
Modelling and implementation of
algorithms in applied mathematics using

MPI
Lecture 4: Conjugate Gradient (CG) method,

Programming MPI

G. Rapin

Brazil
March 2011

Outline

1 Conjugate Gradient Method

2 Programming MPI

Outline

1 Conjugate Gradient Method

2 Programming MPI

Conjugate Gradient Method

Today, simple iterative methods like Gauss-Seidel or
Jacobi method are not used very often in practice. But they
are very important as smoother in multi grid methods.
Krylov subspace methods have become quite popular.
The most applied Krylov method for symmetric, positive
definite problems is the conjugate gradient (CG) method.
The most popular Krylov subspace methods for
non-symmetric problems are BiCG, GMRES ord
BiCGStab.
The conjugate gradient (CG) method was invented by
M.R. HESTENES and E. STIEFEL and was published in
1952.

Problem Statement

Consider the linear system

Ax = b. (1)

Let the matrix A ∈ Rn×n be
symmetric, i.e. A = AT , and
positive definite, i.e.

xT Ax > 0, x \ {0} ∈ Rn.

The right hand side is given by b ∈ Rn.

Characterization

The solution x ∈ Rn of the linear system (1) can be identified by
the solution of the optimization problem

Minimize Q(x) :=
1
2

xT Ax − bT x , x ∈ Rn (2)

Lemma

x ∈ Rn is a solution of (1) if and only if it is a solution of (2).

Proof
Is x a solution of (2), then there holds

0 = (∇Q(x))T = Ax − b.

The condition is also sufficient since the Hesse matrix A is
s.p.d.

Idea of the CG method

Instead of attacking the linear system directly techniques
for the solution of the global optimization problem (2) are
used.
Most of the iterative approaches in global optimization are
based on sequences

xk+1 = xk + αkpk ,

There, xk is the previous iteration, pk is the search
direction and αk is the step size.
The step size αk can be determined by

Q(xk+1) = Q(xk + αkpk) = min
αk∈R

Q(xk + αkpk)

for a given search direction.

Thus, Q is minimized on the straight line
G := {x = xk + βpk , β ∈ R}.
Inserting Q yields

q(α) := Q(xk + αpk) =

1
2
(xk + αpk)T A(xk + αpk)− bT (xk + αpk)

=
1
2
(pk)T Apk · α2

+(pk)T (Axk − b) · α+
1
2
(xk)T (Axk − 2b).

Minimizing q yields

0 = q′(α) = (pk)T Apk · α+ (pk)T (Axk − b).

Step Size

Theorem

Assume that the search direction pk 6= 0 has already been
determined. Then, we obtain the new iteration
xk+1 = xk + αkpk with

αk = −(pk)T (Axk − b)
(pk)T Apk . (3)

Remark
Now the search path has to be determined.

Search Direction - Choice 1

Use circularly the unity vectors ei as search directions

p0 = e1, p1 = e2, . . . ,pn−1 = en, pn = e1, pn+1 = e2, . . .

We get

(ei)
T Aei = aii and (ei)

T (Ax − b) =
n∑

j=1

aijxj − bi .

Inserting the choice (3) yields

xk = xk−1+αk−1pk−1 = xk−1− 1
akk

 n∑
j=1

akjxk−1
j − bk

ek

for k = 0,1, . . . ,n − 1.

Search Direction - Choice 1

Thus, only the k -th component of the vector is updated.
If we consider one cycle, we get

xk
k =

1
akk

bk −
∑
j<k

akjxk
j −

∑
j>k

akjx0
j

 , xk
i = xk−1

i , k 6= i .

Therefore, one cycle is one Gauss-Seidel iteration.

Search Direction - Choice 2

The steepest descent is given by the negative gradient of
Q.
Thus, we choose

pk = −(∇Q(xk))T = b − Axk .

Then, the step size can be computed as

αk =
(Axk − b)T (Axk − b)
(Axk − b)T A(Axk − b)

.

The step size is positive, if xk is not the solution.

Visualization of Steepest Descent

Steepest Descent -
Bad if λmax/λmin is large

We consider Ax = b with

A =

(
λ1 0
0 λ2

)
, b =

(
λ1
λ2

)
, (4)

using the start vector (−9,−1) and solution (1,1). Reduction of
euclidean norm by 10−4.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

lambda
1
=1, lambda

2
=2

λ1 = 1, λ2 = 2
9 iterations

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

lambda
1
=1, lambda

2
=10

λ1 = 1, λ2 = 10
41 iterations

Search Direction - Choice 3

Idea:
Determine the search path pk in such a way pk is A-conjugated
w.r.t. the previous search paths p0,p1, . . . ,pk−1.

Definition

Two vectors x , y ∈ Rn are called A-conjugated, if xT Ay = 0.

We can prove

Theorem

Assume, that p0,p1, . . . ,pn−1 6= 0 are pairwise A-conjugated
vectors. Then, the scheme

xk+1 = xk + αkpk

converges in at most n steps against the exact solution. αk is
given by (3).

Algorithm 1: Conjugate Gradient (CG) method

Choose initial vector x0.
Set p0 = r0 = Ax0 − b
Compute γ0 = (r0)T r0.
For k = 0,1, . . .

1 zk = Apk

2 αk = −γk/((pk)T zk).
3 xk+1 = xk + αk pk

4 r k+1 = r k + αk zk

5 γk+1 = (r k+1)T r k+1

6 if γk+1 < TOL stop
7 βk = γk+1/γk
8 pk+1 = r k+1 + βk pk

end k

Remarks

It can be proved, that the vectors pk are pair-wise
A-conjugated.
Theoretically, after at most n steps the solution can be
computed. Due to rounding errors in practice you will not
get the solution after n steps.
In practice we have n >> 1. Therefore, the CG method is
used as an iterative method.
In each iteration step there are one matrix-vector product,
2 scalar products and 3 scalar multiplications necessary.
Besides the matrix A you have to store 4 additional
vectors: xk , r k , pk and zk .

CG as Krylov subspace method

Theorem

The k-th iteration xk of the CG method minimizes the functional
Q(·) w.r.t. the subspace

Kk (A, r0) = span{r0,Ar0,A2r0, . . .Ak−1r0},

i.e. there holds.

Q(xk) = min
ci

Q(x0 +
k−1∑
i=0

ciAi r0).

The subspace Kk (A, r0) is called Krylov subspace.

Error Estimate

The error is ek = xk − x∗ is measured in the energy norm

‖u‖A := (uT Au)
1
2 .

We get the estimate

Theorem

‖xk − x∗‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖x0 − x∗‖A (5)

with κ(A) := cond2(A) =
λmax (A)
λmin(A)

≥ 1.

Remark
The matrix of the Finite Differences gives cond2(A) = O(h−2).

Example of CG method

We consider Ax = b with

A =

(
λ1 0
0 λ2

)
, b =

(
λ1
λ2

)
, (6)

using the start vector (−9,−1) and solution (1,1). Reduction of
euclidean norm by 10−4.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

lambda
1
=1, lambda

2
=2

λ1 = 1, λ2 = 2
2 iterations

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

lambda
1
=1, lambda

2
=10

λ1 = 1, λ2 = 10
2 iterations

CG method (Parallel Version)

Algorithm 2: CG – parallel Version (First Part)

Choose initial vector x0.
Scatter x0, b on the processes.
Compute p0 = r0 = Ax0 − b in parallel.
Compute γ0 = (r0)T r0 with Fan-in
(MPI_Allreduce).

CG method (Parallel Version)

Algorithm 3: CG – parallel Version (Second Part)

For k = 0,1, . . .
1 zk = Apk (parallel)
2 αk = −γk/((pk)T zk) with Fan-in

(MPI_Allreduce).
3 xk+1 = xk + αk pk in parallel
4 r k+1 = r k + αk zk in parallel
5 γk+1 = (r k+1)T r k+1 with Fan-in

(MPI_Allreduce).
6 if γk+1 < TOL stop
7 βk = γk+1/γk (parallel)
8 pk+1 = r k+1 + βk pk (parallel)
9 Interchange components of pk+1 between the

components.

end k

Outline

1 Conjugate Gradient Method

2 Programming MPI

Grouping of Data

Sending/ receiving messages is a time consumable
operation in a parallel environment.
One should try to send as few messages as possible.
It makes sense to combine different data packages to one
single package.
MPI provides several operations and data structures for
grouping of data.

Example

We consider the example from the exercises about numerical
integration, where we have to send two floats a,b and one
integer n to all processes.
We assume that the data is stored on process 0 as follows

Variable Address Typ
a 24 float
b 40 float
n 48 int

The relative addresses, called displacements, in relation to the
start address of a are stored. Since a has the address &a=24,
the displacement for b is 40− 24 = 16 and for n we get
48− 24 = 24.

Transmitted Information

3 elements
data type of elements

The first element is a float.
The second element is a float.
The third element is a int.

Displacements
The first element has a displacement of 0.
The second element has a displacement of 16.
The third element has a displacement of 24.

The starting address is &a.

In the derived MPI data type we will store a sequence of pairs

{(t0,d0), (t1,d1), . . . , (tn−1,dn−1).}

ti is one of the basic MPI data types and di is the displacement
in bytes.

Grouping Data

The derived data type is built using the following command
MPI Type struct:

int MPI Type struct(int count, int block length[],
MPI Aint displacements[], MPI Datatype typelist[],
MPI Datatype* new mpi t)

IN:
count number of blocks, which should be combined.
block length Array of block lengths
displacements Array of displacements
typelist Array of MPI data types
OUT:
new mpi t Pointer on the new structure

The arrays block length, displacements and typelist have
the dimension count.

Grouping Data

The address of a variable with data type MPI_Aint can be
obtained using

int MPI Address(void* location, MPI Aint address)
IN:
location memory address
OUT:
address address in bytes

Example: Computation of displacements

MPI_Address(a_ptr, &start_address);
MPI_Address(b_ptr, &address);
displacements[1] = address - start_address;

Grouping Data

Finally, you have to start MPI Type commit:

int MPI Type commit(MPI Datatype* new mpi t)
IN:
new mpi t new structure
OUT:
new mpi t new structure

Grouping non-contiguous data of the same type

int MPI Type vector(int count, int block length, int
stride, MPI Datatype element type, MPI Datatype*
new mpi t)

IN:
count number of blocks
block length length of a block
stride number of elements between two blocks new mpi t

plus 1
element type MPI data type
OUT:
new mpi t new element of type MPI Type struct

Staring from the initial address count blocks are built. All blocks
have the same size block length and consist of elements of type
element type. The variable stride determines the size of the
jump.

Grouping Data

Example Sending the column of a matrix A[10][10].

MPI_Datatype column_mpi_t;
MPI_Type_vector(10,1,10,MPI_FLOAT,&column_mpi_t)
MPI_Type_commit(&column_mpi_t);
/* Send 4th column */
MPI_Send(&(A[0][3]), 1, column_mpi_t, 1, 0,

MPI_COMM_WORLD);

Pack/ Unpack

int MPI Pack (void* Pack data, int in count,
MPI Datatype datatype, void* buffer, int buffer size,
int* position, MPI Comm comm)

IN:
Pack data pointer on data, which should be added to the buffer
in count number of elements
datatype data type of data
buffer size buffer size
position position in buffer
comm communicator
OUT:
buffer buffer
position position Puffer

Pack/ Unpack

With MPI Pack you can add data to an existing buffer.
Die Variable position is an input/ output parameter. The
data is written in the buffer beginning at position. After
return of the function position points to the first position
behind the written data.
buffer size is the size of the buffer.

Pack/ Unpack

int MPI Unpack(void* buffer, int size, int* posi-
tion, void* unpack data, int count, MPI Datatype
datatype, MPI Comm comm)

IN:
buffer buffer
size size of buffer in bytes
position position in buffer
count number of elements to be unpacked
datatype data type
comm communicator
OUT:
unpack data block of unpacked data
position position in buffer

Groups and Communicators

A group is an ordered set of processes. Each process in a
group is associated with a unique integer rank. Rank
values start at zero and go to N-1, where N is the number
of processes in the group.
A communicator consists of a group of processes that may
communicate with each other and a context. All MPI
messages must specify a communicator. A context is a
system-defined object that uniquely identifies a
communicator.
From the programmer’s perspective, a group and a
communicator are one. The group routines are primarily
used to specify which processes should be used to
construct a communicator.

Groups

int MPI Comm group(MPI Comm comm,
MPI Group* group)

IN:
comm communicator
OUT:
group group of the communicator

The command MPI Comm group returns the group of the
communicator comm.

Groups

int MPI Group incl (MPI Group old group, int
new group size, int ranks[], MPI Group *newgroup)

IN:
old group old group
new group size size of new group
ranks array of (old) process numbers
OUT:
newgroup new group

The command creates a group with name new group consisting of
new group size processes.

Build Communicator

int MPI Comm create(MPI Comm old comm,
MPI Group new group, MPI Comm* new comm)

IN:
old comm old communicator
new group name of group
OUT:
new comm new communicator

	Conjugate Gradient Method
	Programming MPI

