Universidade Federal do Paraná

Especialização em Inteligência Artificial Aplicada

Mobile Robotics

Visão computacional

Prof. Eduardo Todt 2019

Sensores para visão

Sensores

CCD

Array de sensores, carga em capacitores transferida entre pixels, leitura realizada em um extremo Maior sensibilidade próximo a IR

Maior faixa dinâmica (ex: $40000:11 \rightarrow 3600:1 \rightarrow 35$ dB)

CMOS

Transistores junto a cada pixel permitem leitura em paralelo dos pixels

Menor resolução e menor sensibilidade devido à presença dos transistores adicionais

Processo de fabricação mais simples

Imagem em cores

Um CCD com filtros RGB em pixels vixzinhos Três CCDs, cada um com filtro global RGB

Problemas

Sensibilidades distintas para RGB, azul menor White-balance Color constancy

Visão computacional

Inteligência artificial

Robótica

Computação gráfica

Processamento de imagens

Psicologia

Aprendizagem computacional

Construindo uma câmera

Construindo uma câmera

Adicionando lente

Lente foca os raios no plano de projeção Raios que passam pelo centro não são desviados

Adicionando lente

Todos raios paralelos convergem para um ponto, localizado à distância focal *f*

Equação de lente convergente

Pontos satisfazendo equação estão em foco

© R. Siegwart and D. Scaramuzza, ETH Zurich - ASL

Aproximação pin-hole

O problema da correspondência

Matching de pontos nas duas imagens que correspondem ao mesmo ponto no mundo 3D Critérios: correlação e diferença

Custo muito alto para explorar toda imagem

Geometria epipolar

Restringe a correspondência a uma linha

Retificação de imagem

Transformação de cada plano de imagem para que pares conjugados de linhas epipolares fiquem colineares e paralelas a um eixo da imagem

F Moreno 2001

O problema da correspondência

Exemplo de correspondência com geometria epipolar

Mapa de disparidade

- 1. Achar os pontos conjugados
- 2. Calcular a disparidade d=v-v'
- Objetos mais próximos são representados mais claros

Left image

Right image

Fluxo óptico

Aproximação do movimento aparente dos objetos em uma imagem

Correlação entre frames sucessivos

Fluxo óptico

http://people.csail.mit.edu/lpk/mars/temizer_2001/Optical_Flow/

Calibração de Câmeras

parâmetros intrínsecos

- geometria da câmera
- características óticas

parâmetros extrínsecos

posição e orientação do frame da câmera relativo ao mundo

Pinhole camera model

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Pinhole camera model

Intrinsic matrix

Is this form of K good enough?

$$K = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

• non-square pixels (digital video)

$$K = \begin{bmatrix} f_{x} & 0 & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic matrix

Is this form of K good enough?

$$K = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew

$$K = \begin{bmatrix} f_{x} & s & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic matrix

Is this form of K good enough?

$$K = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew
- radial distortion

$$K = \begin{bmatrix} f_{x} & s & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Barrel Distortion

No distortion

Wide Angle Lens

Barrel

Pin Cushion Distortion

Telephoto lens

Pin cushion

Modeling distortion

Distortion-Free:

With Distortion:

1. Project (X, Y, Z) to "normalized" image coordinates

$$x_n = \frac{X}{Z}$$
$$y_n = \frac{Y}{Z}$$

2. Apply radial distortion

3. Apply focal length translate image center

 $r^{2} = x_{n}^{2} + y_{n}^{2}$ $x_{d} = x_{n} \left(1 + \kappa_{1} r^{2} + \kappa_{2} r^{4} \right)$ $y_{d} = y_{n} \left(1 + \kappa_{1} r^{2} + \kappa_{2} r^{4} \right)$

 $x = fx_d + x_c$ $y = fy_d + y_c$

Camera rotation and translation

internal or *intrinsic* parameters: focal length, optical center, skew *external* or *extrinsic* (pose): rotation and translation:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R | t \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Camera calibration

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R|t] \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Estimate both intrinsic and extrinsic parameters Mainly, two categories:

Using objects with known geometry as reference Self calibration (structure from motion)

Camera calibration approaches

Directly estimate 11 unknowns in the **M** matrix using known 3D points (*Xi*,*Yi*,*Zi*) and measured feature positions (*ui*,*vi*)

$x \sim K [R | t] X = \mathbf{M} \mathbf{X}$

Directly estimate 11 unknowns in the **M** matrix using known 3D points (*Xi*, *Yi*,*Zi*) and measured feature positions (*ui*,*vi*)

$$x \sim K \left[R \mid t \right] X = \mathbf{M} \mathbf{X}$$

NonLinear Approach:

$$\sum_{i=1}^{N} \left(u_{i} - \frac{m_{00} X_{i} + m_{01} Y_{i} + m_{02} Z_{i} + m_{03}}{m_{20} X_{i} + m_{21} Y_{i} + m_{22} Z_{i} + 1} \right)^{2} + \left(v_{i} - \frac{m_{10} X_{i} + m_{11} Y_{i} + m_{12} Z_{i} + m_{13}}{m_{20} X_{i} + m_{21} Y_{i} + m_{22} Z_{i} + 1} \right)^{2}$$

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Linear regression

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$
$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

Linear regression

 $u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$ $v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$, m₀₀ | m_{01} m_{02} m_{03} $\begin{bmatrix} X_i & Y_i & Z_i & 1 & 0 & 0 & 0 & -u_i X_i & -u_i Y_i & -u_i Z_i \\ 0 & 0 & 0 & 0 & X_i & Y_i & Z_i & 1 & -v_i X_i & -v_i Y_i & -v_i Y_i \end{bmatrix} \begin{bmatrix} m_{10} \\ m_{11} \\ m_{10} \\ m_{11} \\ m_{10} \end{bmatrix} = \begin{bmatrix} u_i \\ v_i \end{bmatrix}$ m_{13} m_{20} $m_{21}^{}$ *m*₂₂

Linear regression

$$\begin{bmatrix} X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1}X_{1} & -u_{1}Y_{1} & -u_{1}Z_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1}X_{1} & -v_{1}Y_{1} & -v_{1}Y_{1} \\ & & & \vdots \\ X_{N} & Y_{N} & Z_{N} & 1 & 0 & 0 & 0 & 0 & -u_{N}X_{N} & -u_{N}Y_{N} & -u_{N}Z_{N} \\ 0 & 0 & 0 & 0 & X_{N} & Y_{N} & Z_{N} & 1 & -v_{N}X_{N} & -v_{N}Y_{N} & -v_{N}Y_{N} \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \end{bmatrix}$$

Solve for Projection Matrix M using leastsquare techniques
Step 1: data acquisition

Step 2: specify corner order

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Step 3: corner extraction

Step 4: minimize projection error

Calibration res

Focal Length: 0.31819 fc = [657.46290 657.94673] ± [0.34046 1 Principal point: cc = [303.13665 242.56935] ± [0.64682 0.59218 1 Skew: => angle of pixel axes = alpha c = [0.00000] ± [0.00000] **Distortion:** -0.254030.12143 -0.000210.00002 0.000001kc = **Pixel error:** 0.11689 0.11500] err =

Step 4: camera calibration

Step 4: camera calibration

Step 5: refinement

Camera calibration With OpenCV

http://docs.opencv.org/master/doc/tutorials/calib3d/ camera_calibration/camera_calibration.html

Tamanho informado do tabuleiro: 4x9 (sem as bordas)

Caixa de chá a aprox. 1,3m

Caixa de chá a aprox. 2,2m

Câmeras com eixos principais não paralelos

OpenCV stereoCalibration

- CM1 Camera Matrix for left camera
- CM2 Camera Matrix for right camera
- D1 Vector of distortion coefficients for left camera
- D2 Vector of distortion coefficients for right camera
- R Rotation matrix between the left and the right camera coordinate systems
- T Translation vector between the left and the right coordinate systems of the cameras
- E Essential matrix
- F Fundamental matrix

Recuperação de imagens

change in viewing angle

Adapted from Cordelia Schmid and David Lowe, CVPR

> 5000 images

Color histogram [Swain & Balalrd, 1991]

Histograma descreve distribuição de vetores de cor

Cada pixel um vetor de cor

=> não é robusto à oclusão, não é invariante, não é distintivo

Autoimagens (eigenimages) [Turk & Pentland, 1991]

Projeta imagens de faces para um espaço de características, *face space*

Eigenfaces são os eigenvectors (*principal components*) da matriz de covariância de um conjunto de faces

Cada imagem é um ponto ou vetor em um espaço hiperdimensional

Cada face é uma soma ponderada das *eigenfaces* \rightarrow comparam-se os pesos

=> não é robusto à oclusão, não é invariante

Autoimagens (eigenimages) [Turk & Pentland, 1991]

Imagens de treinamento

Sete eigenfaces

Invariantes geométricos [Rothwell, Zisserman, Mundy and Forsyth, 1992]

Invariantes obtidos por curvas algébricas planas, i.e., linhas e cônicas:

- 5 linhas coplanares fornecem dois invariantes independentes
- 1 cônica e 3 linhas permitem calcular 3 índices
- 1 par de cônicas fornece dois índices invariantes

Extrai bordas com Canny

Distância entre dois pontos é invariante à rotação

Cross-ratio é invariante à homografia planar

=> local e invariante

Bordas x Cantos

Pontos de interesse

Interest points extracted with Harris (~ 500 points)

Harris detector

Baseado na ideia de auto-correlação

Diferença relevante em todas direções => ponto de interesse

Abordagem proposta por Schmid and Mohr, 1997

- 1) Extração de pontos de interesse (characteristic locations)
- 2) Cálculo de descritores locais
- 3) Determinação de correspondências
- 4) Seleção de imagens similares

Determinando correspondência

Comparação dos vetores com distância de Mahalanobis:

$$dist_M(\mathbf{p},\mathbf{q}) = \sqrt{(\mathbf{p}-\mathbf{q})^T \Lambda^{-1}(\mathbf{p}-\mathbf{q})}$$

Descritores locais

Derivadas na escala de cinza

$$\mathbf{v}(x,y) = \begin{cases} I(x,y) * G(\sigma) \\ I(x,y) * G_x(\sigma) \\ I(x,y) * G_y(\sigma) \\ I(x,y) * G_{xx}(\sigma) \\ I(x,y) * G_{xy}(\sigma) \\ I(x,y) * G_{yy}(\sigma) \\ \vdots \end{cases}$$

$$I(x, y) * G(\sigma) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y') I(x - x', y - y') dx' dy'$$

$$G((x', y')^{t}, \sigma) = \frac{1}{2\pi\sigma^{2}} \exp(-\frac{(x', y')^{t^{2}}}{2\sigma^{2}})$$

Descritores locais

Invariância à rotação: invariantes diferenciais [Koen87]

$$\begin{bmatrix} L \\ L_{i}L_{i} \\ L_{j}L_{j} \\ L_{ij}L_{j} \\ L_{ii} \\ L_{ij}L_{ij} \\ \varepsilon_{ij}(L_{jkl}L_{i}L_{k}L_{l} - L_{jkk}L_{i}L_{l}L_{l}) \\ L_{iij}L_{j}L_{k}L_{k} - L_{ijk}L_{i}L_{j}L_{l} \\ -\varepsilon_{ij}L_{jkl}L_{i}L_{k}L_{l} \\ L_{ijk}L_{i}L_{j}L_{k} \end{bmatrix} = \begin{bmatrix} L \\ L_{x}L_{x} + L_{y}L_{y} \\ L_{xx}L_{x}L_{x} + 2L_{xy}L_{x}L_{y} + L_{yy}L_{yy} \\ L_{xx}L_{xx} + 2L_{xy}L_{x} + L_{yy}L_{yy} \\ \dots \end{bmatrix}$$

onde ε_{ii} é o tensor antisimétrico epsilon

Descritores locais

Robustez à variação em iluminação

Em caso de transformações afins:

 $I_1(\mathbf{x}) = aI_2(\mathbf{x}) + b$

Ou normalização de pedaço da imagem com média e variância

Scale Invariant Feature Transform (SIFT)

Detector e descritor de pontos de interesse proposto por Lowe em 2003

Características locais

Invariância

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Scale space processed one octave at a time

Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)
- Taylor expansion around point:

 Offset of extremum (use finite differences for derivatives):

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\hat{\mathbf{x}} = -\frac{\partial^2 D^{-1}}{\partial \mathbf{x}^2} \frac{\partial D}{\partial \mathbf{x}}$$

Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

Lowe 2003

SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

SIFT vector formation

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- · Throw out weak edges (threshold gradient magnitude)
- · Create histogram of surviving edge orientations

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- · Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Histogram of gradients

Orientations in each of the 16 pixels of the cell

The orientations all ended up in two bins: 11 in one bin, 5 in the other. (rough count) 5 11 0 0 0 0 0 0