Mobile Robotics

Simultaneous Localization and Mapping

SLAM

Prof. Eduardo Todt

Estimando a posição - dead reckoning

- Bowditch, 1837
- sem observação estelar

' Last known fix: $51^{\circ} 30.0^{\prime} \mathrm{S}, 80^{\circ} 59.5^{\prime} \mathrm{W}$
Time of last fix: 1999-03-24, 00:10:23 UT True Course: 119.3°
Compass variation: $18^{\circ} \mathrm{E}$ Compass deviation: $2.5^{\circ} \mathrm{W}$ Speed 10.3 kts
Current drift: $115^{\circ}, 1.0 \mathrm{kts}$
Time of new fix: 23:40:01.
http://jsc.nasa.gov

Estimando posição referências externas

■ Ex: navegação celestial

ângulo entre horizonte e estrela polar \rightarrow latitude
longitude?

- em 1714 parlamento Inglaterra ofereceu prêmio 20.000 libras
- variação na hora meio-dia de referência
- 15 graus/hora

http://jsc.nasa.gov

Probabilistic Robotics: SLAM = Simultaneous Localization and Mapping

Sebastian Thrun \& Alex Teichman
Stanford Artificial Intelligence Lab

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

Chicken-or-Egg

SLAM is a chicken-or-egg problem
A map is needed for localizing a robot
A good pose estimate is needed to build a map

Thus, SLAM is regarded as a hard problem in robotics

A variety of different approaches to address the SLAM problem have been presented

Probabilistic methods outperform most other techniques

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Filtro preditivo de Kalman

SLAM:

Simultaneous Localization and Mapping

- Full SLAM:

Estimates entire path and map!

$p\left(X_{1: t}, m \mid z_{1: t}, u_{1: t}\right)$

- Online SLAM:
$p\left(x_{t}, m \mid z_{1: t}, u_{1: t}\right)=\iint \ldots \int p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right) d x_{1} d x_{2} \ldots d x_{t-1}$ Integrations typically done one at a time

Graphical Model of Full SLAM:

$p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right)$

Graphical Model of Online SLAM:

$p\left(x_{t}, m \mid z_{1: t}, u_{1: t}\right)=\iint \ldots \int p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right) d x_{1} d x_{2} \ldots d x_{t-1}$

Techniques for Generating Consistent Maps

- Scan matching
- EKF SLAM
- FastSLAM
- Probabilistic mapping with a single map and a posterior about poses Mapping + Localization
- GraphSLAM, SEIF

Kalman Filter Algorithm

1. Algorithm Kalman_filter($\left.\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}\right)$:
2. Prediction:
3. $\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t}$
4. $\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}$
5. Correction:
6.
7. $K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}$
8. $\mu_{t}=\mu_{t}+K_{t}\left(z_{t}-C_{t} \mu_{t}\right)$
9. $\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}$
10. Return μ_{t}, Σ_{t}^{t}

(E)KF-SLAM

- Map with N landmarks:(3+2N)-dimensional Gaussian

- Can handle hundreds of dimensions

EKF-SLAM

Map
Correlation matrix

EKF-SLAM

Map
Correlation matrix

EKF-SLAM

Map
Correlation matrix

Properties of KF-SLAM (Linear Case) [Dissanayake et al., 2001]

Theorem:
The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem:
In the limit the landmark estimates become fully correlated

Victoria Park Data Set

[courtesy by E. Nebot]

Raw Odometry (no SLAM)

Estimated Trajectory

EKF SLAM Application

[courtesy by J. Leonard]

EKF SLAM Application

[courtesy by John Leonard]

Threshold

