Dos and Donts in Inductive Proofs

Consider the problem of proving that $\forall n \geq 0, 1+2+\ldots+n = \frac{n(n+1)}{2}$ by induction.

Define the statement $S_n = "1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ ". We want to prove $\forall n \geq 0, S_n$.

1 An Inductive Proof

Base Case: $\frac{0(0+1)}{2}=0$, and hence S_0 is true.

I.H.: Assume that S_k is true for some $k \geq 0$.

Inductive Step: We want to prove the statement S(k+1). Note that

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
 (by I.H.)
= $(k+1)(\frac{k}{2}+1)$
= $\frac{(k+1)(k+2)}{2}$.

And hence S_{k+1} is true.

2 Common Errors and Pitfalls

1. $(S_n \text{ is a statement, not a value})$ You cannot make statements like $S_k + (k+1) = S_{k+1}$, much the same as you cannot add k to the statement "The earth is round".

Mistake:

I.H.: Assume that S_k is true.

Inductive Step:

$$\sum_{i=1}^{k+1} i = k+1+\sum_{i=1}^{k} i = k+1+S_k$$
= ...

Logical propositions like S_k can't be added to numbers. Please don't equate propositions and arithmetic formulas.

2. (Proof going the Wrong Way) Make sure you use S_k to prove S_{k+1} , and not the other way around. Here is a common (wrong!) inductive step:

Mistake:

Inductive Step:

$$1+2+\ldots+k+(k+1) = (k+1)(k+2)/2$$
$$k(k+1)/2+(k+1) = (k+1)(k+2)/2$$
$$(k+1)(k+2)/2 = (k+1)(k+2)/2.$$

The proof above starts off with S_{k+1} and ends using S_k to prove an identity, which does not prove anything. Please make sure you do not assume S_{k+1} in an effort to prove it!

3. (Assuming too much) Make sure you don't assume everything in the I.H.

Mistake:

I.H.: Assume that S_k is true for all k.

You want to prove the statement S_n true for all n, and if you assume it is true, there is nothing left to prove! (Remember that the " S_n is true for all n" is the same as saying " S_k is true for all k".)

Correct Way:

I.H.: Assume that S(k) is true for some k.

or, if you want to use all-previous ("strong") induction

I.H.: Assume $for\ some\ k$ that S(j) is true $for\ all\ j \le k$.

4. (The case of the missing n) Consider the following I.H. and inductive step:

Mistake:

I.H.: Assume that S_k is true for all $k \leq n$.

Inductive Step: We want to prove S_{k+1} .

What is k? Where has n disappeared? The induction hypothesis is saying in shorthand that $S_1, S_2, \ldots, S_{n-1}, S_n$ are all true for some n. Note that rewriting the I.H. in this way shows that k was a red herring: you really want to prove S_{n+1} , not S_{k+1} .

Correct Way:

I.H.: Assume that S_k is true for all $k \leq n$.

Inductive Step: We want to prove S_{n+1} .

5. (Extra stuff in the I.H.) Consider the following I.H.

Mistake:

I.H.: Assume that S_k is true for all $k \leq n$. Then S_{n+1} .

Note that entire thing has been made part of the hypothesis, including the bolded part.

The second part "Then S_{n+1} " is what you want to show in the inductive step; it is not part of the induction hypothesis. You need to distinguish between the Claim and the Induction Hypothesis. The Claim is the statement you want to prove (i.e., $\forall n \geq 0, S_n$), whereas the Induction Hypothesis is an assumption you make (i.e., $\forall 0 \leq k \leq n, S_n$), which you use to prove the next statement (i.e., S_{n+1}). The I.H. is an assumption which might or might not be true (but if you do the induction right, the induction hypothesis will be true).

Correct Way:

I.H.: Assume that S_k is true for all $k \leq n$.

6. (The Wrong Base Case.) Note that you want to prove S_0 , S_1 , etc., and hence the base case should be S_0 .

Mistake:

Base Case: $\frac{1(1+1)}{2} = 1$, and hence S_1 is true.

Even if the rest of the proof works fine, you would have shown that S_1, S_2, S_3, \cdots are all correct. You haven't shown that S_0 is true.

7. (Assuming too little: Too few Base Cases.)

Suppose you were given a function X(n) and need to show that the statement S_n that "the Fibonacci number $F_n = X(n)$ " for all $n \ge 0$.

Mistake:

Base Case: for n=0, $F_0=X(0)$ blah blah. Hence S_0 is true.

I.H.: Assume that S_k is true for all $k \leq n$.

Induction Step: Now $F_n=F_{n-1}+F_{n-2}=X(n-1)+X(n-2)$ (because S_{n-1} and S_{n-2} are both true), etc.

If you are using S_{n-1} and S_{n-2} to prove T(n), then you better prove the base case for S_0 and S_1 in order to prove S_2 . Else you have shown S_0 is true, but have no way to prove S_1 using the above proof— S_0 is not a base case, and to use induction, we'd need S_0 and S_{-1} . But there is no $S_{-1}!!!$

Remember the domino principle: the above induction uses the fact that "if two consecutive dominoes fall, the next one will fall". To now infer that *all* the dominoes fall, you must show that the first **two** dominoes fall. And hence you need two base cases.