
Efficient implementation of Canny Edge Detection
Filter for ITK using CUDA
Luis H.A. Lourenço, Daniel Weingaertner and Eduardo Todt

Vision, Robotics and Image Research Group (VRI)
Informatics Department, Universidade Federal do Paraná

Curitiba, Brazil
Email: {danielw,todt}@inf.ufpr.br

Abstract—This work presents an efficient CUDA implementa-
tion of the Canny edge detection Filter for the Insight Segmen-
tation and Registration Toolkit (ITK). The algorithm is tested
on three generations of NVidia GPGPUs, showing performance
gains of 3.6 to 50 times when compared to the standard ITK
Canny running on two CPU models. The CUDA-enabled Canny
is also compared to a more efficient Canny implementation from
the OpenCV library. Examples of coding strategies to avoid warp
serialization in CUDA are shown on a smart implementation of
the Sobel filter, as well as on other algorithms.

I. INTRODUCTION

Edge detection is among the most used procedures in image
pre-processing, having applications in fields such as computer
vision and medical image analysis. Enhancing efficiency of
a commonly used filter, as the Canny edge detector [1],
leads to improved performance in the whole image processing
workflow.

Parallelizing image processing algorithms has received con-
siderable research attention, and the General Purpose Graphic
Processing Unit (GPGPU), emerging as a powerful and acces-
sible parallel computing platform, has allowed for significant
speedups for many image processing tasks [2]–[4]. Studies of
GPGPU accelerated Canny edge detection have been presented
[5]–[7]. These works achieve reasonable speedups and provide
the foundations for this work. Similarities and improvements
will be highlighted on the next sessions.

Two major contributions of this paper are: 1) the de-
velopment of an efficient CUDA-based Sobel algorithm to
compute edge magnitude and direction, avoiding conditional
expressions and reducing memory access when compared to
[5]; and 2) the implementation of an efficient Canny edge
detection algorithm, using second order derivatives (instead
of Sobel [5]) and a hybrid CPU-GPU approach for the final
hysteresis thresholding step, that is independent of the image
size (limited to the GPU memory capacity).

The remaining of the paper is organized as follows: In
Section II related works are shortly reviewed. In Section III
we present our Canny implementation1 and some efficient
programming examples for CUDA. Section IV defines the
test methodology, and in Section V experimental results are
presented to demonstrate the performance of the algorithms.

1The developed algorithms’ source code and test images are available at
http://web.inf.ufpr.br/vri/alumni/2011-LuisLourenco

II. BACKGROUND

A. NVidia Compute Unified Device Architecture

Developing optimized programs using CUDA demands a
good understanding of the GPGPU architecture abstraction
and programming paradigm. The creation, scheduling and
completion of all threads in CUDA are controlled by the GPU
hardware [8]. The threads are organized hierarchically into
grids of thread blocks. Each active block is divided into groups
of threads called warps. A warp has 32 threads and is sched-
uled with other warps in a multiprocessor. Each multiprocessor
has thread processors and an execution controller.

All thread processors in a warp execute the same instruction
simultaneously, so that the maximum efficiency is achieved
when all 32 threads in a warp have the same execution flow.
Any flow control instruction (if, switch, do, for, while) might
increase the execution time by dividing the warp into divergent
execution flows. When this happens, the warp is divided into
groups of threads with the same execution flow, and the
execution of the thread groups of a warp is serialized by the
multiprocessor. Warps that have their execution serialized are
called divergent warps.

Avoiding divergent warps is one of the main programming
difficulties in CUDA. During the implementation, this was one
of the main concerns, and resulted in alternative algorithms to
evaluate many conditional expressions, which are discussed on
this paper.

The CUDA-compatible GPGPU architectures also offer a
hierarchical set of memories. The global memory is the
biggest, slowest, and is addressable by all threads. It has two
read-only cache memories that can be used to optimize access:
the Texture and Constant caches. Each multiprocessor also
has an additional memory shared by all threads: the shared
memory, and each thread processor in a multiprocessor owns
a register set.

Hiding memory access latency is possible by using the
shared memory as a cache [9], since it is almost as fast as
the processor registers. Texture and Constant caches are also
efficient to optimize global memory access, because of their
prefetch mechanism. Therefore this work used linear Texture
cache for almost all read-only global memory accesses.

B. The Insight Segmentation and Registration Toolkit

The Insight Segmentation and Registration Toolkit (ITK) is
an open-source, cross-platform system that provides develop-
ers with an extensive suite of software tools for image analysis.
Largely used on medical image processing, ITK’s creation was
funded in 1999 by the US National Library of Medicine of
the National Institutes of Health and developed by the Insight
Software Consortium [10].

ITK’s architecture is based on workflows, where data ob-
jects (images) are processed by a sequence of interconnected
filters. ITK uses object oriented programming concepts to
simplify coding of image processing workflows, and enforces
generic programming by using templates. It supports an au-
tomated wrapping process that generates interfaces between
C++ and interpreted programming languages such as Tcl, Java,
and Python. ITK is cross-platform, using the CMake build
environment to manage the configuration process.

Parallel image processing on ITK is implemented by the
manipulation of multiple threads at a high abstraction level.
This approach masks the complexity of thread manipulation
on the several platforms supported by ITK. However, until
version 3.2, ITK had no official support for GPGPU filter
implementations. This was included on version 4 released in
Dec.2011, and the reimplementation of filters to the GPU
should provide considerable performance gains to ITK’s end
users, since many applications run on desktop computers.

CUDAITK [11] is a project that tried to implement an
abstraction layer allowing the use of CUDA-based filters on
ITK. On CUDAITK, CUDA-enabled versions of filters are
implemented along with their default CPU counterparts, and
the choice over which version to use is controlled by an
environment variable at run time. Its architecture requires one
data copy from host to device before and another from device
to host after the execution of each CUDA filter, and does
not allow data to be kept on the GPU. Thus, even when two
consecutive filters run on a GPU (on a many-steps composed
filter like Canny, for example), data has to be copied to/from
GPU/CPU after each step. Since data transfers are extremely
time consuming, CUDAITK is of little practical use.

A different approach is implemented by the Cuda Insight
Toolkit (CITK) [12], [13]. It is an open source project and
was considered on the outline of official GPGPU support
for ITK’s version 4. CITK consists basically of a modified
version of the data container class ImportImageContainer,
which is a core component of the itk::Image class. The
new CudaImportImageContainer class allows for reasonable
compatibility with existing ITK components. It is used to
handle image data in both GPU and CPU memories. When
some filter requires the data of an image, the class checks
where the most recent data related to that image is stored,
and returns the appropriate pointer, performing data transfers
between host and device only if needed, i.e., when the filter
requesting the data is running on a different hardware than the
stored image. This way CITK minimizes data copies between
CPU and GPU, allowing filter pipelining and mixed use filters

running on GPU and CPU in the same pipeline.
Nonetheless, even with an appropriate CUDA programming

framework, the implementation of CUDA-enabled ITK work-
flows must consider the trade off between memory transfer
time and processing speedup.

III. CUDA-BASED CANNY ALGORITHM FOR ITK

Implementation of a composed ITK image processing filter
is important to identify the main difficulties involved in the
integration of CUDA filters to ITK workflows. The Canny
Edge Detection was chosen, even though it has already been
implemented in other contexts [5], [6], for three main reasons:
1) there is no ITK implementation, and ITK has to get GPGPU
support; 2) it contains both trivially parallel and intrinsically
sequential parts; and 3) its computation is complex enough so
that the speedup surpasses the data transfer time.

The Canny edge detection algorithm begins with a Gaussian
filtering to smooth the input image and reduce false edges
detection. It then computes the image’s gradient magnitude
and direction through first or second order derivative operators.
First order derivatives like Sobel filter are simpler and faster,
but second order derivative operators present better results with
a better signal-to-noise ratio and sub-pixel resolution [14]. One
commonly used second order derivative computation is based
on differential geometry [15], [16]. The next step is called
Non-Maximum Suppression (NMS) and consists of setting all
pixels that are not maximum at the gradient’s direction on
a neighborhood to zero. Remaining pixels are subjected to a
double threshold hysteresis process to define the final edge
pixels.

The specific implementation in this work (CudaCanny) is
composed of four CUDA-enabled ITK filters, connected as
depicted in Fig.1 and with following steps:

1: Copy input image to GPU global memory (done by
CITK);

2: Convolve separable Gaussian kernels on input image re-
sulting in smoothed image L;

3: Compute the second and third-order derivative of the
smoothed image (Lvv, Lvvv), and the gradient magnitude
Lv;

4: Detect Zero-Crossings on Lvv and multiply the result of
Zero-Crossing with gradient magnitude;

5: Use double threshold and hysteresis to define edge pixels;
6: Copy edge image back to CPU memory (done by CITK).

A. Gaussian Smoothing

Gaussian smoothing is implemented in a similar way as
proposed by [5], but instead of having a fixed sized Gaussian
kernel, it receives the variance (σ) as input parameter and
computes the two separable Gaussian kernels accordingly.

The next step computes the magnitude and direction of the
image gradient. This can be done through first or second order
derivative operators. Most CUDA-based implementations of
Canny use the Sobel first order derivative [5], [6], while the
ITK library implements a second order derivative based on
differential geometry [15], [16]. Therefore both versions were

Gaussian

Filter

Derivatives

Calculation

Zero Crossing

Filter

Hysteresis

CPU RAM

GPU RAM

Input

Image

Smoothed

Image

Second

Derivative

Gradient

Magnitude

Edge Pixels

Location

Output

Image

Fig. 1. CudaCanny Filter Pipeline

implemented, although only the second order derivative was
benchmarked against ITK standard implementation.

B. First Order Derivative Sobel Filter

The Sobel filter uses two 3× 3 masks to compute the hori-
zontal and vertical gradient (Gx, Gy) [17]. Gradient magnitude
is given by |G| =

√
G2
x +G2

y , whilst the gradient direction
is calculated as θ = arctan(Gy/Gx) with θ ∈ {−π/2, π/2}
(Fig.2a). Separable filters can also be used [5], but despite
performing less arithmetic operations, separable Sobel filters
demand considerably more (slower) memory access operations
than non-separable filters with magnitude and direction com-
puted in the same CUDA kernel.

Fig. 2. Computation of the coordinates of the neighbor pixel in gradient
direction for the Sobel filter.

Inside the Canny filter, the gradient direction θ is used to
determine the coordinates of the two neighbor pixels in the
direction of the maximum gradient (Fig.2e). Therefore, our
Sobel implementation also computes the coordinates of these
neighbors in a smart way, using θ as an index, and avoiding
conditional expressions and consequent warp serializations.

Given a pixel at coordinates [i, j], and its corresponding
θ[i, j], the coordinates of the neighbor pixels in the direction

of the maximum gradient ([i1, j1], [i2, j2]) can be efficiently
computed in CUDA as shown on the following code extract:

theta = θ[i, j] + π/2 ; / / (Fig.2b)
i f (theta > 7 ∗ π/8)
theta− = 7 ∗ π/8 ;

N = (i n t) c e i l f (4 ∗ theta/π − 0.5) ; / / (Fig.2c)
Ni = 1− (N == 0) + ((N == 1) << 1) ; / / (Fig.2d)
Nj = (N == 2)− 1 ;
i1 = i+Ni ;
j1 = j +Nj ;
i2 = i−Ni ;
j2 = j −Nj ;

.

C. Second Order Derivative Gradient

The implemented second-order derivative operator produces
edges with a better signal-to-noise ratio and sub-pixel resolu-
tion [14] than the Sobel operator. It is based on differential
geometry [15], [16] and introduces, at every image point, a
local coordinate system (u, v), with the v-direction parallel to
the gradient direction on the smoothed image (L). The CUDA
kernel to calculate the second derivative on the v-direction
(Lvv), works as follows:

1: Each thread is associated to one pixel from the smoothed
image L;

2: Texture cache is used to obtain the pixel and its 8 neighbor
values from global memory;

3: Compute the local partial derivatives Lx,Ly ,Lxx,Lxy, Lyy
and the second-order directional derivative in the v-
direction Lvv according to [15]

Another CUDA kernel is used to calculate the gradient
magnitude (first derivative on the v-direction) Lv , as follows:

1: Each thread is associated to one pixel from the smoothed
image L and second-order derivative Lvv;

2: Texture cache is used to obtain the pixel from both images
and its 4 neighbor values from global memory;

3: Compute the local partial derivatives Lx,Ly ,Lvvx, Lvvy
and the third-order directional derivative in the v-direction
Lvvv according to [15];

4: Compute the gradient magnitude:

Lv ←

√
L2
x + L2

y , if Lvvv ≤ 0,

0, otherwise.

D. Non-maximum Suppression

Non-maximum Suppression is performed by finding the
zero-crossing pixels on the second-order derivative (Lvv).
Zero-crossing occurs at positions where signal changes or
null values followed by nonzero values appear in a pixels 4-
neighborhood. The CUDA kernel to compute zero-crossing
works as follows:

1: Each thread is associated to one pixel of the second-order
derivative Lvv[i, j];

2: Texture cache is used to obtain the pixel (p = Lvv[i, j])
and its 4 neighbor values (left, up, right, down) from
global memory:

3: Test for zero-crossing (zC[i, j]) on the 4-neighborhood:

zC[i, j]←

1, if zero-crossing occurred,

0, otherwise;

Verification of zero-crossing between the central pixel and
its 4-neighborhood (Step 3:) can be implemented without using
conditional expressions as shown on following code excerpt:

zC[i, j] = (p ∗ left <= 0) ∗ (|p| < |left|) ;
zC[i, j] = zC[i, j] | | (p ∗ up <= 0) ∗ (|p| < |up|) ;
zC[i, j] = zC[i, j] | | (p ∗ right <= 0) ∗ (|p| < |right|) ;
zC[i, j] = zC[i, j] | | (p ∗ down <= 0) ∗ (|p| < |down|) ;

.

E. Hysteresis Thresholding

The last step of the Canny algorithm is the hysteresis
thresholding, implemented in two CUDA kernels. The first
kernel performs a double threshold:

1: Each thread is associated to one pixel of the zero-crossing
(zC[i, j]) and gradient magnitude (Lv[i, j]);

2: edge[i, j]← Lv[i, j]× zC[i, j];
3: Perform a double thresholding to classify pixels as Defini-

tive Edges (DE), Possible Edges (PE) or Non-Edges (NE):

edge[i, j]←

DE, if edge[i, j] > TH ,

PE, if TL < edge[i, j] ≤ TH ,

NE, otherwise;

In order to avoid warp serialization, the double thresholding
on step 3 can be implemented as follows:

d e f i n e DE 255
d e f i n e PE 128
d e f i n e NE 0
edge[i, j] = ((PE−1) ∗ (edge[i, j] > TH)+PE)∗

(edge[i, j] > TL) ;

.

After double thresholding, PE pixels might become DE
if they have any DE in a 4-neighborhood. The traditional
strategy for hysteresis uses a DE queue, and for each pixel
on the queue, follows along its PE 4-neighborhood changing
them to DE and putting them into the queue, on an interactive
process that ends when the queue is empty.

This strategy is not efficient on GPGPUs because of its high
data interdependency, and the possibility of a thread having to
access pixels all over the image, completely messing up mem-
ory access coalescence. The proposed algorithm therefore de-
parts from classical CPU implementations, and closely follows
the algorithm proposed in [5]. A synchronization algorithm
runs on CPU and has a control variable (modified global) that
is changed whenever a kernel changes the status of a pixel:

1: repeat
2: modified global ← false;
3: Copy modified global from CPU to GPU;
4: Run hysteresis edge following CUDA kernel
5: Copy modified global from GPU to CPU;
6: until modified global = false;
7: for all Remaining pixels labeled PE do
8: label them as NE;
9: end for
The hysteresis edge following kernel uses a 324 position ar-

ray to store an image region of size 18×18 on shared memory.
The 16×16 center pixels of the region are then processed by a
256 threads block. The extra one-pixel width border overlaps
neighbor regions of the image. Despite dividing the image
in blocks of size 16 × 16, the algorithm supports images of
any size, which is not the case on [5]. Two shared variables
(modified on global memory and modified region on shared
memory) controll the algorithm loops:

1: Each thread block loads a region of 18 × 18 pixels into
shared memory;

2: Each thread is assigned to a pixel of the 16 × 16 inner
pixels of the region;

3: repeat
4: modified region ← false;
5: Synchronize all threads in the same thread block;
6: if pixel = PE and any pixel in 4-neighborhood = DE

then
7: pixel ← DE;
8: modified region ← true;
9: end if

10: Synchronize all threads in the same thread block;
11: if modified region = true then
12: modified global ← true;
13: end if
14: until modified region = false;

IV. METHODOLOGY

A. Hardware

Two computers (CPUs) and three NVidia GPGPUs with
following hardware configuration were used on the tests:

• C2D: Intel Core2Duo, two 2.8-GHz cores, 3072KB cache
and 2GB RAM;

• Ci7: Intel Core i7-975, four 3.33-GHz cores, 8192KB
cache and 12GB RAM;

• G80: NVidia GeForce 8800 GT with 112 1.5-GHz cores
and 512MB RAM.

• GT200: NVidia Tesla C1060 with 240 1.3-GHz cores and
4GB RAM;

• Fermi: NVidia Tesla C2050 with 448 1.15-GHz cores
and 3GB RAM.

B. Image Databases

Four databases (B1, B2, B3, B4) with 100 images each
were used to test the developed algorithms. The B1 database
consists of the Berkeley Segmentation Dataset [18], [19].
The additional Bi, i ∈ {2, 3, 4} databases were created by
replicating each image of the B(i−1) database vertically and
horizontally (tilling), composing a new image that has 4 times
more pixels that the originating image. For example: the B2

image database was created by replicating each B1 image.
Image sizes for each image database are: B1 = 321 × 481
pixels, B2 = 642× 962 pixels, B3 = 1284× 1924 pixels and
B4 = 2568× 3848 pixels.

(a) B1 image (b) Replicated B2 image

Fig. 3. Replication example used to create bigger images

Image sizes were chosen so that they always fit into the
GPU memory. No blocking strategy was implemented to deal
with larger images or regions of interest, as defined by ITK.
Image pixel type were always single precision floating point
(float), and type conversions were not considered in time
measurements.

It is also important to notice that we do not intend to
compare the accuracy of a new edge detection filter, so that it
could be influenced by the image tilling process. Although we
have to make sure that the CUDA implementation is equivalent
to the ITK implementation for a reasonable set of images, the
content of these images is almost irrelevant, as long as they
present enough edge variations for the Canny algorithm.

V. EXPERIMENTS AND RESULTS

A. Conformance Test

The Conformance test aims to evaluate the similarity be-
tween edges detected by CudaCanny and the original ITK
Canny implementation (ItkCanny). Edges generated by Itk-
Canny are considered the reference, and the CudaCanny must
return an equivalent set of edges. In order to verify similarity
of the edges, three quality metrics proposed in [20] were used:

• Pco: percentage of edge pixels detected by both imple-
mentations;

• Pnd: percentage of edge pixels detected by ItkCanny that
were not detected by CudaCanny (false negatives); and

• Pfa: percentage of edge pixels detected by CudaCanny
that were not detected by ItkCanny (false positives).

For all databases the correctly detected edge pixel percent-
age (Pco) was higher than 99.5%, and less than 0.5% of all
edge pixels were detected by only one of the detectors (Pnd
and Pfa). This leads to the conclusion that the implemented
CudaCanny ITK filter can be used as a replacement for
the CPU-based itkCanny filter on any ITK image processing
workflow.

Another interesting aspect is that larger image databases
have lower error rates (Pnd and Pfa). This happens because
most edge detection discrepancies occur at the image borders.
Since larger images have a greater inner pixels to border pixels
ratio, the error rate decreases in the same proportion.

B. Performance Tests

The Performance Tests aim to evaluate the execution time
of ItkCanny and CudaCanny algorithms on the described
CPUs (test IDs: ITK-C2D and ITK-Ci7) and NVidia GPGPUs
(test IDs: G80, GT200 and Fermi), respectively. Execution
times were measured considering the elapsed time of the
Update() method of the ITK classes, which is invoked by ITK
work-flow manager upon filter execution. Partial times were
recorded for each step of the Canny algorithm, and on the
CudaCanny implementation memory transfer to/from GPU is
also considered (I/O time).

The sum of the execution times of the Canny filter for all
images in an image database is the image database execution
time. Each edge detector, on each hardware, was averaged over
100 executions for each image database.

OpenCV2 Canny implementation (cvCanny) was also eval-
uated. In this case, no direct comparison is possible, since
cvCanny uses the Sobel for gradient computation, but it makes
extensive use of CPU multithreading and Streaming SIMD
Extensions (SSE), being a good reference implementation for
CPU. These tests are referred to as CV-C2D and CV-Ci7.

Both Conformance and Performance tests used a Gaussian
variance σ = 1.4, higher hysteresis threshold TH = 7 and
lower threshold TL = 4.

On Fig.4 the good performance of CudaCanny over Itk-
Canny is highlighted. Speedup varies from 10 to 50 times
when compared to the ItkCanny C2D, and 4 to 18 times
when compared to the Ci7. The figure reveals that CudaCanny
outperforms ItkCanny on all tested hardware by almost two
orders of magnitude. This is far too much performance gain
to be attributed only to the hardware, and is due to a more
efficient implementation of CudaCanny (worth to notice that
ITK does not claim to be efficiency driven, which it really is
not).

2http://opencv.willowgarage.com/wiki/

 10

 20

 30

 40

 50

 60

B1 B2 B3 B4

S
p

e
e

d
u

p

Base

Fermi x ITK-C2D
GT200 x ITK-C2D

G80 x ITK-C2D

(a) GPU x ItkCanny C2D

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

B1 B2 B3 B4

S
p

e
e

d
u

p

Base

Fermi x ITK-Ci7
GT200 x ITK-Ci7

G80 x ITK-Ci7

(b) GPU x ItkCanny CI7

Fig. 4. Speedup of CudaCanny (G80, GT200, Fermi) compared to the ItkC2D (a) and ItkCi7 (b).

The distance between the labels on the X coordinates of
Fig.4 is proportional to the number of pixels of the images
in the corresponding database. It is possible to observe that,
as the image size increases, the speedup in the less parallel
part of the program (I/O and hysteresis) are responsible for
the smaller speedup.

Execution times for ItkCanny, cvCanny and CudaCanny on
each hardware and for each image databases are presented
in Fig.5. Graph bars are in logarithmic scale to allow better
comparison.

100

1000

10000

100000

B1 B2 B3 B4

T
im

e
(m

s
)

Base

ITK-C2D

53
27

20
86

4

82
44

7

32
81

03

ITK-Ci7

19
91

74
37

29
57

6

11
84

82

CV-C2D

87
3

23
73

81
44

31
86

7

CV-Ci7

37
4

14
02

55
35

21
75

9

G80

54
7

14
64

52
13

19
63

1

GT200

29
5

70
2

22
83

85
96

Fermi

23
0

52
4

17
37

64
63

Fig. 5. Execution time (log scale) of the ItkCanny, cvCanny and CudaCanny
algorithms for each database and hardware.

As can be seen, CudaCanny slightly outperforms cvCanny
in most cases. The cvCanny execution times show it is much
more efficient than ItkCanny, and this cannot be attributed
to the use of a different gradient computation method, since
this is a very little time consuming step. The reason is that
cvCanny makes a much better user of thread parallelization
and SSE instructions, besides having a lighter programming

structure than ITK. The execution time differences of cvCanny
and CudaCanny are similar to those reported on [5], although
there the I/O time was not considered.

Fig.5 also shows that the CudaCanny execution was ≈ 3.0
times faster on Fermi than on G80. This is a very reasonable
scaling performance, since I/O time is almost the same and
the Fermi GPU has 4 times more processing cores and a L2
cache to global memory.

Comparing to the GT200 GPU, Fermi was only 1.27 to 1.33
times faster, despite having almost twice as much processors.
This can be explained on one hand by the fact that the GT200
already implements almost the same global memory access
rules, so that less improvement is made on concurrent memory
access. On the other hand, as shown on Fig.6(a), most of the
execution time is spent on I/O and Histeresys, which are not
much influenced by the architecture changes.

Fig.6(a), 6(b) and 6(c) present the execution time of each
routine of the CudaCanny, ItkCanny and CvCanny, respec-
tively, for databases B1 and B4.

On CudaCanny, I/O and hysteresis time do not scale as
processor numbers or image sizes increase. The Gaussian
kernel scales a little better, but the Derivative and NMS scale
really well, because they do not depend on much global
memory access and have almost no warp divergence

CudaCanny spends more time on the Hysteresis procedure
than on the Non-Maximum Suppression, whilst on CvCanny it
is the other way around. This is due to different implementa-
tions of the routines, since on CvCanny part of the Hysteresis
is done at the NMS routine. Therefore, in order to compare
CudaCanny and CvCanny, it is more appropriate to sum the
times spent on both routines.

As can be observed, CudaCanny significantly outperforms
CvCanny on these routines (≈ 10.6s on G80 ≈ 4.6s on GT200
and ≈ 3.1s on Fermi, versus ≈ 23.7s on a C2D and ≈ 17.3s
on a Ci7, for base B4), due to a parallel implementation that
does not use a FIFO. Instead of push/pull candidate edge

 1

 10

 100

 1000

 10000

B1 B4 B1 B4 B1 B4

T
im

e
 (

m
s
)

Gaussian
Derivative

NMS
Hysteresis

I/O

FermiGT200G80

(a) CudaCanny

 100

 1000

 10000

 100000

B1 B4 B1 B4

T
im

e
 (

m
s
)

Gaussian
Derivative

NMS
Hysteresis

Ci7C2D

(b) ItkCanny

 1

 10

 100

 1000

 10000

B1 B4 B1 B4

T
im

e
 (

m
s
)

Gaussian
Derivative

NMS
Hysteresis

Ci7C2D

(c) CvCanny

Fig. 6. Execution time of (a) CudaCanny, (b) ItkCanny and (c) CvCanny on each part of the program, for databases B1 and B4.

pixels to/from a FIFO, a strategy that splits the image among
the processing cores, and repeatedly iterates until no changes
happen, allows parallel execution without blocking.

VI. CONCLUSION

This paper presented a CUDA based implementation of the
Canny edge detection filter for the ITK library. Considering
a typical desktop setup for ITK applications (C2D), the use
of a simple GPGPU card (G80) can provide speedup of
almost 20 times. CudaCanny outperformed the standard CPU
implementation on all image databases and graphic cards.
Even when compared to a top line Core i7 processor, GPUs
obtained 5 to 18 times speedups.

Two major contributions of this paper were: 1) the develop-
ment of an efficient CUDA-based Sobel algorithm to compute
edge magnitude and direction, avoiding conditional expres-
sions and reducing memory access; and 2) the implementation
of an efficient Canny edge detection algorithm, using second
order derivatives, and a hybrid CPU-GPU approach for the
final hysteresis thresholding step.

The development of image processing filters for GPGPUs
can be considerably optimized if the programmer can avoid
warp serialization, as shown on many of the implemented
filters. Frequently used algorithms are special candidates for
cutting edge reimplementation.

ACKNOWLEDGMENT

The authors would like to thank CNPq for financial support
of the first author.

REFERENCES

[1] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[2] S. S. Stone, H. Yi, J. P. Haldar, W. mei W. Hwu, B. P. Sutton, and
Z. pei Liang, “How gpus can improve the quality of magnetic resonance
imaging,” in In The First Workshop on General Purpose Processing on
Graphics Processing Units, 2007.

[3] T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujal-
don, “Biomedical image analysis on a cooperative cluster of gpus and
multicores,” in ICS ’08: Proceedings of the 22nd annual international
conference on Supercomputing. New York, NY, USA: ACM, 2008, pp.
15–25.

[4] J. Fung and S. Mann, “Openvidia: parallel gpu computer vision,” in
MULTIMEDIA ’05: Proceedings of the 13th annual ACM international
conference on Multimedia. New York, NY, USA: ACM, 2005, pp.
849–852.

[5] Y. Luo and R. Duraiswami, “Canny edge detection on nvidia cuda,”
Computer Vision and Pattern Recognition Workshop, vol. 0, pp. 1–8,
2008.

[6] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil,
“Parallelization of a video segmentation algorithm on cuda-enabled
graphics processing units,” in Euro-Par ’09. Berlin: Springer-Verlag,
2009, pp. 924–935.

[7] R. Palomar, J. M. Palomares, J. M. Castillo, J. Olivares, and J. Gómez-
Luna, “Parallelizing and optimizing lip-canny using nvidia cuda,” ser.
IEA/AIE’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 389–398.

[8] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[9] V. Podlozhnyuk, “Image convolution with cuda,” June 2007. [Online].
Available: http://developer.download.nvidia.com

[10] “Insight segmentation and registration toolkit,” 1999. [Online].
Available: http://www.itk.org

[11] W.-K. Jeong, “Cudaitk,” 2007. [Online]. Available: http://www.cs.utah.
edu/∼wkjeong/

[12] R. Beare, M. Kuiper, D. Micevski, C. Share, L. Parkinson,
and P. Ward, “Cuda insight toolkit,” 2010. [Online]. Available:
http://code.google.com/p/cuda-insight-toolkit/

[13] R. Beare, D. Micevski, C. Share, L. Parkinson, P. Ward, W. Goscinski,
and M. Kuiper, “Citk - an architecture and examples of cuda enabled
itk filters,” The Insight Journal, 08 2011.

[14] J. Canny, “Finding edges and lines in images,” MIT, Tech. Rep., 1983.
[15] T. Lindeberg, “Edge detection and ridge detection with automatic scale

selection,” Int. J. of Computer Vision, vol. 30, 1998.
[16] H. K. Kidwai, F. N. Sibai, and T. F. Rabie, “Parallelization and

performance evaluation of an edge detection algorithm on a streaming
multi-core engine,” JITR, vol. 2, no. 4, pp. 81–91, 2009.

[17] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2001.

[18] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th ICCV,
vol. 2, July 2001, pp. 416–423.

[19] P. Arbelaez, C. Fowlkes, and D. Martin, “The berkeley segmentation
dataset and benchmark,” 2007. [Online]. Available: http://www.eecs.
berkeley.edu/Research/Projects/CS/vision/bsds/

[20] I. A. G. Boaventura and A. Gonzaga, “Método de avaliação de detector
de bordas em imagens digitais,” Anais do V Worskhop de Visão Com-
putacional, 2009.

