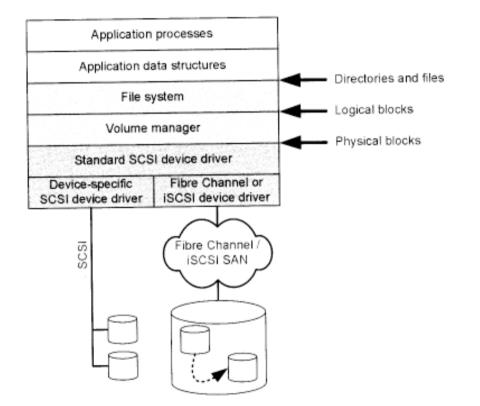


DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud Storage Networks

2: Virtualization of Storage: RAID, SAN and Virtualization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg


Volume Manager

Volume manager

- aggregates physical hard disks into virtual hard disks
- breaks down hard disks into smaller hard disks
- Does not provide files system, but enables it

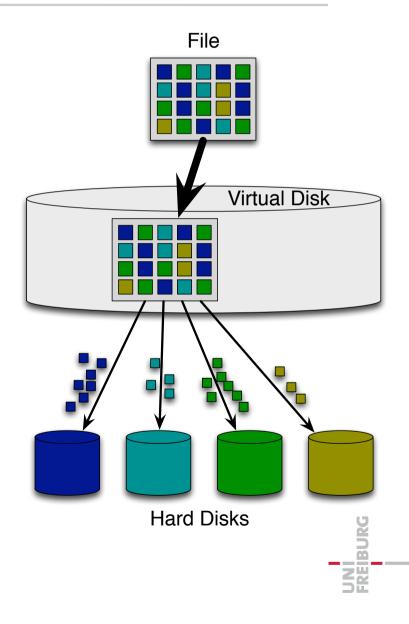
Can provide

- resizing of volume groups by adding new physical volumes
- resizing of logical volumes
- snapshots
- mirroring or striping, e.g. like RAID1
- movement of logical volumes

From: Storage Networks Explained, Basics and Application of Fibre Channel SAN, NAS, iSCSI and InfiniBand, Troppens, Erkens, Müller, Wiley

- Physical volume (PV)
 - hard disks, RAID devices, SAN
- Physical extents (PE)
 - Some volume managers splite PVs into same-sized physical extents
- Logical extent (LE)
 - physical extents may have copies of the same information
 - are addresed as logical extent
- Volume group (VG)
 - logical extents are grouped together into a volume group
- Logical volume (LV)
 - are a concatenation of volume groups
 - a raw block devices
 - where a file system can be created upon

BURG


Concept of Virtualization

Principle

- A virtual storage constitutes handles all application accesses to the file system
- The virtual disk partitions files and stores blocks over several (physical) hard disks
- Control mechanisms allow redundancy and failure repair

Control

- Virtualization server assigns data, e.g. blocks of files to hard disks (address space remapping)
- Controls replication and redundancy strategy
- Adds and removes storage devices

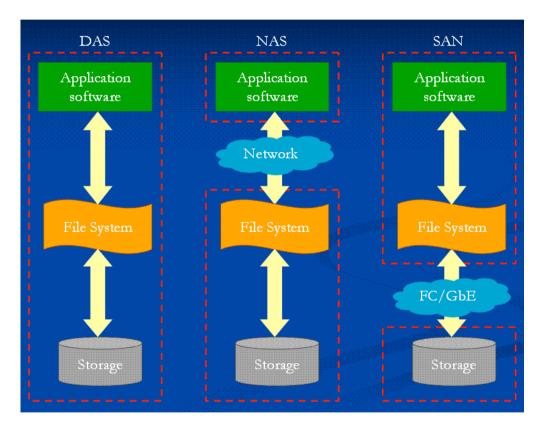
Storage Virtualization

- Capabilities
 - Replication
 - Pooling
 - Disk Management
- Advantages
 - Data migration
 - Higher availability
 - Simple maintenance
 - Scalability
- Disadvantages
 - Un-installing is time consuming
 - Compatibility and interoperability

- Complexity of the system
- Classic Implementation
 - Host-based
 - Logical Volume Management
 - File Systems, e.g. NFS
 - Storage devices based
 - RAID
 - Network based
 - Storage Area Network
- New approaches
 - Distributed Wide Area Storage Networks
 - Distributed Hash Tables
 - Peer-to-Peer Storage

Virtual Block Devices

- without file system
- connects hard disks
- Advantages
 - simpler storage administration
 - more flexible
 - servers can boot from the SAN
 - effective disaster recovery
 - allows storage replication
- Compatibility problems
 - between hard disks and virtualization server


6

IBURG

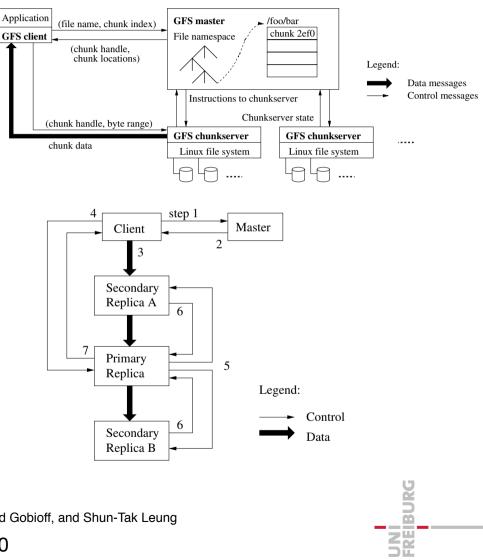
SAN Networking

- Networking
 - FCP (Fibre Channel Protocol)
 - SCSI over Fibre Channel
 - iSCSI (SCSI over TCP/IP)
 - HyperSCSI (SCSI over Ethernet)
 - ATA over Ethernet
 - Fibre Channel over Ethernet
 - iSCSI over InfiniBand
 - FCP over IP

http://en.wikipedia.org/wiki/Storage_area_network

FREIB

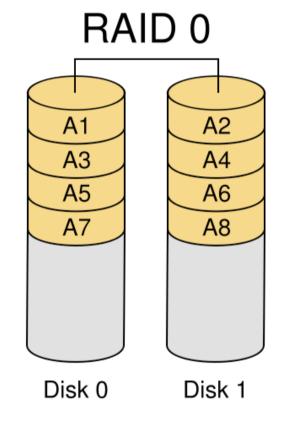
- File system for concurrent read and write operations by multiple computers
 - without conventional file locking
 - concurrent direct access to blocks by servers
- Examples
 - Veritas Cluster File System
 - Xsan
 - Global File System
 - Oracle Cluster File System
 - VMware VMFS
 - IBM General Parallel File System


- aka. Network File System
- Supports sharing of files, tapes, printers etc.
- Allows multiple client processes on multiple hosts to read and write the same files
 - concurrency control or locking mechanisms necessary
- Examples
 - Network File System (NFS)
 - Server Message Block (SMB), Samba
 - Apple Filing Protocol (AFP)
 - Amazon Simple Storage Service (S3)

Distributed File Systems with Virtualization

- Example: Google File System
- File system on top of other file systems with builtin virtualization
 - System built from cheap standard components (with high failure rates)
 - Few large files
 - Only operations: read, create, append, delete
 - concurrent appends and reads must be handled
 - High bandwidth important
- Replication strategy
 - chunk replication
 - master replication

The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung



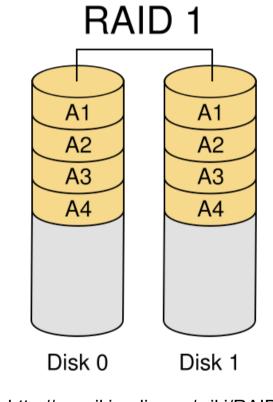
- Redundant Array of Independent Disks
 - Patterson, Gibson, Katz, "A Case for Redundant Array of Inexpensive Disks", 1987
- Motivation
 - Redundancy
 - error correction and fault tolerance
 - Performance (transfer rates)
 - Large logical volumes
 - Exchange of hard disks, increase of storage during operation
 - Cost reduction by use of inexpensive hard disks

- Striped set without parity
 - Data is broken into fragments
 - Fragments are distributed to the disks
- Improves transfer rates
- No error correction or redundancy
- Greater disk of data loss
 - compared to one disk
- Capacity fully available

http://en.wikipedia.org/wiki/RAID

Raid 1 CoNe Freiburg

Mirrored set without parity


• Fragments are stored on all disks

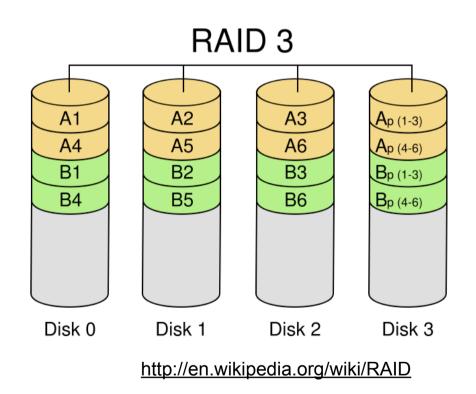
Performance

- if multi-threaded operating system allows split seeks then
- faster read performance
- write performance slightly reduced

Error correction or redundancy

- all but one hard disks can fail without any data damage
- Capacity reduced by factor 2

http://en.wikipedia.org/wiki/RAID

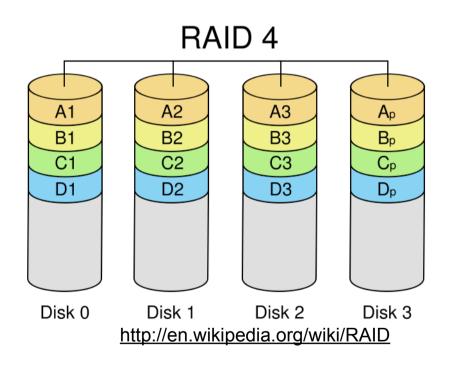

- Hamming Code Parity
- Disks are synchronized and striped in very small stripes
- Hamming codes error correction is calculated across corresponding bits on disks and stored on multiple parity disks
- not in use

Raid 3 CoNe Freiburg

- Striped set with dedicated parity (byte level parity)
 - Fragments are distributed on all but one disks
 - One dedicated disk stores a parity of corresponding fragments of the other disks

Performance

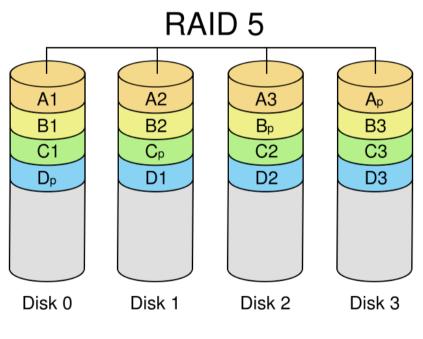
- improved read performance
- write performance reduced by bottleneck parity disk
- Error correction or redundancy
 - one hard disks can fail without any data damage
- Capacity reduced by 1/n


Raid 4 CoNe Freiburg

Striped set with dedicated parity (block level parity)

- Fragments are distributed on all but one disks
- One dedicated disk stores a parity of corresponding blocks of the other disks on I/O level

Performance


- improved read performance
- write performance reduced by bottleneck parity disk
- Error correction or redundancy
 - one hard disks can fail without any data damage
- Hardly in use

Raid 5 CoNe Freiburg

Striped set with distributed parity (interleave parity)

- Fragments are distributed on all but one disks
- Parity blocks are distributed over all disks
- Performance
 - improved read performance
 - improved write performance
- Error correction or redundancy
 - one hard disks can fail without any data damage
- Capacity reduced by 1/n

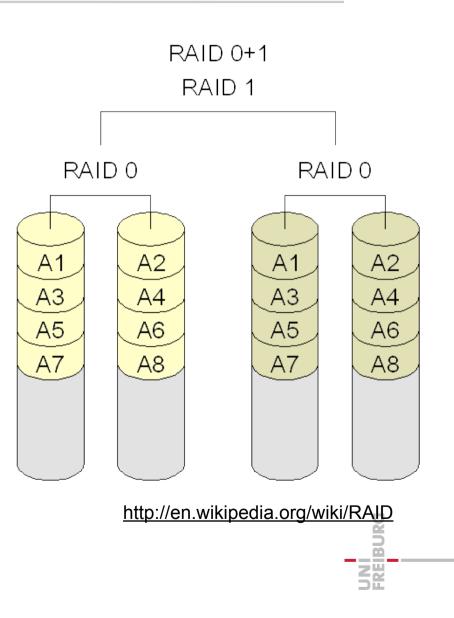
http://en.wikipedia.org/wiki/RAID

UNI FREIBURG

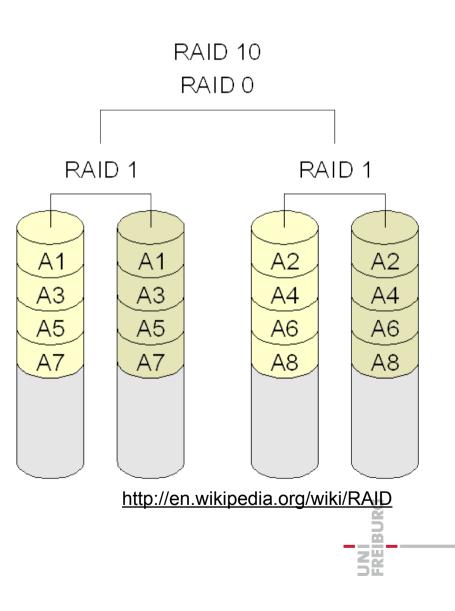
17

Raid 6 CoNe Freiburg

Striped set with dual distributed parity


- Fragments are distributed on all but two disks
- Parity blocks are distributed over two of the disks
 - one uses XOR other alternative method
- Performance
 - improved read performance
 - improved write performance
- Error correction or redundancy
 - two hard disks can fail without any data damage
- Capacity reduced by 2/n

http://en.wikipedia.org/wiki/RAID



- Combination of RAID 1 over multiple RAID 0
- Performance
 - improved because of parallel write and read
- Redundancy
 - can deal with any single hard disk failure
 - can deal up to two hard disk failure
- Capacity reduced by factor 2

- Combination of RAID 0 over multiple RAID 1
- Performance
 - improved because of parallel write and read
- Redundancy
 - can deal with any single hard disk failure
 - can deal up to two hard disk failure
- Capacity reduced by factor 2

- More:
 - RAIDn, RAID 00, RAID 03, RAID 05, RAID 1.5, RAID 55, RAID-Z, ...
- Hot Swapping
 - allows exchange of hard disks during operation
- Hot Spare Disk
 - unused reserve disk which can be activated if a hard disk fails
- Drive Clone
 - Preparation of a hard disk for future exchange indicated by S.M.A.R.T

21

BURG

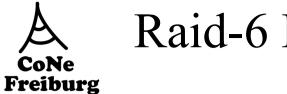
ZW

Standalone

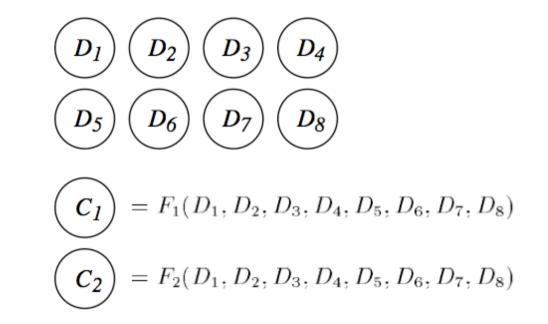
Cluster

RAID 1

RAID 5


Hot swap

RAID 0


Raid-6 Encodings

- A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems, James S. Plank, 1999
- The RAID-6 Liberation Codes, James S. Plank, FAST'08, 2008

→ Data units D₁, ..., D_n

- w: size of words
 - w=1 bits,
 - w=8 bytes, ...
- Checksum devices C₁,C₂,..., C_m
 - computed by functions C_i=Fi(D₁,...,D_n)
- Any n words from data words and check words
 - can decode all n data units

UNI FREIBURG

A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems, James S. Plank , 1999

A Principle of RAID 6 Freiburg

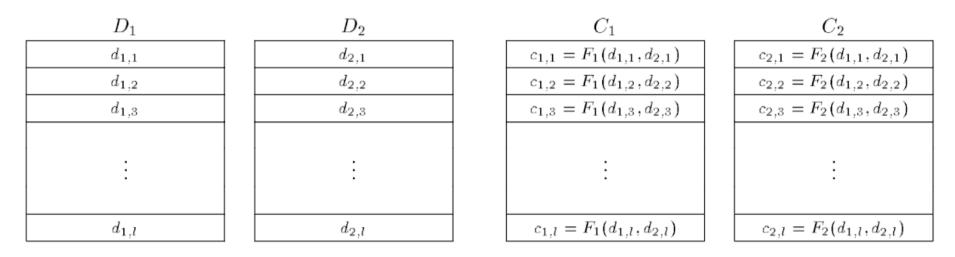
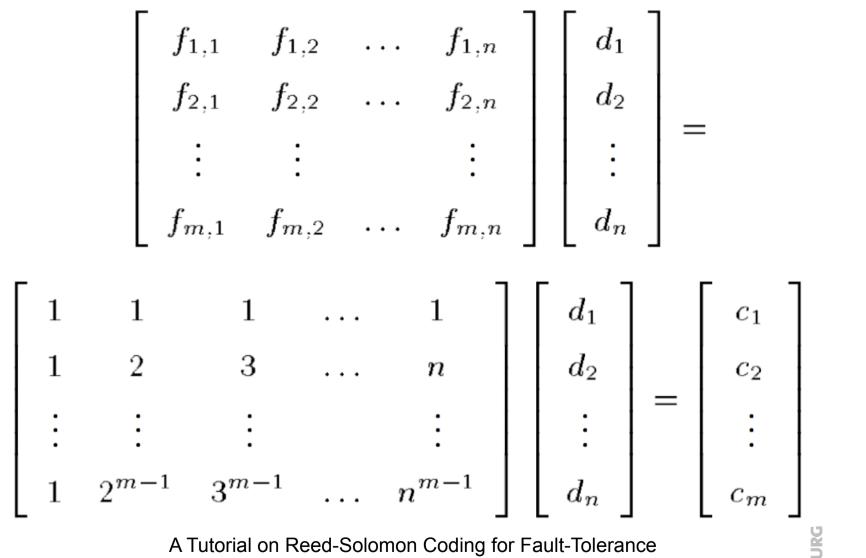


Figure 2: Breaking the storage devices into words $(n = 2, m = 2, l = \frac{8k}{w})$

A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems, James S. Plank , 1999

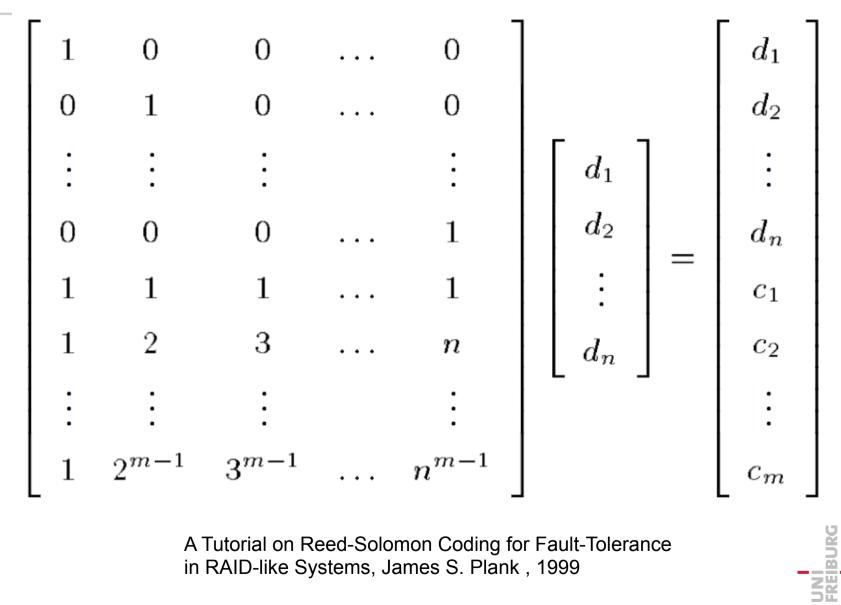
- Encoding
 - Given new data elements, calculate the check sums
- Modification (update penalty)
 - Recompute the checksums (relevant parts) if one data element is modified
- Decoding
 - Recalculate lost data after one or two failures
- Efficiency
 - speed of operations
 - check disk overhead
 - ease of implementation and transparency

26



Reed-Solomon

RAID 6 Encodings



in RAID-like Systems, James S. Plank, 1999

A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems, James S. Plank , 1999

- GF(2^w) = Finite Field over 2^w elements
 - Elements are all binary strings of length w
 - $0 = 0^{w}$ is the neutral element for addition
 - $1 = 0^{w-1}1$ is the neutral element for multiplication
- u + v = bit-wise Xor of the elements
 - e.g. 0101 + 1100 = 1001
- a b= product of polynomials modulo 2 and modulo an irreducible polynomial q
 - i.e. $(a_{w-1} \dots a_1 a_0) (b_{w-1} \dots b_1 b_0) =$

 $((a_0 + a_1x + \ldots + a_{w-1}x^{w-1})(b_0 + b_1x + \ldots + b_{w-1}x^{w-1}) \mod q(x)) \mod 2)$

Example: $GF(2^2)$

Generated	Polynomial	Binary	Decimal
Element	Element	Element b	Representation
of $GF(4)$	of $GF(4)$	of $GF(4)$	of b
0	0	00	0
x^{0}	1	01	1
x^1	x	10	2
x^2	x + 1	11	3

	0 =	1 =	2 =	3 =
+	00	01	10	11
0 =00	0	1	2	3
1 =01	1	0	3	2
2 =10	2	3	0	1
3 =11	3	2	1	0

$$q(x) = x^2 + x + 1$$

*	0 = 0	1 = 1	2 = x	3 = x+1
0 = 0	0	0	0	0
1 = 1	0	1	2	3
2 = x	0	2	3	1
3 = x+1	0	3	1	2

$$2 \cdot 3 = x(x+1) = x^2 + x = 1 \mod x^2 + x + 1 = 1$$

 $2 \cdot 2 = x^2 = x+1 \mod x^2 + x + 1 = 3$

31

A Irreducible Polynomials

- Irreducible polynomials cannot be factorized
 - counter-example: $x^2+1 = (x+1)^2 \mod 2$
- Examples:
 - w=2: x²+x+1
 - w=4: x⁴+x+1
 - w=8: $x^8+x^4+x^3+x^2+1$
 - w=16: $x^{16}+x^{12}+x^3+x+1$
 - w=32: x³²+x²²+x²+x+1
 - w=64: x⁶⁴+x⁴+x³+x+1

- Powers laws
 - Consider: {2⁰, 2¹, 2²,...}
 - = { x^0 , x^1 , x^2 , x^3 , ...
 - = exp(0), exp(1), ...
- exp(x+y) = exp(x) exp(y)
- Inverse: log(exp(x)) = x
 - $\log(x \cdot y) = \log(x) + \log(y)$
- $x y = \exp(\log(x) + \log(y))$
 - Warning: integer addition!!!
- Use tables to compute exponential and logarithm function

 $q(x) = x^4 + x + 1$

exp(x)1x x^2 x^3 1+x $x+x^2$ x^{2+} x^3 $1+x$ $+x^3$ $1+x^2$ $+x^3$ $1+x$ $+x^2$ x^3 $+x^2$ $1+x^2$ $+x^2+$ x^3 $1+x^2$ $+x^2+$ x^3 $1+x^2$ $+x^2+$ x^3 $1+x^2$ $+x^3+$ $1+x^2$ $+x$	x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
exp(x) 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 1	exp(x)	1	x	x ²	x ³	1+x	x+x ²			1+x ²	x+x ³	1+x +x ²	+x ² +	+x ² +	1	1+x ³	1
	exp(x)	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	1

x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
log(x)	0	1	4	2	8	5	10	3	14	9	7	6	13	11	12

 $-5 \cdot 12 = \exp(\log(5) + \log(12)) = \exp(8+6) = \exp(14) = 9$

- 7 · 9 = $\exp(\log(7) + \log(9)) = \exp(10 + 14) = \exp(24) = \exp(24 - 15)$ = $\exp(9) = 10$

34

A Example: Reed Solomon for GF[2⁴]

 Compute carry bits for three hard disks by computing

$$F = \begin{bmatrix} 1^0 & 2^0 & 3^0 \\ 1^1 & 2^1 & 3^1 \\ 1^2 & 2^2 & 3^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$$

• F D = C

- where D is the vector of three data words
- C is the vector of the three parity words
- Store D and C on the disks

IBURG

A Complexity of Reed-Solomon

- Encoding
 - Time: O(k n) GF[2^w]-operations for k check words and n disks
- Modification
 - like Encoding
- Decoding
 - Time: O(n³) for matrix inversion
- Ease of implementation
 - check disk overhead is minimal
 - complicated decoding

36

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud Storage Networks

2: Virtualization of Storage: RAID, SAN and Virtualization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg