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Definition

Convolutional Neural Networks (CNNs) are Artificial Intelligence
algorithms based on multi-layer neural networks that learns relevant
features from images, being capable of performing several tasks like
object classification, detection, and segmentation.
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History

An initial idea of convolution was proposed by Kunihiko Fukushima in
1980 and initially was called Neocognitron.

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron
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History

The modern concept of Convolutional Neural Networks comes from
the work of Yann LeCun published in 1998. LeCun proposed a CNN
called LeNet for hand-write recognition.
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Figure: Gradient-Based Learning Applied to Document Recognition
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History

In 2012, Alex Krizhevsky won the ImageNet Large Scale Visual
Recognition Challenge with a CNN model called AlexNet. Krizhevsky
used GPUs to train the AlexNet, which enabled faster training of CNNs
models and started a wave of interest and new works based on CNNs.
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Figure: ImageNet Classification with Deep Convolutional Neural Networks
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Why CNN is better?

The advantage of CNNs over others classification algorithms (SVM,
K-NN, Random-Forest, and others) is that the CNNs learns the best
features to represent the objects in the images and has a high
generalization capacity, being able to precisely classify new examples
with just a few examples in the training set.
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Popular applications

Car and Plate recognition
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Popular applications

Biometry
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Popular applications

Autonomous car
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Popular applications

Pedestrian Detection
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Popular applications

Indoor environments recognition
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CNN Layers

A CNN is topically composed by four types of layers:
@ Convolutional
@ Pooling
@ Relu
@ Fully Connected
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Convolutional Layer

@ A convolutional layer is composed by a set of filters, also called
kernels, that slides over the input data.

@ Each kernel has a width, a height and width x height weights
utilized to extract features from the input data.

@ In the training step, the weights in the kernel starts with random
values, and will be learning based on the training set.
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Convolutional Layer

Example of convolution with 1 channel: https:
//miro.medium.com/max/658/1*GcI7G-JLAQIE0CONTxFbhg.gif
Example of convolution with 3 channels: https://miro.medium.
com/max/1600/1*ciDgQEjViWLnChmX-EeSrA.qgif
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Convolutional Layer

Each filter in the convolutional layer represents a feature.
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Pixel representation of filter Visualization of a curve detector filter
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Convolutional Layer

When the filter slides over the image and finds a match...

ES

Original image Visualization of the filter on the image

\)& B

16/68




CNN Layers
00000@®0000000000000000000

Convolutional Layer

The convolution operation generates a large number, activating the
filter to that characteristic.
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Convolutional Layer

When the filter slides over the image and finds no match, the filter
does not activate.
The CNN uses this process to learn the best filters to describe the

objects.
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Convolutional Layer
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Relu

@ The RelLU (Rectified Linear Units) layers, is an activation layer
linked after a convolutional layer to generate non-linearity in the
network.

@ The Relu helps the network to learn harder decision functions
and reduce the overfitting.

@ The Relu applies the function y = max(x,0)
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Relu

y=0
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Pooling

max pooling
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Pooling

@ The pooling layer, or down-sampling layer, is applied to reduce
the dimensionality of the feature maps in a way to save the most
relevant information from the feature maps.

@ In the pooling layer, a filter slides over the input data and applies
the pooling operation (max, min, avg).

@ The max pooling is the most used in the literature.

@ https:

//developers.google.com/machine-learning/practica/
image-classification/images/maxpool_animation.gif
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Fully Connected Layer

A CNN is topically divided into two parts: the convolutional and the
dense steps. The former learns the best features to extract from the
images and the latter learns how to classify the features in different

categories.
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Fully Connected Layer

The Fully Connected layer is a MultiLayer Perceptron (MLP),
composed by three types of layers: input, hidden, and output layers.
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FIGURE 4.7 Architeetwral graph of a multilayer perceptron with two hidden layers
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Fully Connected Layer

@ The input layer receives the features generated by the CNN .

@ The hidden layer is a sequence of neurons with weights that will
be learned in the training step. A MLP is composed by one or
more hidden layers.

@ The output layer is also a sequence of neurons. However, it has a
different activation function. Usually, the softmax function is used
to generate the probabilities of each category in the problem
scope.
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Fully Connected Layer

Each neuron is composed by:
@ A input vector xp, X1, ..., Xp, that represent the features

@ A weight vector wy, wy, ..., wp, that will be learned in the training
step

The bias

An activation function

The output
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Fully Connected Layer

Input (X) —=

b (bias)

Qutput

Threshold activation function
__1forall azu
L_0foralla<u

Where u is the threshold value
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Fully Connected Layer

The Perceptron performs the following operation:

output = ActivationFunction(Xo * Wo -+ X1 * Wy + ...+ Xp % Wy + bias) (1)

The most common activation functions used in the literature are:
Relu, Sigmoid, Softmax, Tanh, Hardlim
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Sigmoid
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Softmax
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Training

@ In order to train a CNN model, a training dataset composed by a
set of images and labels (classes, bounding boxes, masks) is
used.

@ The algorithm used to train a CNN is called back-propagation,
that uses the output value of the last layer to measure an error
value. This error value is used to update the weights of each
neuron in that layer.

@ The new weights are used to measure an error value and update
the weights of the previous.

@ The algorithm repeats the process until it reaches the first layer.
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Training

A 3D CNN visualization:
https://scs.ryerson.ca/~aharley/vis/conv/
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Training

Weight update

error

Backpropagation
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Classification

Classification

Popular CNNs for classification
tasks

o VGG-16
@ ResNets

@ Inception
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Detection

Popular CNNs for detection tasks
@ Faster R-CNN
@ YOLO
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Segmentation

Popular CNNs for segmentation
tasks

@ FCN
@ U-Net
@ Mask R-CNN
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224 x 224 x3 224x224x64

112 x 112 x 128

561x 56 x 256
28 x 28 x 512

7x7x512

14 x 14 x 512 1x1x4096 1x 1x 1000

=) convolution+RelLU
| max pooling
fully nected+RelLU
softmax

Figure: Very Deep Convolutional Networks for Large-Scale Image
Recognition
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@ The VGG-16 was molded with stacks of convolutional layers with
small kernels of size 3 x 3 instead of one convolutional layer with
large kernels of size 7 x 7 and 11 x 11 in LeNet and AlexNet.

@ A stack of convolutional layers with small filters sizes generates a
decision function more discriminatory by increasing the nhumber
of non-linear rectification layers.

@ VGG16 layers: https://miro.medium.com/max/480/
1*SPHAUMphNbJ9khi5Tg6fIw.png

\)& B

41/68


https://miro.medium.com/max/480/1*SPHdUMphNbJ9khi5Tg6fIw.png
https://miro.medium.com/max/480/1*SPHdUMphNbJ9khi5Tg6fIw.png

0
7}
-]
<}
=
4
=z
o

o)
o
0]
o
o]
o)
o]
o
o
0]
o
0]
o
0]
o
)
[ ]
o]
o)
o]
o
o]

50 layers

101 layers

ofs=13,8,3631

152 layers

0004 94

$a

8Y0Z *AUOD X}
215 *AUOD EXE
215 “AUOD LX)

¥

8Y0Z ‘AUOD x|
21S *AUOD EXE
215 *AU0O LX)

8Y0Z ‘AU X}
215 ‘Au0d £XE
2/2LS ‘Au0D LX)

Y20l ‘AUOD X}
952 ‘AUOD EXE
952 *AUOD |x,
L x
201 *AU0D 1X).
952 *Au0D £XE
962 *Au0D x|

0L “AUOD x|
952 ‘AU0D £XE.
2/952 MU0 IX1.

[ — H

21G *AUOD x|
821 *AU0O X
821 “AUOD |X|.
| —
21g “AUOD x|
821 *AU0O X
821 “AU0D IX|.

215 “AU0D IX|.
821 “AUOD EXE
2/821 *AUOD Lx|

952 ‘AU0D x|
9 Au0D £Xg
$9 ‘AUOD |x|
952 “AUOD x|
9 “Au0D XE
$9 ‘AUOD |x|
952 ‘AUOD |X|.
9 “AUOD £XE
$9 ‘AUOD LX)
——1*

2o

1
2Iv9 “Auod £xL

ofgl3] blocks

az15

ofgl2] blocks

przs

«fgl1] blocks

szoms

l

«fgl0] blocks

ians

: ResNet

Figure

».

42/68



REHNEREES

CNN Models
000000@000000000000000

layer name | output size 18-layer } 34-layer 50-layer 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
33 max pool, stride 2
[ 1x1.64 ] 1x1,64 1x1, 64 ]
. 56x5
comZx | 56x36 [ i"i'z}xz 3x3,64 | x3 33,64 |x3 3x3,64 | x3
R | 1x1,256 | [ 1x1,256 | [ 1x1,256 |
3%3. 128 1x1,128 1x1,128 1x1,128
conv3_x 28x28 33,128 x4 3x3,128 | x4 3x3,128 | x4 3x3,128 [ x8
b | 1x1,512 | [ 1x1,512 | [ 1x1,512 ]
1x1,256 1x1,256 | 1x1,256 |
3x3,256
convd_x 1414 33, 256 %6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
FH [ Ix1,1024 | 1x1,1024 | Ix1, 1024 |
3123 512 1x1,512 ] 1x1.512 1x1.512
convy_x 7x7 [ ; %” }x} 3x3.512 | x3 3x3.512 | x3 3x3.512 | x3
IH [ 1x1,2048 | [ 1x1,2048 | [ 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 1L8x10° | 3.6x10° 3.8x10° I 7.6x10°% I 113107

Figure: Deep Residual Learning for Image Recognition
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ResNet

Aiming to build deeper neural networks, the ResNet was proposed
with skip connections.

X l X
) weight layer
weight layer I
H(x) relu Fx) Ak X
Y weight layer identit
weight layer ISR
¥ rely F(x) +x

Figure: Difference between a convolution block without skip and with skip
connection.
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ResNet

ResNet: https://adeshpande3.github.io/assets/ResNet.gif
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Inception - GoogleLeNet

W
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Inception - GoogleLeNet

Use a sequence of parallel convolutions of different sizes to learn
objects of different size and position in the figure.

Filter
concatenation
— e
.--"’-‘--
_,"’ 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [ [] []
\ 1x1 convolutions 1%1 convolutions 3x3 max pooling
s
— — _

Previocus layer
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Inception - GoogleLeNet

GoogleLenet:
https://adeshpande3.github.io/assets/GoogleNet.gif
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Faster R-CNN

The Faster R-CNN has the Region Proposal Network (RPN) to select
the regions in the image with the highest probability of being objects.

classifier

proposals i . ;

Region Proposal Network,

Rol pooling

feature maps

conv layers I
A

ez W
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Faster R-CNN

In the RPN, the Faster R-CNN generate a set of anchor boxes. The
anchor boxes with the highest probability of being objects are used to
generate the bounding boxes of each object in the image.

| 2k scores | | 4k coordinates ‘ <= k anchor boxes

cls layer \ t reg layer .

| 256-d \
t intermediate layer

sliding window \))U

conv feature map
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Faster R-CNN

RoiPooling is applied to convert all proposed regions to a same size
feature map. https://upload.wikimedia.org/wikipedia/
commons/d/dc/RoI_pooling_animated.gif
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You only look once (YOLO)
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You only look once (YOLO)

In the YOLO, the image is divided into a S x S grid, with each cell in
the grid predicting N bounding boxes. The bounding boxes with a very
low probability of being an object are discarded and non-max
suppression are utilized to remove multiple bounding box to a same
object.
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Fully Convolutional Network (FCN)

In the FCN, the fully connected layers are replaced by convolutional
ones to generate a pixel level classification mask.

forward/inference

backward /learning
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Fully Convolutional Network (FCN)
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Fully Convolutional Network (FCN)

Three versions of the FCN was proposed.

32x upsample
iction (F
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2x convy
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Similar with the FCN. However, each convolutional block has a
deconvolutional block.

164 64

input
image || > |
tile

output
segmentation
map

=» conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1
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Mask R-CNN

The Mask R-CNN is an evolution of the Faster R-CNN with a
segmentation modulo. So, the Mask R-CNN performs the three tasks:
classification, detection and segmentation.
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Tensorflow

+ Tensor

@ Developed by Google

@ Support for many programming languages: Python, C++,
JavaScript, Java, Go, C# and Julia

@ Runs on mobile platforms

@ Works with static computation graphs (first defines a graph, than
performs the training).



Popular Frameworks
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PyTorch

PYTHRCH

@ Developed by Facebook
@ Support for: Python and C++
@ Runs on mobile platforms

@ Works with dynamically updated graphs (the graph can be altered
in the training process).
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Popular Frameworks
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. Keras

@ Itis a high level API

@ Works on top of: Tensorflow, Theano, and CNTK
@ Very easy of use
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Model Zoo

There are high number of online repositories called Model Zoo’s with a
wide range of frameworks and implementations in many different
frameworks. https://modelzoo.co/
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