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Typical Properties of Linear Systems given by
discretization of PDEs

Definitions
We want to solve a linear system Ax = b where A is
non-singular.
The distance between grid points is h.
In 3D applications there are O(1/h3) grid points.

Properties
The matrices are sparse with mostly non-regular patterns.
The linear systems are huge with millions of unknowns.
The condition numbers of the matrices are high.



Direct Methods

Direct methods computes the exact solution in a finite
number of steps; usually a factorization is computed.
Gauss-elimination is given by

A = LR,

where R is an upper right triangle matrix and L is a lower
left triangle matrix with ones on the diagonal.
Linear system Ax = LRx = b can be solved in two steps:
Ly = b and then Rx = y .
Approach is inefficient for sparse systems due to fill-in. The
sparsity pattern of A will in general not be preserved.



General Iterative Methods

We want to solve a linear system Ax = b with A ∈ Rn×n

and b ∈ Rn.
Let B ∈ Rn×n a non-singular matrix.
Using B + (A− B) we can rewrite Ax = b as

x = B−1(B − A)x + B−1b

This is a fixed-point equation.
Typically, one uses a simple iteration for the solution of the
fixed-point iteration

xk+1 = B−1(B − A)xk + B−1b, k ∈ N0

where x0 is an arbitrary initial guess.



Splitting matrix B

Mathematical Conditions for B
B−1 must exist.
The sequence (xn)n converges.

Algorithmic Conditions for B
Efficient solution of the system Bv = g,
Fast computation of (B − A)v ,
Fast convergence of sequence (xn)n.



Lipschitz Continuity

Introducing
F (x) := B−1(B − A)x + B−1b.

we get

‖F (x)− F (y)‖ = ‖B−1(B − A)(x − y)‖
≤ ‖B−1(B − A)‖‖x − y‖
= δ‖x − y‖, x , y ∈ Rn

with δ := ‖B−1(B − A)‖.



Convergence

Then, the fixed-point theorem of Banach gives

Theorem

Let ‖ · ‖ be a vector norm in Rn and

‖C‖ := sup
x∈Rn

‖Cx‖
‖x‖

, C ∈ Rn×n

the matrix norm. Assuming δ := ‖B−1(B − A)‖ < 1, then the
sequence (xn)n converges for all initial values x0 ∈ Rn to the
solution x ∈ Rn of Ax = b. The error is bounded by

‖xk+1 − x‖ ≤ δk

1− δ
‖x1 − x0‖, k ∈ N0.



Remarks to convergence

We have to ensure that δ < 1.
The spectral radius ρ(C) of a square matrix C is defined by

ρ(C) := max
i
|λi |,

where λi are the eigenvalues of C.
It can be proved that (xn)n converges if and only if
ρ(C) < 1.
An upper bound for the convergence speed is given by δ.



Choices for B

Decompose matrix A = (aij) into

A = Ad + Au + Ao, Ad ,Au,Ao ∈ Rn×n

Ad = diag(a11, . . . ,ann) is a diagonal matrix and

Au :=


0

a21 0
a31 a32 0

.

.

.
.
.
.

. . .
. . .

an1 an2 · · · an,n−1 0

 , Ao :=


0 a12 . . . . . . a1n

0 a23 . . . a2n

. . .
. . .

.

.

.
0 an−1,n

0





Jacobi method

Choose B = Ad !

Algorithm 1: Jacobi method (general)

Choose initial vector u0 ∈ Rn

For k = 1,2, . . .
For i = 1,2, . . . ,n

uk
i = 1

aii

(
bi −

∑n
j=1
j 6=i

aijuk−1
i

)
.

end i



Jacobi method for Finite-Differences

Inserting the matrix of the Finite Differences we get

Algorithm 2: Jacobi method (Poisson Problem)

Choose initial vector u0 ∈ Rn

For k = 1,2, . . .
For j = 1,2, . . . , (N − 1)
For i = 1,2, . . . , (N − 1)

uk
ij = 1

4

(
uk−1

i,j−1 + uk−1
i−1,j + uk−1

i,j+1 + uk−1
i+1,j + h2fij

)
end i

end j

with h = 1/N.



Gauss-Seidel method

Choose B = Ad + Au.

Algorithm 3: Gauss-Seidel method
(general)

Choose initial vector u0 ∈ Rn

For k = 1,2, . . .
For i = 1,2, . . . ,n
uk

i = 1
aii

(
bi −

∑i−1
j=1 aijuk

i −
∑n

j=i+1 aijuk−1
i

)
.

end i



Gauss-Seidel method applied to the Poisson
Problem

Algorithm 4: Gauss-Seidel method
(Poisson Problem)

Choose initial vector u0 ∈ Rn

For k = 1,2, . . .
For j = 1,2, . . . , (N − 1)
For i = 1,2, . . . , (N − 1)

uk
ij = 1

4

(
uk

i,j−1 + uk
i−1,j + uk−1

i,j+1 + uk−1
i+1,j + h2fij

)
end i

end j



M matrices

Definition

We call a matrix A = (aij) ∈ Rn×n a M-matrix if the following
conditions are fulfilled.

aij ≤ 0, i , j = 1, . . .n, i 6= j .
A−1 ≥ 0 exists.

Remark
The discretized matrices of the Poisson problem using Finite
Differences are M-matrices.



Convergence Criteria

If a matrix A = (aij) ∈ Rn×n is strongly diagonal dominant, i.e.

q∞ := max
i=1,...,n

qi < 1, qi :=
n∑

k=1
k 6=i

∣∣∣∣aik

aii

∣∣∣∣ ,
then Gauss-Seidel and Jacobi method converges.
Let A be a M matrix. Then, Gauss-Seidel and Jacobi
method converge. The spectral radius of the Gauss-Seidel
method is smaller than the spectral radius of Jacobi
method.



Convergence Criteria

Definition

A matrix A = (aij) ∈ Rn×n, n > 1 is called indecompasable, if
there are no permutation matrices P satisfying

P tAP =
(

A11 0
A21 A22

)
with quadratic matrices A11 and A22.

For indecompasable matrices we can show

Theorem

Let A be indecompasable and weakly diagonal dominant, i.e.

qi ≤ 1 ∃ j ∈ {1, . . .n} | qj < 1.

Then, Gauss-Seidel and Jacobi method converges.



Eigenvalues of the Poisson Problem

The matrix of the discretisation of the Poisson problem is

A :=
1
h2 tridiag(−IN−1,T ,−IN−1) ∈ R(N−1)2×(N−1)2

,

T := tridiag(−1,4,−1) ∈ R(N−1)×(N−1).

The iteration matrix J := A−1
d (Au + Ao) of Jacobi method is

given by

J :=
1
4

tridiag(IN−1,B, IN−1) with B = tridiag(1,0,1).

The eigenvalues of J are

µ(k ,l) :=
1
2

(
cos

(
kπ
N

)
+ cos

(
lπ
N

))
, k , l ∈ {1, . . . ,N−1}.



Spectral Radius of the Poisson Problem

Using the taylor expansion of cos(·) at 0 yields

cos(x) = 1− 1
2

x2 +O(x4)

Therefore we get for the spectral radius of J

ρ(J) = max
k ,l
|µ(k ,l)| = cos(

π

N
) = cos(πh) = 1−1

2
π2h2+O(h4).

Thus, the convergence depends on the grid distance h.
For larger problems it converges slower.



SOR method

The Gauss-Seidel method was given by

ũk
i =

1
aii

bi −
i−1∑
j=1

aijuk
i −

n∑
j=i+1

aijuk−1
i

 .

Now we use some relaxation. For ω ∈ R we get the SOR
method.

uk
i = (1− ω)uk−1

i + ωũk
i

= (1− ω)uk−1
i +

ω

aii

bi −
i−1∑
j=1

aijuk
i −

n∑
j=i+1

aijuk−1
i

 .

Using matrix notation we obtain

(Ad + ωAu)uk = ((1− ω)Ad − ωAo) uk−1 + ωb, ω ∈ R.



Convergence Speed

Assume Λ := ρ(A−1
d (Au + Ao)) < 1. Then the spectral radius of

T (ω) = (Ad + ωAu)−1[(1− ω)Ad − ωAo]

will be minimized by

ω0 =
2

1 +
√

1− Λ2
> 1

with

ρ(T (ω0)) =
1−
√

1− Λ2

1 +
√

1− Λ2
.

For the Poisson problem we have Λ = 1−O(h2):
Therefore we obtain

ρ(T (ω0)) = 1−O(h).



Remarks

The standard Gauss-Seidel method is given by ω = 1.
The method is called successive over-relaxation method,
since faster convergence is achieved for ω > 1.
Let us assume that A is symmetric and positive definite,
i.e. xT Ax > 0 for all x ∈ Rn \ {0}. Then, one can prove that
the SOR method converges for ω ∈ (0,2).



Jacobi Relaxation (JOR)

Relaxation can be used for Jacobi method, too.
It is defined by

uk = (I − ωA−1
d A)uk−1 + ωA−1

d b.

If the spectrum of J := −A−1
d (Au + Ao) is real, the optimal

relaxation parameter is

ω0 =
2

2− λmin − λmax
.

λmin is the minimal eigenvalue of J and λmax is the
maximal eigenvalue.
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Parallelization of Jacobi and Gauss-Seidel method

The parallelisation of Jacobi method is quite straight
forward in contrast to the Gauss-Seidel method.
Today, Jacobi and Gauss-Seidel method are rarely used as
linear solvers due to their slow convergence.
Krylov solvers like the conjugate gradient (CG) method are
more appropriate.
But Jacobi and Gauss-Seidel method are often used as
preconditioners for Krylov methods or smoothers for multi
grid approaches.



Decomposition

For parallelisation we decompose the matrix A ∈ Rn×n into
sub-matrices.
Assume that we have m = p · q processes. The sub
matrices should have approximately the same size.
Considering finite differences for each update the values of
4 neighboring points are needed. This information has to
be sent.
Point-to-Point communication is necessary.
For the stopping criterion a global communication step is
required.



Halo Points

*

Halo Points The used points on the neighboring domains are
called halo points or ghost points.



Parallel Version of Jacobi method

Algorithm 5: Jacobi method (parallel)

Set error > TOL
WHILE error > TOL
Perform on process i:

1 Compute all own components of the current
iteration.

2 Send all current values on the local boundary to
the neighboring processes.

3 Receive the current values on the ghost points
from the neighboring processes.

Compute the current residual error = ‖b − Ax‖.
EndWhile



Remarks

Normally, one uses for step 2 and step 3 blocking
communication.
The performance can be increased by using non-blocking
communication. It is possible that on a processes several
iteration steps are executed without updating the values on
the ghost points.
Then, one gets a different iteration sequence.
This is especially attractive for shared-memory
architectures because scheduling can be weakened.



Parallelisation of Gauss-Seidel method

Considering our finite differences scheme for the k -th
approximation at position (i , j), we need the already
updated values uk

i−1,j and uk
i,j−1.

Therefore the parallelisation is not obvious.
The solution is an appropriate sorting and renumbering of
the unknowns.
Two methods are proposed: Red-Black Numbering and
Wavefront Numbering



Wavefront Numbering

1 2 4 7 11 16

3 5 8 12 17 22

6 9 13 18 23 27

10 14 19 24 28 31

15 20 25 29
32 34

21 26 30 33 35 36

Wavefront Numbering for a grid with 36 interior grid points



Wavefront Numbering

Using 36 unknowns and 6 processes we get

P1 : 1 2 4 7 11 16 22 27 31 34 36
P2 : 3 5 8 12 17 23 28 32 35
P3 : 6 9 13 18 24 29 33
P4 : 10 14 19 25 30
P5 : 15 20 26
P6 : 21



Wavefront Numbering

The components of the diagonal can be computed in
parallel.
Essential disadvantage: the parallelisation is not uniform.
First, the degree of parallelisation increases and finally
decreases.
Using a P × P grid with P processes, 2P − 1 steps are
necessary for one iteration step.
The average degree of parallelisation is

1
2P − 1

(
P∑

i=1

i +
P−1∑
i=1

i

)
=

P2

2P − 1
.

Therefore the maximum speedup is ca. p/2 in this case.
We obtain the same sequence of solutions as in the
sequential algorithm.



Wavefront Numbering

Now we consider kP × kP grid, k ∈ N, with P processes.
We split the grid in k stripes.

In each stripe with kP2 unknowns, kP + P − 1 steps are
necessary.
The average degree of parallelisation is

1
kP + P − 1

(
2

P−1∑
i=1

i + ((k − 1)P + 1)P

)
=

kP2

kP + P − 1
.

Then, the theoretical speed-up is ca. kP/(k + 1).



Red-Black Numbering

Considering a quadratic grid the grid points are colored with red
(•) and black (�) in such a way that neighboring nodes have
different colors.

1 2

3 4

5 6

7 8

9
10

11 12

13 14

15 16



Red-Black Numbering

For the 16 above points we get the linear system

A =

(
Dr −C
−CT Db

)
with diagonal matrices Dr := Db := 4I8. The matrix C is given
by

C =



1 1
1 1 1
1 1 1 1

1 1 1
1 1 1

1 1 1 1
1 1 1

1 1


.



Red-Black Numbering

Using the Gauss-Seidel method

(Ad + Au)uk = −Aouk−1 + b.

and the special structure, we get(
Dr 0
−CT Db

)(
uk

r
uk

b

)
=

(
0 C
0 0

)(
uk−1

r
uk−1

b

)
+

(
br
bb

)
with

uk =

(
uk

r
uk

b

)
,b =

(
br
bb

)
.

Therefore we obtain the following two equations:

Dr uk
r = Cuk−1

b + br ,

Dbuk
b − CT uk

r = bb.



Remarks

If the ’black’-values uk−1
b are known, the ’red’-values can

be computed in parallel:

uk
r = D−1

r

(
Cuk−1

b + br

)
.

Then, the ’black’ points can be computed in parallel:

uk
b = D−1

b

(
CT uk

r + bb

)
.

Thus, the algorithm scales perfectly.
Notice, that the renumbering of the matrix A changes the
iteration scheme.
But one can prove that our application converges since the
matrix A is symmetric and positive definite.



Parallel Distribution

5 13

15 7

6 14

8
16

11 3

1 9 2 10

12 4

P P

PP

1 2

3 4

Distribution of the nodes of a 4× 4 grid on 4 processes



Parallel Gauss-Seidel method (Red-Black
Numbering)

Algorithm 6: Parallel Gauss-Seidel method
(Red-Black Numbering)

While error > TOL; execute on process i:
Compute for all values at ’red’-points a new
approximation.
Send the ’red’-values at the border of the
sub-domains to the neighboring processes.
Receive the new ’red’-values from the processes.
Compute for all values at ’black’-points a new
approximation.
Send the ’black’-values at the border of the
sub-domains to the neighboring processes.
Receive the new ’black’-values from the
processes.

Compute the residual error = ‖b − Auk‖.
EndWhile
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Collective Communication

Up to now we have seen Point-to-Point communication.
There, only two processes are involved: a sender and a
receiver.
Communication patterns, where a group of processes is
involved, is called collective communication. Usually, the
number of involved processes is larger than two.
Different classes of collective commands

Broadcast routines
Gather/Scatter routines
Reduction routines
Syncronization routines



Brodcast

Broadcast is a collective communication, where one sender
sends a message to all other processes in the communicator
group.

int MPI Bcast( void* message, int count,
MPI Datatype datatype, int root, MPI Comm
comm)

IN:
message message (only process root)
count Length of message
datatype datatype of message
root process number of sender
OUT:
message message (not process root)



Remarks

Such routines are usually used for distributing data.
Please observe that the syntax is the same for all
processes, although the sender provides data and all
others receive data.
Defining communicators broadcasts can be just sent to
subgroups.
Example

MPI_Bcast(a_ptr, 1, MPI_FLOAT,
0, MPI_COMM_WORLD);



Reduction Routines

All processes in a group contributes data to reduction routines.
The data is combined using binary operations like additions or
computing maxima or minima.

int MPI Reduce(void* operand, void* result, int
count, MPI Datatype datatype, MPI Op operator, int
root, MPI Comm comm)

IN:
operand (local) operand of operation
count Length of the array for operand
datatype data type of operand
operator binary operator
root receiver of result
comm communicator
OUT:
result Result of operation



Reduction Routines

All processes in a group have to start MPI_Reduce.
The process will only continue after finishing the reduction
routine. The parameters count, datatype, perator and
root must be identical on all processes.
Why do all processes have an entry for the result? The
function call is the same on all processes. Use a ’dummy
parameter’ for all non-root processes.
Example
MPI_Reduce(&integral, &total, 1, MPI_FLOAT,

MPI_SUM, 0, MPI_COMM_WORLD);



Binary Operations

The binary operation is fixed by the choice of operator. The
data type of operator is MPI Op.

MPI - data type Meaning
MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Procukt
MPI LAND Logical and
MPI BAND Bit-wise and
MPI LOR Logical or
MPI BOR Bit-wise or
MPI LXOR Logical exclusive or
MPI BXOR Bit-wise exclusive or
MPI MAXLOC Maximum and Location of Maximums
MPI MINLOC Minimum and Location of Minimums



Reduction Routines

Very often the result of the reduction routine is required on all
processes. Then, you can use

int MPI Allreduce( void* operand, void* result, int
count, MPI DATATYPE datatype, MPI Op operator,
MPI Comm comm)

IN:
operand (local) operand of operation
count Length of array for operand
datatype data type of Operand
operator binary Operator
comm communicator
OUT:
result result of binary operation

In contrast to MPI Reduce we do not need have an entry for root.



Barrier Function

All processes can be synchronized using MPI Barrier.

int MPI Barrier( MPI Comm comm)
IN:
comm communicator
OUT:

The call is started on all processes.

All processes wait until the last process has called the function.

This command is especially used for time stopping issues.



Scatter and Gather Routines

Now we consider functions for distributing (’scattering’) and
collecting (’gathering’) data.
Example: A · b with A ∈ Rn×m and b ∈ Rm.
This can be rewritten as

Ab =


(a1,b)
(a2,b)

...
(an,b)


using the rows ai of A.

Scatter the matrix A.
Broadcast b to all processes.
Compute (ai ,b) locally.
Gather results and send it to process 0.



Gather data

int MPI Gather ( void* send data, int send count,
MPI Datatype send type, void* recv data, int
recv count, int recv type, int root, MPI Comm
comm)

IN:
send data sent data
send count array length of sent data
send type data type of sent data
recv count length of received data from each process
recv type data type of received data
root process number of receiver
comm communicator
OUT:
recv data received message



Gather data

All processes send data send_data of data type
send_type to process root.
The data will be combined using the sequence given by
the process numbers.The result recv_data with data
type recv_type is returned to root.
Normally, recv_type and send_type resp.
recv_count and send_count are equal.
The total size of the received message recv_data is not
a parameter.
Example
MPI_Gather(local, n/p, MPI_FLOAT,

global,n/p, MPI_FLOAT,
0, MPI_COMM_WORLD);



Scatter data

int MPI Scatter( void* send data, int send count,
MPI Datatype send type, void* recv data, int
recv count, MPI Datatype recv type, int root,
MPI Comm comm)

IN:
send data data
send count Length of split data
send type data type of sent data
recv count length of received message
recv type data type of received message
root process number of root
comm communicator
OUT:
recv data received data
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