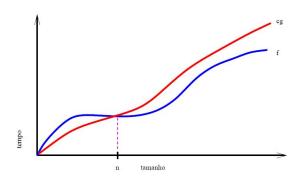
Notação Assintótica (Parte 1)

Prof. André Vignatti

Definição. $\mathcal{O}(g(n)) = \{f(n) : \exists c > 0 \ e \ n_0 > 0 \ tal \ que \ f(n) \le cg(n), \ \forall n \ge n_0 \}.$



Dizemos que g(n) é um limitante superior assintótico para f(n).

Exemplo. Seja $f(n) = n^2 + 2n + 1$. É verdade que $f(n) \in O(n^2)$?

- $n^2 + 2n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$, sempre que $n \ge 1$. Então pegamos c = 4 e $n_0 = 1$.
- $n^2 + 2n + 1 \le n^2 + n^2 + n^2 = 3n^2$, sempre que $n \ge 2$. Então pegamos c = 3 e $n_0 = 2$.

Exemplo. Seja $f(n) = \binom{n}{2}$. É verdade que $f(n) \in O(n^2)$?

$$\binom{n}{2} = \frac{n(n-1)}{2} \le \frac{n^2}{2} = \frac{1}{2}n^2.$$

Assim, pegamos $c = \frac{1}{2}$ e $n_0 = 1$.

Exemplo. Seja $f(n) = n^2$. É verdade que $f(n) \in O(n)$?

- Ou seja, $\exists c, n_0$ contantes tal que $n^2 \le cn$ para $n \ge n_0$?
- (dividindo ambos os lados por n) $n \le c$?
- Não é verdade!

Exemplo. Seja $f(n) = \log_2 n$. É verdade que $f(n) \in O(\log_5 n)$?

- Note que $\log_2 n = \frac{\log_5 n}{\log_5 2}$ (mudança de base de logaritmo).
- Então, basta mostrar que $\exists c, n_0$ contantes tal que $\frac{\log_5 n}{\log_5 2} \le c \log_5 n$, para $n \ge n_0$.
- (divide os dois lados por $log_5 n$) Assim, basta escolher $c \geq \frac{1}{\log_5 2}$ e $n_0 \geq 0$.

Podemos generalizar para obter o seguinte resultado:

Teorema (Exercício). $\log_b n \in O(\log_a n)$ para todo a > 1, b > 1.

Abusos de linguagem/notação comuns:

- $f(n) = \mathcal{O}(g(n))$
- $f(n) \in \mathcal{O}(g(n))$
- se f(n) é limitada assintoticamente superiormente por uma constante, escrevemos $f(n) = \mathcal{O}(1)$

Exemplo. As funções a seguir são $O(n^2)$

- \bullet n^2
- $n^2 + n$
- $n^2 + 1000n$
- $1000n^2 + 1000n$
- n
- n/1000
- $n^{1.99999999}$
- $n/\log_2\log_2\log_2 n$

Teorema (Teorema da Soma). Sejam f'(n), g'(n) funções não negativas tais que f'(n) = O(f(n)) e g'(n) = O(g(n)). Então

$$f'(n) + g'(n) = O(f(n) + g(n)).$$

De monstração.

• Pela definição, $\exists c_1, n_1$ tal que $f'(n) \leq c_1 f(n)$ para $n \geq n_1$.

- Pela definição, $\exists c_2, n_2$ tal que $g'(n) \le c_2 g(n)$ para $n \ge n_2$.
- Assim,

$$f'(n) + g'(n) \le c_1 f(n) + c_2 g(n)$$

$$\le \max\{c_1, c_2\} (f(n) + g(n))$$

П

para $n \ge \max\{n_1, n_2\}.$

• Portanto, $f'(n) + g'(n) \le c(f(n) + g(n))$ para algum $n \ge n_0$.

Teorema (Teorema da Multiplicação). Sejam f'(n), g'(n) funções não negativas tais que f'(n) = O(f(n)) e g'(n) = O(g(n)). Então

$$f'(n)g'(n) = O(f(n)g(n)).$$

Demonstração. Exercício

Exemplo. Dê uma estimativa usando a notação O para $f(n) = 3n \log(n!) + (n^2 + 3) \log n$, onde n é inteiro positivo. (FAZER EM AULA)

Convenção 1: notação assintótica no lado direito

- $\mathcal{O}(f(n))$ no lado direito de uma igualdade significa uma função anônima no conjunto $\mathcal{O}(f(n))$.
- $i(n) = g(n) \star O(f(n))$ significa que $i(n) = g(n) \star h(n), \text{ para algum } h(n) \in \mathcal{O}(f(n)),$
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ significa $2n^2 + 3n + 1 = 2n^2 + f(n) \text{ para algum } f(n) \in \Theta(n). \text{ Em particular, } f(n) = 3n + 1.$
- $\binom{n}{2} = \frac{n^2}{2} + \mathcal{O}(n)$

Convenção 2: notação assintótica no lado esquerdo

- $\mathcal{O}(n^2)=\mathcal{O}(n^3)$ significa $\forall f(n)\in\mathcal{O}(n^2),\ \exists g(n)\in\mathcal{O}(n^3)\ \text{tal que }f(n)=\mathcal{O}(g(n))"$
- $2n^2 + \Theta(n) = \mathcal{O}(n^2)$ significa $\forall f(n) \in \mathcal{O}(n), \exists g(n) \in \mathcal{O}(n^2) \text{ tal que } 2n^2 + f(n) = \mathcal{O}(g(n))$ "