
Modelling and implementation of algorithms
in applied mathematics using MPI

Curitiba, March, 2011

1. In the last exercise we wrote a parallel C-program, which computes the approximate
integral

∫ b

a
f(x)dx of a function

f : [a, b]−− > R

using the following formula:∫ b

a

f(x)dx ≈ b− a

n

(
1

2
f(a) +

1

2
f(b) +

n−1∑
i=1

f

(
a +

i(b− a)

n

))
.

(a) Modify the program in such a way that you ask at process 0 for a,b and n.
Broadcast this information to the other processes.

(b) Use a reduction operator for gathering the local contributions.

2. Write a program for the parallel computation of a scalar product. Process 0 should
read the data.

3. Implement the following sequential algorithm for the solution of the linear system
arising for Finite Differences. Compare the number of needed iterations steps for
Jacobis and Gauss-Seidel method. Use the residual as a stopping criterion. The
right hand side is given by f = 1.

4. Write a parallel version of Jacobis method. Assume that the number of processes
divides N − 1.



Algorithm 1: Jacobis method (Poisson Problem)

Choose initial vector u0 ∈ Rn

For k = 1, 2, . . .
For j = 1, 2, . . . , (N − 1)
For i = 1, 2, . . . , (N − 1)
uk
ij = 1

4

(
uk−1
i,j−1 + uk−1

i−1,j + uk−1
i,j+1 + uk−1

i+1,j + h2fij
)

end i
end j

Algorithm 2: Gaus-Seidel method
(Poisson Problem)

Choose initial vector u0 ∈ Rn

For k = 1, 2, . . .
For j = 1, 2, . . . , (N − 1)
For i = 1, 2, . . . , (N − 1)
uk
ij = 1

4

(
uk
i,j−1 + uk

i−1,j + uk−1
i,j+1 + uk−1

i+1,j + h2fij
)

end i
end j

2


