
DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
3: Distributed Hash Tables - Virtualization without Index
Database
Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Concept of Virtualization

‣ Principle
• A virtual storage constitutes handles all

application accesses to the file system

• The virtual disk partitions files and
stores blocks over several (physical)
hard disks

• Control mechanisms allow redundancy
and failure repair

‣ Control

• Virtualization server assigns data, e.g.
blocks of files to hard disks (address
space remapping)

• Controls replication and redundancy
strategy

• Adds and removes storage devices

2

File

Virtual Disk

Hard Disks

Distributed Wide Area Storage Networks

 Distributed Hash Tables
- Relieving hot spots in the Internet
- Caching strategies for web servers

 Peer-to-Peer Networks
- Distributed file lookup and download in Overlay networks
- Most (or the best) of them use: DHT

3

4

WWW Load Balancing

 Web surfing:
- Web servers offer web pages
- Web clients request web

pages

 Most of the time these
requests are independent

 Requests use resources of
the web servers
- bandwidth
- computation time

www.google.com

www.apple.de www.uni-freiburg.de

StefanChristian Arne

5

Load

‣ Some web servers have always high
load

• for permanent high loads servers
must be sufficiently powerful

‣ Some suffer under high fluctuations
• e.g. special events:

- jpl.nasa.gov (Mars mission)

- cnn.com (terrorist attack)

• Server extension for worst case not
reasonable

• Serving the requests is desired

Monday Tuesday Wednesday

www.google.com

6

Monday Tuesday Wednesday

A B A B A B

A B

Load Balancing in the WWW

 Fluctuations target some
servers

 (Commercial) solution
- Service providers offer

exchange servers an
- Many requests will be

distributed among these
servers

 But how?

7

Web-Cache

Literature

‣ Leighton, Lewin, et al. STOC 97

• Consistent Hashing and Random
Trees: Distributed Caching Protocols
for Relieving Hot Spots on the World
Wide Web

‣ Used by Akamai (founded 1997)

8

Start Situation

‣ Without load balancing
‣ Advantage

• simple

‣ Disadvantage
• servers must be designed for worst

case situations

Web-Server

Web-Clients

Web pages

request

9

Web-Clients

Web-Server

Web-Cache
redirect

Site Caching

‣ The whole web-site is copied to
different web caches

‣ Browsers request at web server

‣ Web server redirects requests to Web-
Cache

‣ Web-Cache delivers Web pages

‣ Advantage:
• good load balancing

‣ Disadvantage:
• bottleneck: redirect

• large overhead for complete web-site
replication

10

Proxy Caching

‣ Each web page is distributed to a few
web-caches

‣ Only first request is sent to web server

‣ Links reference to pages in the web-
cache

‣ Then, web clients surfs in the web-
cache

‣ Advantage:
• No bottleneck

‣ Disadvantages:
• Load balancing only implicit

• High requirements for placements

Web-Client

Web-Server

Web-
Cache

Link

re
qu

es
t

redirect

1.2.
3.

4.

11

Requirements

Balance
fair balancing of web pages

Dynamics
Efficient insert and delete of web-
cache-servers and files

Views
Web-Clients „see“ different
set of web-caches

new X X

?
?

12

Hash Functions

Buckets

Items

Example:

Set of Items:

Set of Buckets:

13

 Given:
- Items , Number
- Caches (Buckets), Bucket set:
- Views

 Ranged Hash-Funktion:
-
- Prerequisite: for alle views

Ranged Hash-Funktionen

Buckets

View

Items

14

First Idea: Hash Function

 Algorithm:
- Choose Hash funktion, e.g.

n: number of Cache servers

 Balance:
- very good

 Dynamics
- Insert or remove of a single cache

server
- New hash functions and total re-

hashing
- Very expensive!!

0 1 2 3

5

9 4

2

3 6

3 i + 1 mod 4

0 1 2 3

5

9 4

2

3 6

2 i + 2 mod 3

X

15

Requirements of the
Ranged Hash Functions

 Monotony
- After adding or removing new caches (buckets) no pages

(items) should be moved

 Balance
- All caches should have the same load

 Spread
- A page should be distributed to a bounded number of

caches

 Load
- No Cache should not have substantially more load than

the average

16

Monotony

• After adding or removing new caches (buckets) no pages (items) should
be moved

• Formally: For all

View 1:

View 2:

Pages

Pages

Caches

Caches

17

Balance

• For every view V the is the fV(i) balanced
For a constant c and all :

View 1:

View 2:

Pages

Pages

Caches

Caches

18

Spread

• The spread σ(i) of a page i is the overall number
of all necessary copies (over all views)

View 1:

View 2:

View 3:

19

Load

• The load λ(b) of a cache b is the over-all number of all
copies (over all views)

wher := set of all pages assigned to bucket b
! ! ! ! ! in View V

b1 b2

λ(b1) = 2

λ(b2) = 3

View 1:

View 2:

View 3:

20

Distributed Hash Tables

Theorem
There exists a family of hash function

with the following properties
 Each function f∈F is monotone
 ! Balance: For every view

 ! Spread: For each page i

 with probability

 ! Load: For each cache b

 with probability

C ! number of caches (Buckets)
C/t! minimum number of caches per View
V/C = constant (#Views / #Caches)
I = C! (# pages = # Caches)

21

The Design

 2 Hash functions onto the reals [0,1]

 maps k log C copies of cache b randomly to [0,1]
 maps web page i randomly to the interval [0,1]

 := Cache , which minimizes

0 1

Web pages (Items):

Caches
(Buckets):

View 2

View 1

0 1

 := Cache which minimizes
For all :

Observe: blue interval in V2 and in V1 empty!

22

Monotony

0 1

View 2

View 1

0 1

Balance: For all views

– Choose fixed view and a web page i
– Apply hash functions and .
– Under the assumption that the mapping is random
• every cache is chosen with the same probability

23

2. Balance

Webseiten (Items):

Caches
(Buckets):

View 0 1

24

3. Spread

σ(i) = number of all necessary copies (over all views)

0 1t/C 2t/C

Proof sketch:
• Every view has a cache in an interval of length t/C (with high probability)
• The number of caches gives an upper bound for the spread

For every page i with prob.

ever user knows at least a fraction of 1/t
over the caches

C ! number of caches (Buckets)
C/t! minimum number of caches per View
V/C = constant (#Views / #Caches)
I = C! (# pages = # Caches)

• Last (load): λ(b) = Number of copies over all views

where := set of pages assigned to bucket b under view V

• For every cache be we observe
! !
! ! ! with probability

25

4. Load

0 1t/C 2t/C

Proof sketch: Consider intervals of length t/C
• With high probability a cache of every view falls into one
of these intervals
• The number of items in the interval gives an upper
bound for the load

26

Summary

 Distributed Hash Table
- is a distributed data structure for virtualization
- with fair balance
- provides dynamic behavior

 Standard data structure for dynamic distributed
storages

DAAD Summerschool Curitiba 2011
Aspects of Large Scale High Speed Computing Building Blocks of a Cloud

Storage Networks
3: Distributed Hash Tables - Virtualization without Index
Database
Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

