Modelling and implementation of algorithms in applied mathematics using MPI

Lecture 4: Conjugate Gradient (CG) method, Programming MPI

G. Rapin

Brazil March 2011

(日) (日) (日) (日) (日) (日) (日)

2 Programming MPI

2 Programming MPI

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Today, simple iterative methods like Gauss-Seidel or Jacobi method are not used very often in practice. But they are very important as smoother in multi grid methods.
- Krylov subspace methods have become quite popular.
- The most applied Krylov method for symmetric, positive definite problems is the conjugate gradient (CG) method.
- The most popular Krylov subspace methods for non-symmetric problems are BiCG, GMRES ord BiCGStab.
- The conjugate gradient (CG) method was invented by M.R. HESTENES and E. STIEFEL and was published in 1952.

Consider the linear system

$$Ax = b. \tag{1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let the matrix $A \in \mathbb{R}^{n \times n}$ be

symmetric, i.e.
$$A = A^T$$
, and

positive definite, i.e.

$$x^T A x > 0, \qquad x \setminus \{0\} \in \mathbb{R}^n.$$

The right hand side is given by $b \in \mathbb{R}^n$.

Characterization

The solution $x \in \mathbb{R}^n$ of the linear system (1) can be identified by the solution of the optimization problem

Minimize
$$Q(x) := \frac{1}{2}x^T A x - b^T x, \quad x \in \mathbb{R}^n$$
 (2)

Lemma

 $x \in \mathbb{R}^n$ is a solution of (1) if and only if it is a solution of (2).

Proof

Is x a solution of (2), then there holds

$$0=(\nabla Q(x))^T=Ax-b.$$

The condition is also sufficient since the Hesse matrix *A* is s.p.d.

Idea of the CG method

- Instead of attacking the linear system directly techniques for the solution of the global optimization problem (2) are used.
- Most of the iterative approaches in global optimization are based on sequences

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k,$$

There, x^k is the previous iteration, p^k is the *search* direction and α_k is the *step size*.

• The step size α_k can be determined by

$$Q(x^{k+1}) = Q(x^k + \alpha_k p^k) = \min_{\alpha_k \in \mathbb{R}} Q(x^k + \alpha_k p^k)$$

for a given search direction.

Thus, *Q* is minimized on the straight line $G := \{x = x^k + \beta p^k, \beta \in \mathbb{R}\}.$

Inserting Q yields

$$q(\alpha) := Q(x^{k} + \alpha p^{k}) = \frac{1}{2}(x^{k} + \alpha p^{k})^{T}A(x^{k} + \alpha p^{k}) - b^{T}(x^{k} + \alpha p^{k})$$
$$= \frac{1}{2}(p^{k})^{T}Ap^{k} \cdot \alpha^{2} + (p^{k})^{T}(Ax^{k} - b) \cdot \alpha + \frac{1}{2}(x^{k})^{T}(Ax^{k} - 2b).$$

Minimizing q yields

$$\mathbf{0} = \mathbf{q}'(\alpha) = (\mathbf{p}^k)^T \mathbf{A} \mathbf{p}^k \cdot \alpha + (\mathbf{p}^k)^T (\mathbf{A} \mathbf{x}^k - \mathbf{b}).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step Size

Theorem

Assume that the search direction $p^k \neq 0$ has already been determined. Then, we obtain the new iteration $x^{k+1} = x^k + \alpha_k p^k$ with

$$\alpha_k = -\frac{(\boldsymbol{p}^k)^T (\boldsymbol{A} \boldsymbol{x}^k - \boldsymbol{b})}{(\boldsymbol{p}^k)^T \boldsymbol{A} \boldsymbol{p}^k}.$$
(3)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark

Now the search path has to be determined.

Use circularly the unity vectors e_i as search directions

$$p^0 = e_1, \ p^1 = e_2, \dots, p^{n-1} = e_n, \ p^n = e_1, \ p^{n+1} = e_2, \dots$$

We get

$$(e_i)^T A e_i = a_{ii}$$
 and $(e_i)^T (A x - b) = \sum_{j=1}^n a_{ij} x_j - b_i.$

Inserting the choice (3) yields

$$x^{k} = x^{k-1} + \alpha_{k-1}p^{k-1} = x^{k-1} - \frac{1}{a_{kk}} \left(\sum_{j=1}^{n} a_{kj}x_{j}^{k-1} - b_{k} \right) e_{k}$$

for k = 0, 1, ..., n - 1.

Thus, only the *k*-th component of the vector is updated.
If we consider one cycle, we get

$$x_k^k = rac{1}{a_{kk}} \left(b_k - \sum_{j < k} a_{kj} x_j^k - \sum_{j > k} a_{kj} x_j^0
ight), \quad x_i^k = x_i^{k-1}, k
eq i.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Therefore, one cycle is one Gauss-Seidel iteration.

- The steepest descent is given by the negative gradient of Q.
- Thus, we choose

$$p^k = -(\nabla Q(x^k))^T = b - Ax^k.$$

Then, the step size can be computed as

$$\alpha_k = \frac{(Ax^k - b)^T (Ax^k - b)}{(Ax^k - b)^T A (Ax^k - b)}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The step size is positive, if x^k is not the solution.

Visualization of Steepest Descent

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Steepest Descent -Bad if $\lambda_{max}/\lambda_{min}$ is large

We consider Ax = b with

$$\boldsymbol{A} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \tag{4}$$

using the start vector (-9, -1) and solution (1, 1). Reduction of euclidean norm by 10^{-4} .

$$\lambda_1 = 1, \lambda_2 = 2$$

9 iterations

 $\lambda_1 = 1, \lambda_2 = 10$ 41 iterations

Idea:

Determine the search path p^k in such a way p^k is A-conjugated w.r.t. the previous search paths $p^0, p^1, \ldots, p^{k-1}$.

Definition

Two vectors $x, y \in \mathbb{R}^n$ are called *A*-conjugated, if $x^T A y = 0$.

We can prove

Theorem

Assume, that $p^0, p^1, \ldots, p^{n-1} \neq 0$ are pairwise A-conjugated vectors. Then, the scheme

$$x^{k+1} = x^k + \alpha_k p^k$$

converges in at most n steps against the exact solution. α_k is given by (3).

Algorithm 1: Conjugate Gradient (CG) method

 -

≝≁►

Choose initial vector
$$x^0$$
.
Set $p^0 = r^0 = Ax^0 - b$
Compute $\gamma_0 = (r^0)^T r^0$.
For $k = 0, 1, ...$
 $z^k = Ap^k$
 $\alpha_k = -\gamma_k/((p^k)^T z^k)$.
 $x^{k+1} = x^k + \alpha_k p^k$
 $r^{k+1} = r^k + \alpha_k z^k$
 $\gamma_{k+1} = (r^{k+1})^T r^{k+1}$
if $\gamma_{k+1} < TOL$ stop
 $\beta_k = \gamma_{k+1}/\gamma_k$
 $p^{k+1} = r^{k+1} + \beta_k p^k$

end k

Remarks

- It can be proved, that the vectors p^k are pair-wise A-conjugated.
- Theoretically, after at most n steps the solution can be computed. Due to rounding errors in practice you will not get the solution after n steps.
- In practice we have n >> 1. Therefore, the CG method is used as an iterative method.
- In each iteration step there are one matrix-vector product, 2 scalar products and 3 scalar multiplications necessary.
- Besides the matrix A you have to store 4 additional vectors: x^k, r^k, p^k and z^k.

Theorem

The k-th iteration x^k of the CG method minimizes the functional $Q(\cdot)$ w.r.t. the subspace

$$\mathcal{K}_k(\mathcal{A}, r^0) = span\{r^0, \mathcal{A}r^0, \mathcal{A}^2r^0, \dots \mathcal{A}^{k-1}r^0\},$$

i.e. there holds.

$$Q(x^k) = \min_{c_i} Q(x^0 + \sum_{i=0}^{k-1} c_i A^i r^0).$$

The subspace $\mathcal{K}_k(A, r^0)$ is called Krylov subspace.

Error Estimate

The error is $e^k = x^k - x^*$ is measured in the *energy norm*

$$||u||_{A} := (u^{T}Au)^{\frac{1}{2}}.$$

We get the estimate

Theorem

$$\|x^{k} - x^{*}\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^{k} \|x^{0} - x^{*}\|_{A}$$
(5)
th $\kappa(A) := \operatorname{cond}_{2}(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \geq 1.$

Remark

wi

The matrix of the Finite Differences gives $cond_2(A) = O(h^{-2})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Example of CG method

We consider Ax = b with

$$\boldsymbol{A} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \tag{6}$$

using the start vector (-9, -1) and solution (1, 1). Reduction of euclidean norm by 10^{-4} .

 $\lambda_1 = 1, \lambda_2 = 2$ 2 iterations

$$\lambda_1 = 1, \lambda_2 = 10$$

2 iterations

Algorithm 2: CG – parallel Version (First Part)

(日) (日) (日) (日) (日) (日) (日)

CG method (Parallel Version)

Algorithm 3: CG – parallel Version (Second Part)

For
$$k = 0, 1, ...$$

1 $z^k = Ap^k$ (parallel)
2 $\alpha_k = -\gamma_k/((p^k)^T z^k)$ with Fan-in
(MPI_Allreduce).
3 $x^{k+1} = x^k + \alpha_k p^k$ in parallel
4 $r^{k+1} = r^k + \alpha_k z^k$ in parallel
5 $\gamma_{k+1} = (r^{k+1})^T r^{k+1}$ with Fan-in
(MPI_Allreduce).
6 if $\gamma_{k+1} < TOL$ stop
7 $\beta_k = \gamma_{k+1}/\gamma_k$ (parallel)
8 $p^{k+1} = r^{k+1} + \beta_k p^k$ (parallel)
9 Interchange components of p^{k+1} between the
components.

end k

2 Programming MPI

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Sending/ receiving messages is a time consumable operation in a parallel environment.
- One should try to send as few messages as possible.
- It makes sense to combine different data packages to one single package.
- MPI provides several operations and data structures for grouping of data.

(ロ) (同) (三) (三) (三) (○) (○)

We consider the example from the exercises about numerical integration, where we have to send two floats a, b and one integer n to all processes.

We assume that the data is stored on process 0 as follows

Variable	Address	Тур
а	24	float
b	40	float
n	48	int

The relative addresses, called *displacements*, in relation to the start address of *a* are stored. Since *a* has the address &a=24, the displacement for *b* is 40 - 24 = 16 and for *n* we get 48 - 24 = 24.

Transmitted Information

- 3 elements
- data type of elements
 - The first element is a float.
 - The second element is a float.
 - The third element is a int.
- Displacements
 - The first element has a displacement of 0.
 - The second element has a displacement of 16.
 - The third element has a displacement of 24.

■ The starting address is &a.

In the derived MPI data type we will store a sequence of pairs

$$\{(t_0, d_0), (t_1, d_1), \dots, (t_{n-1}, d_{n-1})\}$$

 t_i is one of the basic MPI data types and d_i is the displacement in bytes.

The derived data type is built using the following command MPI_Type_struct:

	int MPI_Type_struct(int count, int block_length[], MPI_Aint displacements[], MPI_Datatype typelist[], MPI_Datatype* new_mpi_t)
IN:	
count	number of blocks, which should be combined.
block_length	Array of block lengths
displacements	Array of displacements
typelist	Array of MPI data types
ÓUT:	
new_mpi_t	Pointer on the new structure

The arrays block_length, displacements and typelist have the dimension count.

The address of a variable with data type ${\tt MPI_Aint}$ can be obtained using

	int MPI_Address(void* location, MPI_Aint address)
IN:	
location	memory address
OUT:	
address	address in bytes

Example: Computation of displacements

```
MPI_Address(a_ptr, &start_address);
MPI_Address(b_ptr, &address);
displacements[1] = address - start_address;
```

Finally, you have to start MPI_Type_commit:

	int MPI_Type_commit(MPI_Datatype* new_mpi_t)
IN:	
new_mpi_t	new structure
OUT:	
new_mpi_t	new structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	int MPI_Type_vector(int count, int block_length, int stride, MPI_Datatype element_type, MPI_Datatype* new_mpi_t)
IN:	
count	number of blocks
block_length	length of a block
stride	number of elements between two blocks new_mpi_t
	plus 1
element_type	MPI data type
OUT:	
new_mpi_t	new element of type MPI_Type_struct

Staring from the initial address count blocks are built. All blocks have the same size block_length and consist of elements of type element_type. The variable stride determines the size of the jump.

Example Sending the column of a matrix A[10][10].

(ロ) (同) (三) (三) (三) (○) (○)

	int MPI_Pack (void* Pack_data, int in_count, MPI_Datatype datatype, void* buffer, int buffer_size, int* position, MPI_Comm comm)
IN:	
Pack₋data	pointer on data, which should be added to the buffer
in₋count	number of elements
datatype	data type of data
buffer_size	buffer size
position	position in buffer
comm	communicator
OUT:	
buffer	buffer
position	position Puffer

- With MPI_Pack you can add data to an existing buffer.
- Die Variable position is an input/ output parameter. The data is written in the buffer beginning at position. After return of the function position points to the first position behind the written data.

(日) (日) (日) (日) (日) (日) (日)

■ buffer_size is the size of the buffer.

	int MPI_Unpack(void* buffer, int size, int* posi- tion, void* unpack_data, int count, MPI_Datatype datatype, MPI_Comm comm)
IN:	
buffer	buffer
size	size of buffer in bytes
position	position in buffer
count	number of elements to be unpacked
datatype	data type
comm	communicator
OUT:	
unpack_data	block of unpacked data
position	position in buffer

Groups and Communicators

- A group is an ordered set of processes. Each process in a group is associated with a unique integer rank. Rank values start at zero and go to N-1, where N is the number of processes in the group.
- A communicator consists of a group of processes that may communicate with each other and a context. All MPI messages must specify a communicator. A context is a system-defined object that uniquely identifies a communicator.
- From the programmer's perspective, a group and a communicator are one. The group routines are primarily used to specify which processes should be used to construct a communicator.

	int MPI₋Comm_group(MPI_Group* group)	MPI_Comm	comm,
IN:			
comm	communicator		
OUT:			
group	group of the communicator		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The command MPI_Comm_group returns the group of the communicator comm.

	int MPI_Group_incl (MPI_Group old_group, int new_group_size, int ranks[], MPI_Group *newgroup)
IN: old_group new_group_size ranks OUT:	old group size of new group array of (old) process numbers
newgroup	new group

The command creates a group with name new_group consisting of new_group_size processes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Build Communicator

	int MPI_Comm_create(MPI_Comm old_comm, MPI_Group new_group, MPI_Comm* new_comm)
IN: old₋comm new₋group OUT:	old communicator name of group
new_comm	new communicator

<□ > < @ > < E > < E > E のQ @

(ロ) (団) (三) (三) (三) (つ)()