(h^4).$$

Thus, the convergence depends on the grid distance *h*. For larger problems it converges slower.

SOR method

The Gauss-Seidel method was given by

$$\tilde{u}_{i}^{k} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} u_{i}^{k} - \sum_{j=i+1}^{n} a_{ij} u_{i}^{k-1} \right)$$

Now we use some relaxation. For $\omega \in \mathbb{R}$ we get the SOR method.

$$u_{i}^{k} = (1-\omega)u_{i}^{k-1} + \omega \tilde{u}_{i}^{k}$$

= $(1-\omega)u_{i}^{k-1} + \frac{\omega}{a_{ii}}\left(b_{i} - \sum_{j=1}^{i-1} a_{ij}u_{i}^{k} - \sum_{j=i+1}^{n} a_{ij}u_{i}^{k-1}\right)$

Using matrix notation we obtain

$$(A_d + \omega A_u)u^k = ((1 - \omega)A_d - \omega A_o)u^{k-1} + \omega b, \quad \omega \in \mathbb{R}.$$

Convergence Speed

Assume $\Lambda := \rho(A_d^{-1}(A_u + A_o)) < 1$. Then the spectral radius of

$$T(\omega) = (A_d + \omega A_u)^{-1} [(1 - \omega)A_d - \omega A_o]$$

will be minimized by

$$\omega_0=\frac{2}{1+\sqrt{1-\Lambda^2}}>1$$

with

$$\rho(T(\omega_0)) = \frac{1-\sqrt{1-\Lambda^2}}{1+\sqrt{1-\Lambda^2}}.$$

For the Poisson problem we have $\Lambda = 1 - O(h^2)$: Therefore we obtain

$$\rho(T(\omega_0)) = 1 - \mathcal{O}(h).$$

- The standard Gauss-Seidel method is given by $\omega = 1$.
- The method is called successive over-relaxation method, since faster convergence is achieved for ω > 1.
- Let us assume that A is symmetric and positive definite, i.e. x^TAx > 0 for all x ∈ ℝⁿ \ {0}. Then, one can prove that the SOR method converges for ω ∈ (0, 2).

(日) (日) (日) (日) (日) (日) (日)

- Relaxation can be used for Jacobi method, too.
- It is defined by

$$u^{k} = (I - \omega A_d^{-1} A) u^{k-1} + \omega A_d^{-1} b.$$

If the spectrum of $J := -A_d^{-1}(A_u + A_o)$ is real, the optimal relaxation parameter is

$$\omega_0 = \frac{2}{2 - \lambda_{min} - \lambda_{max}}$$

(日) (日) (日) (日) (日) (日) (日)

 λ_{min} is the minimal eigenvalue of J and λ_{max} is the maximal eigenvalue.

1 Simple Iterative Methods for linear systems

2 Parallelisation of Iterative Methods

3 Programming MPI

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

- The parallelisation of Jacobi method is quite straight forward in contrast to the Gauss-Seidel method.
- Today, Jacobi and Gauss-Seidel method are rarely used as linear solvers due to their slow convergence.
- Krylov solvers like the conjugate gradient (CG) method are more appropriate.
- But Jacobi and Gauss-Seidel method are often used as preconditioners for Krylov methods or smoothers for multi grid approaches.

(日) (日) (日) (日) (日) (日) (日)

- For parallelisation we decompose the matrix A ∈ ℝ^{n×n} into sub-matrices.
- Assume that we have m = p · q processes. The sub matrices should have approximately the same size.
- Considering finite differences for each update the values of 4 neighboring points are needed. This information has to be sent.
- Point-to-Point communication is necessary.
- For the stopping criterion a global communication step is required.

(ロ) (同) (三) (三) (三) (○) (○)

Halo Points

Halo Points The used points on the neighboring domains are called *halo points* or *ghost points*.

Parallel Version of Jacobi method

Algorithm 5: Jacobi method (parallel)

- Set error > TOL
- WHILE *error* > *TOL*
- Perform on process i:
 - 1 Compute all own components of the current iteration.
 - 2 Send all current values on the local boundary to the neighboring processes.
 - 3 Receive the current values on the ghost points from the neighboring processes.

Compute the current residual error = ||b - Ax||.
EndWhile

- Normally, one uses for step 2 and step 3 blocking communication.
- The performance can be increased by using non-blocking communication. It is possible that on a processes several iteration steps are executed without updating the values on the ghost points.

(ロ) (同) (三) (三) (三) (○) (○)

- Then, one gets a different iteration sequence.
- This is especially attractive for shared-memory architectures because scheduling can be weakened.

- Considering our finite differences scheme for the k-th approximation at position (i, j), we need the already updated values u^k_{i-1,j} and u^k_{i,j-1}.
- Therefore the parallelisation is not obvious.
- The solution is an appropriate sorting and renumbering of the unknowns.
- Two methods are proposed: Red-Black Numbering and Wavefront Numbering

(日) (日) (日) (日) (日) (日) (日)

Wavefront Numbering

Wavefront Numbering for a grid with 36 interior grid points

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Using 36 unknowns and 6 processes we get

<i>P</i> ₁ :	1	2	4	7	11	16	22	27	31	34	36
P ₂ :		3	5	8	12	17	23	28	32	35	
P ₃ :			6	9	13	18	24	29	33		
P ₄ :				10	14	19	25	30			
P ₅ :					15	20	26				
P ₆ :						21					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Wavefront Numbering

- The components of the diagonal can be computed in parallel.
- Essential disadvantage: the parallelisation is not uniform.
 First, the degree of parallelisation increases and finally decreases.
- Using a P × P grid with P processes, 2P 1 steps are necessary for one iteration step.
- The average degree of parallelisation is

$$\frac{1}{2P-1} \left(\sum_{i=1}^{P} i + \sum_{i=1}^{P-1} i \right) = \frac{P^2}{2P-1}$$

- Therefore the maximum speedup is ca. p/2 in this case.
- We obtain the same sequence of solutions as in the sequential algorithm.

Wavefront Numbering

Now we consider kP × kP grid, k ∈ N, with P processes.
We split the grid in k stripes.

- In each stripe with kP² unknowns, kP + P 1 steps are necessary.
- The average degree of parallelisation is

$$\frac{1}{kP+P-1}\left(2\sum_{i=1}^{P-1}i+((k-1)P+1)P\right)=\frac{kP^2}{kP+P-1}.$$

Then, the theoretical speed-up is ca. $kP_d/(k \pm 1)$.

Considering a quadratic grid the grid points are colored with red (\bullet) and black (\blacksquare) in such a way that neighboring nodes have different colors.

For the 16 above points we get the linear system

$$\boldsymbol{A} = \left(\begin{array}{cc} \boldsymbol{D}_r & -\boldsymbol{C} \\ -\boldsymbol{C}^T & \boldsymbol{D}_b \end{array} \right)$$

with diagonal matrices $D_r := D_b := 4I_8$. The matrix *C* is given by

•

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Using the Gauss-Seidel method

$$(A_d+A_u)u^k=-A_ou^{k-1}+b.$$

and the special structure, we get

$$\begin{pmatrix} D_r & 0 \\ -C^T & D_b \end{pmatrix} \begin{pmatrix} u_r^k \\ u_b^k \end{pmatrix} = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_r^{k-1} \\ u_b^{k-1} \end{pmatrix} + \begin{pmatrix} b_r \\ b_b \end{pmatrix}$$

with

$$u^{k} = \left(egin{array}{c} u^{k}_{r} \ u^{k}_{b} \end{array}
ight), b = \left(egin{array}{c} b_{r} \ b_{b} \end{array}
ight).$$

Therefore we obtain the following two equations:

$$D_r u_r^k = C u_b^{k-1} + b_r$$
$$D_b u_b^k - C^T u_r^k = b_b.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks

If the 'black'-values u^{k-1}_b are known, the 'red'-values can be computed in parallel:

$$u_r^k = D_r^{-1} \left(C u_b^{k-1} + b_r \right).$$

Then, the 'black' points can be computed in parallel:

$$u_b^k = D_b^{-1} \left(C^T u_r^k + b_b \right).$$

- Thus, the algorithm scales perfectly.
- Notice, that the renumbering of the matrix A changes the iteration scheme.
- But one can prove that our application converges since the matrix A is symmetric and positive definite.

Parallel Distribution

Distribution of the nodes of a 4×4 grid on 4 processes

Parallel Gauss-Seidel method (Red-Black Numbering)

Algorithm 6: Parallel Gauss-Seidel method (Red-Black Numbering)

- While error > TOL; execute on process i:
 - Compute for all values at 'red'-points a new approximation.
 - Send the 'red'-values at the border of the sub-domains to the neighboring processes.
 - Receive the new 'red'-values from the processes.

(日) (日) (日) (日) (日) (日) (日)

- Compute for all values at 'black'-points a new approximation.
- Send the 'black'-values at the border of the sub-domains to the neighboring processes.
- Receive the new 'black'-values from the processes.
- Compute the residual error $= \|b Au^k\|$.
- EndWhile

1 Simple Iterative Methods for linear systems

2 Parallelisation of Iterative Methods

3 Programming MPI

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

- Up to now we have seen Point-to-Point communication. There, only two processes are involved: a sender and a receiver.
- Communication patterns, where a group of processes is involved, is called *collective communication*. Usually, the number of involved processes is larger than two.

(日) (日) (日) (日) (日) (日) (日)

- Different classes of collective commands
 - Broadcast routines
 - Gather/Scatter routines
 - Reduction routines
 - Syncronization routines

Broadcast is a collective communication, where one sender sends a message to all other processes in the communicator group.

	int MPI_Bcast(void* message, int count, MPI_Datatype datatype, int root, MPI_Comm comm)
IN: message count datatype root OUT:	message (only process root) Length of message datatype of message process number of sender
message	message (not process root)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Remarks

- Such routines are usually used for distributing data.
- Please observe that the syntax is the same for all processes, although the sender provides data and all others receive data.
- Defining communicators broadcasts can be just sent to subgroups.
- Example

```
MPI_Bcast(a_ptr, 1, MPI_FLOAT,
    0, MPI_COMM_WORLD);
```

(ロ) (同) (三) (三) (三) (○) (○)

All processes in a group contributes data to reduction routines. The data is combined using binary operations like additions or computing maxima or minima.

	int MPI_Reduce(void* operand, void* result, int count, MPI_Datatype datatype, MPI_Op operator, int root, MPI_Comm comm)
IN:	
operand	(local) operand of operation
count	Length of the array for operand
datatype	data type of operand
operator	binary operator
root	receiver of result
comm	communicator
OUT:	
result	Result of operation

- All processes in a group have to start MPI_Reduce.
- The process will only continue after finishing the reduction routine. The parameters count, datatype, perator and root must be identical on all processes.
- Why do all processes have an entry for the result? The function call is the same on all processes. Use a 'dummy parameter' for all non-root processes.

Example

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Binary Operations

The binary operation is fixed by the choice of operator. The data type of operator is MPI_Op.

MPI - data type	Meaning
MPI_MAX	Maximum
MPI_MIN	Minimum
MPI_SUM	Sum
MPI_PROD	Procukt
MPI_LAND	Logical and
MPI_BAND	Bit-wise and
MPI_LOR	Logical or
MPI_BOR	Bit-wise or
MPI_LXOR	Logical exclusive or
MPI_BXOR	Bit-wise exclusive or
MPI_MAXLOC	Maximum and Location of Maximums
MPI_MINLOC	Minimum and Location of Minimums

Very often the result of the reduction routine is required on all processes. Then, you can use

	int MPI_Allreduce(void* operand, void* result, int count, MPI_DATATYPE datatype, MPI_Op operator, MPI_Comm comm)
IN:	
operand	(local) operand of operation
count	Length of array for operand
datatype	data type of Operand
operator	binary Operator
comm	communicator
OUT:	
result	result of binary operation

In contrast to MPI_Reduce we do not need have an entry for root.

All processes can be synchronized using MPI_Barrier.

	int MPI_Barrier(MPI_Comm comm)
IN: comm OUT:	communicator

- The call is started on all processes.
- All processes wait until the last process has called the function.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This command is especially used for time stopping issues.

Scatter and Gather Routines

Now we consider functions for distributing ('scattering') and collecting ('gathering') data.

Example: $A \cdot \mathbf{b}$ with $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^{m}$. This can be rewritten as

$$egin{aligned} \mathsf{A}\mathbf{b} = \left(egin{aligned} (a_1,\mathbf{b})\ (a_2,\mathbf{b})\ dots\ (a_2,\mathbf{b})\ dots\ (a_n,\mathbf{b}) \end{array}
ight) \end{aligned}$$

using the rows a_i of A.

- Scatter the matrix A.
- Broadcast *b* to all processes.
- Compute (a_i, b) locally.
- Gather results and send it to process 0.

Gather data

	int MPI_Gather (void* send_data, int send_count, MPI_Datatype send_type, void* recv_data, int recv_count, int recv_type, int root, MPI_Comm comm)
IN: send data	sent data
send_count	array length of sent data
send_type	data type of sent data
recv₋count	length of received data from each process
recv_type	data type of received data
root	process number of receiver
comm	communicator
OUT:	
recv_data	received message

Gather data

- All processes send data send_data of data type send_type to process root.
- The data will be combined using the sequence given by the process numbers. The result recv_data with data type recv_type is returned to root.
- Normally, recv_type and send_type resp. recv_count and send_count are equal.
- The total size of the received message recv_data is not a parameter.
- Example

Scatter data

	int MPI_Scatter(void* send_data, int send_count, MPI_Datatype send_type, void* recv_data, int recv_count, MPI_Datatype recv_type, int root, MPI_Comm comm)
IN: send_data send_count send_type recv_count recv_type root comm OUT: recv_data	data Length of split data data type of sent data length of received message data type of received message process number of root communicator received data