

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud Storage Networks

4: Distributed Heterogeneous Hash Tables

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

- André Brinkmann, Kay Salzwedel, Christian Scheideler, Compact, Adaptive Placement Schemes for Non-Uniform Capacities, 14th ACM Symposium on Parallelism in Algorithms and Architectures 2002 (SPAA 2002)
- Christian Schindelhauer, Gunnar Schomaker, Weighted Distributed Hash Tables, 17th ACM Symposium on Parallelism in Algorithms and Architectures 2005 (SPAA 2005)
- Christian Schindelhauer, Gunnar Schomaker, SAN Optimal Multi Parameter Access Scheme, ICN 2006, International Conference on Networking, Mauritius, April 23-26, 2006

2

Given

- a dynamic set of n nodes $V = \{v_1, \dots, v_n\}$
- data elements $X = \{x_1, ..., x_m\}$

Find

• a mapping $f_V : X \rightarrow V$

With the following properties

- The mapping is simple
 - fV(x) be computed using V and x
 - without the knowledge of X\{x}
- Fairness:
 - $|f_{V^{-1}}(v)| \approx |f_{V^{-1}}(v)|$
- Monotony: Let $V \subset W$
 - For all $v \in V$: $f_{V}^{-1}(v) \supseteq f_{W}^{-1}(v)$

▶ where $f_{V^{-1}}(v) := \{x \in X : f_{V}(x) = v \}$

Data Items X

Distributed Hash Tables THE Solution for the Uniform case

- "Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web",
 - David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, Rina Panigrahy, STOC 1997
 - Present a simple solution
- Distributed Hash Table
 - Chooose a space M = [0,1[
 - Map nodes v to M via hash function
 - $h: V \rightarrow M$
 - Map documents and servers to an interval
 - $h: X \rightarrow M$
 - Assign a document to the server which minimizes the distance in the interval
 - $f_V(x) = argmin\{v \in V: (h(x)-h(v))mod 1\}$
 - where x mod 1 := x $\lfloor x \rfloor$

- Theorem
 - Data elements are mapped to node i with probability $p_i = 1/|V|$, if the hash functions behave like perfect random experiments
- Balls into bins problem
 - Expected ratio $max(p_i)/min(p_i) = \Omega(\log n)$
- Solutions:
 - Use O(log n) copies of a node
 - -Principle of multiple choices
 - check at some O(log n) positions and choose the largest empty interval for placing a node,

-Cookoo-Hashing

every node chooses among two possible position

The Heterogeneous Case

Given

- a dynamic set of n nodes $V = \{v_1, \, \ldots \, , \, v_n\}$
- dynamic weights $w: V \rightarrow R_+$
- dynamic set of data elements X = {x₁,...,x_m}
- Find a mapping $f_{w,V} : X \to V$
- With the following properties
 - The mapping is simple
 - $f_{w,V}(x)$ be computed using V, x, w without the knowledge of X\{x}
 - Fairness: for all u, v \in V:
 - $| f_{w,V^{-1}}(u)|/w(u) \approx | f_{w,V^{-1}}(v)|/w(v)$
 - Consistency:
 - Let $V \subset W$: For all $v \in V$:
 - $* \ f_{w,V}^{-1}(v) \supseteq f_{w,W}^{-1}(v)$
 - Let for all $v \in V \setminus \{u\}$: w(v) = w'(v) and w'(u) > w(u):
 - * for all $v \in V \setminus \{u\}$: $f_{w,V^{-1}}(v) \supseteq f_{w',V^{-1}}(v)$ and $f_{w,V^{-1}}(u) \subseteq f_{w',V^{-1}}(u)$
- ▶ where $f_{w,v}^{-1}(v) := \{ x \in X : f_{w,v}(x) = v \}$

UNI FREIBURG

Some Application Areas

- Proxy Caching
 - Relieving hot spots in the Internet
- Mobile Ad Hoc Networks
 - Relating ID and routing information
- Peer-to-Peer Networks
 - Finding the index data efficiently
- Storage Area Networks
 - Distributing the data on a set of servers

EBURG

7

- Peer-to-Peer Network:
 - decentralized overlay network delivering services over the Internet
 - no client-server structure
 - example: Gnutella
- Problem: Lookup in first generation networks very slow
- Solution:
 - Use an efficient data structure for the links and
 - map the keys to a hash space
- Examples:
 - CAN
 - maps keys to a d-dimensional array
 - builds a toroidal connection network,
 - where each peer is assigned to rectangular areas

- Chord

- maps keys and peers to a ring via DHT
- establishes binary search like pointers on the ring

BURG

Distribute data over a set of hard disks

- Nodes = hard disks
- Data items = blocks
- Problem
 - Place copies of blocks for redundancy
 - If a hard disk fails other hard disk carry the information
 - Add or remove hard disks without unnecessary data movement
 - Hard disks may have different sizes

Storage Network Architecture

- Avoid server based architectures
 - Assignment of data is not flexible enough
 - High local storage concentration (for LAN traffic reduction)
 - Low availability of free capacity
- Basic distributed storage network concept
 - Combine all available disks into a single virtual one

JNI Reiburg

- Server independent existence of storage

A Challenges in Storage Networks

- Heterogeneity
 - hard disks typically differ in capacity and speed
- Popularity
 - some data is popular and other not (e.g. movies, music :-)
 - their popularity rank varies over time
- Consistency
 - system changes by adding or re-placing/moving
 - preserving a fair share rate
 - only necessary data replacements must be done
- Availability
 - hard disks may fail, but data should not!
- Performance

JNI Reiburg

The Heterogeneous Case

Given

- a dynamic set of n nodes $V = \{v_1, \dots, v_n\}$
- dynamic weights w : V $\rightarrow \mathbf{R}^+$
- dynamic set of data elements $X = \{x_1, ..., x_m\}$
- \succ Find a mapping $f_{w,V} : X \rightarrow V$
- With the following properties
 - The mapping is **simple**
 - \bullet $f_{w,V}(x)$ be computed using V, x, w
 - without the knowledge of $X \{x\}$
 - **Fairness**: for all u, $v \in V$:
 - $| f_{w,V}^{-1}(u)|/w(u) \approx | f_{w,V}^{-1}(v)|/w(v)$
 - Consistency:
 - minimal replacements to preserve the data distribution
- > where $f_{w,V}^{-1}(v) := \{ x \in X : f_{w,V}(x) = v \}$

A The Naive Approach to DHT Freiburg

- Use $\left\lceil \frac{w_i}{\min_{j \in V} \{w_j\}} \right\rceil$ copies for each node w_i
- This is not feasible, if $\max_{j \in V} \{w_j\} / \min_{j \in V} \{w_j\}$ is too large
- Furthermore, inserting nodes with small weights increases the number of copies of all nodes.

SIEVE: Interval based consistent hashing

Interval based approach

- Brinkmann, Salzwedel, and Scheideler, SPAA 2000
- Map nodes to random intervals (via hash function)
 - interval length proportional to weight
- Map data items to random positions (via hash function)
- Two problems
 - What to do if intervals overlap?
 - What to do if the unions of intervals do not overlap the hash space M?

SIEVE: Interval based consistent hashing

1. What to do if intervals overlap?

- Uniformly choose random candidate from the overlapping intervals
- 2. What to do if the unions of intervals do not overlap the hash space M?
 - Increase all intervals by a constant factor (stretch factor)
 - Use O(log n) copies of all nodes
 - resulting in O(n log n) intervals

If more nodes appear

 then decrease all intervals by a constant factor

SIEVE is not providing monotony

 Re-stretching leads to unnecessary re-assignments

- Alternative presentation of (uniform) Consistent Hashing
- After "randomly" placing nodes into M
 - Add cones pointing to the node's location in M
- Compute for each data element x the height of the cones
 - Choose the cone with smallest height
- For the Linear Method
 - Choose for each node i a cone stretched by the factor wi
- Compute for each data element x the height of the cones
 - Choose the cone with smallest height

A The Linear Method: Basics

- For easier description we use half-cones,
 - the weighted distance is

• where x mod 1 := x -
$$\lfloor x \rfloor$$
 $D_w(r,s) := \frac{((s-r) \mod 1)}{w}$

- Analyzing heights is easier as analyzing interval lengths!
- Define: $H(z) := \min_{u \in V} D_{w_u}(z, s_u)$ - Consider a data element and n randomly hashed nodes H(z) BURG Dw(r,s) S 17

A The Linear Method: Basics

LEMMA 1. Given n nodes with weights w_1, \ldots, w_n . Then the height H(r) assigned to a position r in M is distributed as follows:

$$P[H(r) > h] = \begin{cases} \prod_{i \in [n]} (1 - hw_i), & \text{if } h \le \min_i \{\frac{1}{w_i}\} \\ 0, & \text{else} \end{cases}$$

≻Proof:

 The probability of to receive height of at least h with respect to a node i is

1 - h w_i

-Since

$$\mathbf{P}[H_i \le h] = \begin{cases} 1, & h \ge \frac{1}{w_i} \\ h \cdot w_i & \text{else.} \end{cases}$$

THEOREM 1. The Linear Method stores with probability of at most $\frac{w_i}{W-w_i}$ a data element at a node *i*, where $W := \sum_{i=1}^{|V|} w_i$.

Proof: From Lemma 1 follows

$$\mathbf{P}[H_i \in [h, h+\delta] \land \forall j \neq i : H_j > h] = \begin{cases} 0, & \exists j : h \ge \frac{1}{w_j} \\ \delta w_i \prod_{j \neq i} (1-hw_j) & \text{else}. \end{cases}$$

We define $P_{i,h,\delta} := \delta w_i \prod_{j \neq i} (1 - h w_j)$

and the following term describes an upper bound

$$\sum_{m=1}^{\infty} P_{i,\delta m,\delta}$$
 where $h = m\delta$

JNI REIBURG

An Upper Bound for Fairness (II)

THEOREM 1. The Linear Method stores with probability of at most $\frac{w_i}{W-w_i}$ a data element at a node *i*, where $W := \sum_{i=1}^{|V|} w_i$.

Proof (continued):

$$\lim_{\delta \to 0} \sum_{m=1}^{\infty} P_{i,\delta m,\delta} \leq \lim_{\delta \to 0} \sum_{m=1}^{\infty} w_i \delta e^{-a\delta m}$$
$$= \int_{x=0}^{\infty} w_i e^{-ax} dx = \frac{w_i}{a}$$
$$= \frac{w_i}{\sum_{j \neq i} w_j}$$

UNI FREIBURG

A The Limits of the Linear Method Freiburg

THEOREM 5. The Linear Method (without copies) for n nodes with weights $w_1 = 1$ and $w_2, \ldots, w_{n-1} = \frac{1}{n-1}$ assigns a data element with probability $1 - e^{-1} \approx 0.632$ to node 0 when n tends to infinity.

PROOF. We use Lemma 1 and reduce the probability to the following term.

$$\lim_{n \to \infty} \int_{x=0}^{1} x \left(1 - \frac{x}{n-1} \right)^{n-1} dx =$$

$$\int_{x=0}^{1} x e^{-x} dx = \left[-e^{-x}\right]_{0}^{1} = 1 - e^{-1} \, .$$

Why does the biggest node win?

The small ones are competing against each other The big one has no competitor in his league **The solution:**

Use copies of each node

UNI FREIBURG

A The Linear Method with Copies

THEOREM 2. Let $\epsilon > 0$. Then, the Linear Method using $\lceil \frac{2}{\epsilon} + 1 \rceil$ copies assigns one data element to node *i* with probability p_i where

$$(1 - \sqrt{\epsilon}) \cdot \frac{w_i}{W} \leq p_i \leq (1 + \epsilon) \cdot \frac{w_i}{W}$$

> A constant number of copies suffice to "repair" the linear function

- \succ This theorem works only for one data item
 - –If many data items are inserted, then the original bias towards some nodes is reproduced:
 - "Lucky" nodes receive more data items
- ➢ Solution
 - -Independently repeat the game at least O(log n) times

22

BURG

A Partitioning and the Linear Method Freiburg

≻Partitions:

- Partition the hash range into subintervals
- Map each data element into the whole interval
- Map for each node 2/ε+1 copies into each sub-interval

Theorem 3 For all $\epsilon, \epsilon' > 0$ and c > 0 there exists c' > 0 such that when we apply the Linear Method to n nodes using $\lceil \frac{2}{\epsilon} + 1 \rceil$ copies and $c' \log n$ partitions, the following holds with high probability, i.e. $1 - n^{-c}$.

Every node $i \in V$ receives all data elements with probability p_i such that

$$(1 - \sqrt{\epsilon} - \epsilon') \cdot \frac{w_i}{W} \leq p_i \leq (1 + \epsilon + \epsilon') \cdot \frac{w_i}{W}$$

A The Logarithmic Method Freiburg

- Replacing the linear function by $L_w(r,s) := \frac{-\ln((1-(r-s)) \mod 1)}{w}$
- improves the accuracy

FACT 2. If in the Logarithmic Method (without copies and without partitions) a node arrives with weight w then the probability that data element x with previous height H_x is assigned to the new node is $1 - e^{-wH_x}$.

THEOREM 6. Given *n* nodes with positive weights w_1, \ldots, w_n the Logarithmic Method assigns a data element to node *i* with probability $\frac{w_i}{W}$, where $W := \sum_{i=1}^{|V|} w_i$.

24

iBURG

A The Logarithmic Method CoNe Freiburg

 Replacing the linear function with -ln((1-d_i(x)) mod 1)/w_i improves the accuracy of the probability distribution

Theorem 7 For all $\epsilon > 0$ and c > 0 there exists c' > 0, where we apply the Logarithmic Method with $c' \log n$ partitions. Then, the following holds with high probability, i.e. $1 - n^{-c}$.

Every node $i \in V$ receives data elements with probability p_i such that

$$(1-\epsilon) \cdot \frac{w_i}{W} \leq p_i \leq (1+\epsilon) \cdot \frac{w_i}{W}$$

BURG

- Efficient data structure for the linear and logarithmic method
 - can be implemented within O(n) space
 - Assigning elements can be done in O(log n) expected time
 - Inserting/deleting new nodes can be done in amortized time O(1)
- Predicting Migration
 - The height of a data element correlates with the probability that this data element is the next to migrate to a different server
- Fading in and out
 - Since the consistency works also for the weights:
 - Nodes can be inserted by slowly increasing the weight
 - No additional overhead
 - Node weight represents the transient download state
 - Vice versa for leaving nodes

I BURG

A Double Hashing Freiburg

If every node uses a different hashing, then the logarithmic method can be chose without any copies

For this, we apply for each node an individual hash function $h: V \times [0,1) \rightarrow [0,1)$. So, we start mapping the data element x to $r_x \in [0,1)$ as above and then for every node we compute $r_{i,x} = h(i, r_x)$. Now x is assigned to a node i which minimizes $r_{i,x}/w_i$ according the Linear Method. In the Logarithmic Method x is assigned to the node minimizing $-\ln(1-r_{i,x})/w_i$.

- Advantage:
 - Perfect probability distribution
- Disadvantage:
 - Intrinsic linear time w.r.t. the number of servers
- This is the method of choice for Storage Area Networks

JNI Reiburg

DAAD Summerschool Curitiba 2011

Aspects of Large Scale High Speed Computing Building Blocks of a Cloud Storage Networks

4: Distributed Heterogeneous Hash Tables

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

