Modelling and implementation of

algorithms in applied mathematics using

MPI

Lecture 4: Conjugate Gradient (CG) method,
Programming MPI

G. Rapin

Brazil
March 2011

Kl Conjugate Gradient Method

B Programming MPI

Kl Conjugate Gradient Method

Conjugate Gradient Method

m Today, simple iterative methods like Gauss-Seidel or
Jacobi method are not used very often in practice. But they
are very important as smoother in multi grid methods.

m Krylov subspace methods have become quite popular.

m The most applied Krylov method for symmetric, positive
definite problems is the conjugate gradient (CG) method.

m The most popular Krylov subspace methods for

non-symmetric problems are BiCG, GMRES ord
BiCGStab.

m The conjugate gradient (CG) method was invented by
M.R. HESTENES and E. STIEFEL and was published in
1952.

Problem Statement

Consider the linear system

Ax = b. (1)

Let the matrix A € R™" be
m symmetric, i.e. A= A’, and
m positive definite, i.e.

xTAx >0, x\{0}eR"

The right hand side is given by b € R”".

Characterization

The solution x € R" of the linear system (1) can be identified by
the solution of the optimization problem

Minimize Q(x) := %XTAX —b’x, xeR" (2)

Lemma

x € R" js a solution of (1) if and only if it is a solution of (2).

Proof
Is x a solution of (2), then there holds

0=(VQ(x))T = Ax —b.

The condition is also sufficient since the Hesse matrix A is
s.p.d.

Idea of the CG method

m Instead of attacking the linear system directly techniques
for the solution of the global optimization problem (2) are
used.

m Most of the iterative approaches in global optimization are
based on sequences

XK = XK e p,

There, x¥ is the previous iteration, p” is the search
direction and «y is the step size.

m The step size a, can be determined by

Q(Xk—H) _ Q(Xk + Oékpk) — m|€% Q(Xk + Oékpk)
ak

for a given search direction.

m Thus, Q is minimized on the straight line
G := {x = x¥+ ppk, p € R}.
m Inserting Q yields

9la) = Q¥+ ap) =
%(xk + ap)TAGK + ap) — bT (x5 + ap)
;

— E(pk)TApk . O[2

m Minimizing q yields

0=q'(a) = (p") AP - a + (p¥)T (AX* — b).

Theorem

Assume that the search direction p* # 0 has already been
determined. Then, we obtain the new iteration
XK1 = xK 4 a, pX with

(P*)T(Ax* — b)
(p*)T Apk

Qg = —

Remark
Now the search path has to be determined.

Search Direction - Choice 1

m Use circularly the unity vectors e; as search directions

pO:e17 p1 =@e,...,p
m We get

(e))"Aej=a; and (&)"(Ax —b)= Za,]x] b;.
m Inserting the choice (3) yields

k k—1 k—1 _ —1
X" =x +oak_1p akk (Z aX; —) €k

fork=0,1,...,n—1.

Search Direction - Choice 1

m Thus, only the k-th component of the vector is updated.
m |f we consider one cycle, we get

" am (bk B Z akl Z i X) X=Xk A

j<k j>k

m Therefore, one cycle is one Gauss-Seidel iteration.

Search Direction - Choice 2

m The steepest descent is given by the negative gradient of
Q.

m Thus, we choose
pK = —(VQ(x*)T = b— Axk.
m Then, the step size can be computed as

(Axk — b)T(Axk — b)

k= (AXK —b)TA(Axk — b)’

m The step size is positive, if x¥ is not the solution.

Visualization of Steepest Descent

Steepest Descent -

We consider Ax = b with

=(5n) e (R) e

using the start vector (—9, —1) and solution (1, 1). Reduction of
euclidean norm by 104

M=1, =2 AM=1, =10
9 iterations 41 iterations

Search Direction - Choice 3

Idea:
Determine the search path p/ in such a way p* is A-conjugated
w.r.t. the previous search paths p%, p',..., p* .

Definition
Two vectors x, y € R” are called A-conjugated, if xT Ay = 0.

We can prove

Assume, that p°, p', ..., p"~' # 0 are pairwise A-conjugated
vectors. Then, the scheme
XK+ = Xk 4 g, ok

converges in at most n steps against the exact solution. « is
given by (3).

Algorithm 1: Conjugate Gradient (CG) method

m Choose initial vector x°.
mSetpP =0 =Ax"—b
m Compute vy = (r°)7r0.
m fork=0,1,...
bz = Apf
B o= —%/((p)72¥).
B X<t = xk 4 aypk
B = koo zk
B g = (rH) Tk
B ifyx1 < TOL stop
Bk = Y1/ 7k
B ot =kt g gk

m endk

m It can be proved, that the vectors p* are pair-wise
A-conjugated.

m Theoretically, after at most n steps the solution can be
computed. Due to rounding errors in practice you will not
get the solution after n steps.

m In practice we have n >> 1. Therefore, the CG method is
used as an iterative method.

m In each iteration step there are one matrix-vector product,
2 scalar products and 3 scalar multiplications necessary.

m Besides the matrix A you have to store 4 additional
vectors: xX, rk, pX and zX.

CG as Krylov subspace method

Theorem

The k-th iteration x* of the CG method minimizes the functional
Q(-) w.r.t. the subspace

Kk(A, r%) = span{r® Ar®, A2/0 . . AK=1/0Y,

i.e. there holds.
Q(x*) = min Q(x +ZCA’ r°)

The subspace Kx(A, r°) is called Krylov subspace.

Error Estimate

The error is e = xk — x* is measured in the energy norm
lulla = (u Au)z.

We get the estimate

k
X' —X <2 tY——— X — X 5
| la < (FORE | A (5)
with 1(A) := condp(A) = J22a) > 1,

Remark
The matrix of the Finite Differences gives condx(A) = O(h~2).

Example of CG method

We consider Ax = b with

(5 n) (X)) e

using the start vector (—9, —1) and solution (1, 1). Reduction of
euclidean norm by 104

M=1, =2 AM=1, =10
2 iterations 2 iterations

CG method (Parallel Version)

Algorithm 2: CG — parallel Version (First Part)

m Choose initial vector x°.

m Scatter x°, b on the processes.

m Compute p° = r% = Ax® — b in parallel.

m Compute vy = (r°)7r® with Fan-in
(MPI_Allreduce).

CG method (Parallel Version)

Algorithm 3: CG — parallel Version (Second Part)

m fork=0,1,...

B z¥ = Ap© (parallel)

B o« = —/(p)T2X) with Fan-in
(MPI_Allreduce).

B xt" = xX + axpX in parallel

A ' = rk + axzX in parallel

B .1 = (r*)T r" with Fan-in
(MPI_Allreduce).

B ifv«1 < TOL stop

Bk = Yk+1/vk (parallel)

B o< =" + ep” (parallel)

B Interchange components of p“*! between the
components.

m end k

B Programming MPI

Grouping of Data

m Sending/ receiving messages is a time consumable
operation in a parallel environment.

m One should try to send as few messages as possible.

m It makes sense to combine different data packages to one
single package.

m MPI provides several operations and data structures for
grouping of data.

We consider the example from the exercises about numerical
integration, where we have to send two floats a, b and one
integer n to all processes.

We assume that the data is stored on process 0 as follows

Variable [Address [Typ

a 24 float
b 40 float
n 48 int

The relative addresses, called displacements, in relation to the
start address of a are stored. Since a has the address sa=24,
the displacement for b is 40 — 24 = 16 and for n we get

48 — 24 = 24.

Transmitted Information

m 3 elements
m data type of elements

m The first elementis a float.
m The second elementis a float.
m The third elementis a int.

m Displacements
m The first element has a displacement of 0.

m The second element has a displacement of 16.
m The third element has a displacement of 24.

m The starting address is sa.
In the derived MPI data type we will store a sequence of pairs
{(t(): d0)7 (t'l 5 d1)7 ceey (tn—1 5 dn—1)}

t; is one of the basic MPI data types and @} is the displacement
in bytes.

Grouping Data

The derived data type is built using the following command
MPI_Type_struct:

int MPI_Type_struct(int count, int block_lengthl[],
MPI_Aint displacements[], MPI_Datatype typelist[],
MPI_Datatype* new_mpi_t)

IN:

count number of blocks, which should be combined.
block_length Array of block lengths

displacements Array of displacements

typelist Array of MPI data types
OUT:
new_mpi_t Pointer on the new structure

The arrays block_length, displacements and typelist have
the dimension count.

Grouping Data

The address of a variable with data type MPI_Aint can be
obtained using

int MPI_Address(void* location, MPI_Aint address)

IN:

location memory address
OUT:

address address in bytes

Example: Computation of displacements

MPI_Address (a_ptr, &start_address);
MPI_Address (b_ptr, &address);
displacements[1l] = address - start_address;

Grouping Data

Finally, you have to start MPI_Type_commit:

int MP1_Type_commit(MPI_Datatype* new_mpi_t)

IN:

new_mpi_t new structure
OUT:

new_mpit new structure

Grouping non-contiguous data of the same type

int MPI_Type_vector(int count, int block_length, int
stride, MPI_Datatype element_type, MPI_Datatype*
new_mpi_t)

IN:

count number of blocks

block_length length of a block

stride number of elements between two blocks new_mpi_t
plus 1

element_type MPI data type

OUT:

new_mpi_t new element of type MPI_Type_struct

Staring from the initial address count blocks are built. All blocks
have the same size block_length and consist of elements of type
element_type. The variable stride determines the size of the
jump.

Grouping Data

Example Sending the column of a matrix A[10][10].

MPI_Datatype column_mpi_t;

MPI_Type_vector(10,1,10,MPI_FLOAT, &column_mpi_t)

MPI_Type_commit (&column_mpi_t);

/* Send 4th column =*/

MPI_Send (& (A[O0][31), 1, column_mpi_t, 1, O,
MPI_COMM_WORLD) ;

Pack/ Unpack

int MPI_Pack (wvoid* Pack.data, int in_count,
MPI_Datatype datatype, void* buffer, int buffer_size,
int* position, MPI_Comm comm)

IN:
Pack_data
in_count
datatype
buffer_size
position
comm
OUT:
buffer
position

pointer on data, which should be added to the buffer
number of elements

data type of data

buffer size

position in buffer

communicator

buffer
position Puffer

Pack/ Unpack

m With MPI_Pack you can add data to an existing buffer.

m Die Variable position is an input/ output parameter. The
data is written in the buffer beginning at position. After
return of the function position points to the first position
behind the written data.

B buffer_size is the size of the buffer.

Pack/ Unpack

int MPI_Unpack(void* buffer, int size, int* posi-
tion, void* unpack_data, int count, MPI_Datatype
datatype, MPI_Comm comm)

IN:

buffer

size

position
count
datatype
comm

OUT:
unpack_data
position

buffer

size of buffer in bytes

position in buffer

number of elements to be unpacked
data type

communicator

block of unpacked data
position in buffer

Groups and Communicators

m A group is an ordered set of processes. Each process in a
group is associated with a unique integer rank. Rank
values start at zero and go to N-1, where N is the number
of processes in the group.

m A communicator consists of a group of processes that may
communicate with each other and a context. All MPI
messages must specify a communicator. A context is a
system-defined object that uniquely identifies a
communicator.

m From the programmer’s perspective, a group and a
communicator are one. The group routines are primarily
used to specify which processes should be used to
construct a communicator.

int MPI.Comm_group(MPI_.Comm
MPI_Group* group)

comm,

IN:

comm communicator

OUT:

group group of the communicator

The command MPI_Comm_group returns the group of the
communicator comm.

int MPI_Group_incl (MPI_Group old_group, int
new_group_size, int ranks[], MPI1_Group *newgroup)

IN:

old_group old group

new_group_size size of new group

ranks array of (old) process numbers
OUT:

newgroup new group

The command creates a group with name new_group consisting of
new_group-size processes.

Build Communicator

int MPI_Comm_create(MPI_Comm old_comm,
MPI1_Group new_group, MPI_Comm™ new_comm)

IN:

old_.comm old communicator
new_group name of group
OUT:

new_comm new communicator

	Conjugate Gradient Method
	Programming MPI

