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RESUMO

Apresentamos um método para a estimativa da funcao de espalhamento pontual (PSF)
de imagens de superficie solar obtidas por telescopios terrestres e corrompidas pela at-
mosfera. A estimativa é feita obtendo-se a fase da frente de onda usando um conjunto de
imagens de curta exposicao, a reconstrucao de granulado 6ptico do objeto observado e um
modelo PSF parametrizado por polinomios de Zernikes. Estimativas da fase da frente de
onda e do PSF sao computados através da minimizagao de uma fungao de erro com um
método de otimizagao cooperativa por nuvens de particulas (CPSO), implementados em
OpenCL para tirar vantagem do ambiente altamente paralelo Um método de calibracao
é apresentado para ajustar os parametros do que as unidade de processamento gréfico
(GPU) provém. algoritmo para resultados de baixo custo, resultando em sélidas estima-
tivas tanto para imagens de baixa frequéncia quanto para imagens de alta frequéncia.
Os resultados mostram que o método apresentado possui rapida convergéncia e é ro-
busto a degradacao causada por ruidos. Experimentos executados em uma placa NVidia
Tesla C2050 computaram 100 PSFs com 50 polinémios de Zernike em ~ 36 minutos. Ao
aumentar-se o nimero de coeficientes de Zernike dez vezes, de 50 para 500, o tempo de
execucao aumentou somente 17%, o que demonstra que o algoritmo proposto é pouco

afetado pelo niimero de Zernikes utilizado.
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ABSTRACT

We present a method for estimating the point spread function (PSF) of solar surface
images acquired from ground telescopes and degraded by atmosphere. The estimation is
done by retrieving the wavefront phase using a set of short exposures, the speckle recon-
struction of the observed object and a PSF model parametrized by Zernike polynomials.
Estimates of the wavefront phase and the PSF are computed by minimizing an error
function with a cooperative particle swarm optimization method (CPSO), implemented
in OpenCL to take advantage of highly parallel graphical processing units (GPUs). A
calibration method is presented to adjust the algorithm parameters for low cost results,
providing solid estimations for both low frequency and high frequency images. Results
show that the method has a fast convergence and is robust to noise degradation. Exper-
iments run on an NVidia Tesla C2050 were able to compute 100 PSFs with 50 Zernike
polynomials in ~ 36 minutes. The increase on the number of Zernike coefficients ten-
fold, from 50 to 500, caused the increase of 17% on the execution time, showing that the

proposed algorithm is only slightly affected by the number of Zernikes used.



CHAPTER 1

INTRODUCTION

As the technology improves and the hardware becomes faster and cheaper, compute in-
tensive techniques that previously were impractical are now feasible to be implemented.
On images taken from telescopes where the object is found somewhere in the other side
of the atmosphere, a post correction process is a mandatory step that could be very ex-
pensive depending on the desired result. Therefore, there is a demand for robust and
reliable techniques that require as few input data as possible, and that could provide
results quickly enough to be used as a daily tool.

The method proposed here is based on the work developed at [53], where a new
method was created for estimating the point spread function (PSF) of solar surface images
acquired from ground telescopes and degraded by atmosphere. The estimation is done by
retrieving the wavefront phase using a set of short exposures, the speckle reconstruction
of the observed object and a PSF model parametrized by Zernike polynomials. The PSF
is estimated by minimizing an error function that relies on the quality of the Zernike
coefficients used to compute the wavefront phase. The original work implements the
Simulated Annealing (SA) to optimize the PSF that is used to recover the corrupted
image.

This work is motivated by the fact that the daily flow of images generated by an obser-
vatory is very high (see section 5.4 for details), then the reduction of the post processing
time is of special interest for these institutions. The currently available solution [53] might
takes days to process the images obtained in one day of observation, even when increasing
the number of machines to assist on the processing. On current method, one set of 100
images takes about 3 hours to process on a cluster of 23 dual core servers Dell Poweredge
1950, what means that the post processing of a full set of images generated in one day

(1000 images) would take 30 hours to complete. Furthermore, as the number of Zernikes
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is increased on the estimations, the processing time is linearly raised, what means that
the implementation of the atmosphere simulation while estimating the PSF is currently
unfeasible, since this kind of simulation usually requires a high number of Zernikes.

Given the computation of the Fourier transform is a CPU intensive task, the main
problem with this PSF estimation method is the number of Fourier transforms required
to estimate each PSF. Considering the PSF parameters are unknown, a demanding opti-
mization method is also required to estimate such parameters. As consequence, the entire
estimation process takes too long for a real life application when processing on CPUs. To
reduce the estimation time, as well as keeping good final results, a more suitable opti-
mization method must be chosen and cheaper parallel hardwares must be used, so that
this method can be considered as a post processing tool on observatories’ daily work.

The objective of this work is:

e Develop a parallel solution to reduce the time required to estimate PSFs of solar
surface images, using Zernike polynomials to compute the PSFs;

e Use the Cooperative Particle Swarm Optimization (CPSO) to estimate the Zernike
coefficients, since this optimization method is well known for its quick convergence,
noise robustness and good solutions on high dimensional problems;

e Implement the entire solution on OpenCL language, to take advantage of the low-
cost easy-acquisition graphical processing unit (GPU) hardwares available from mul-
tiple vendors.

We present a new method to quickly generate good Zernike coefficients for the esti-
mation of PSFs of solar surface images. The optimization method CPSO was used to
minimize the error function. The calculations required to compute the PSF, the CPSO
and the error function were implemented in OpenCL to take advantage of highly par-
allel environments provided by heterogeneous GPU devices. A calibration method is
described to adjust the CPSO algorithm parameters for low cost results, given a well
adjusted optimization not only requires less processing time but also obtains better es-
timations. The complete implementation of the method presented here can be found at

http://web.inf .ufpr.br/vri/alumni/peter-frank-perroni-msc-2013.
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The results obtained by the proposed PSF estimation method with CPSO show that
the post processing time of the images obtained in one day of observation takes about
5h53m running on one Intel i7-975 CPU with 1 GPU NVIDIA Tesla C2050. Good PSF's
were estimated even under high presence of noise, and stable results were obtained for both
the best and the worst cases. Both low-frequency and high-frequency images obtained
similar good resulting estimations, meaning that this method is not restricted to the
estimation of PSFs for solar images. The results also show that a tenfold increase in the
number of Zernkes (from 50 to 500) increased only 17% the running time, what means
that the number of Zernikes used for the PSF estimation caused only a slight impact on
the overall processing time.

In practical terms, this means that the method developed here can reduce in many
ways the costs associated with the post processing time for the image correction (eg.,
hardware, energy and waiting time), besides providing additional options for optimizing
complex and high dimensionality problems through a calibrated CPSO.

Notice that the physics involved on this method is not the focus of the work developed
here, therefore only a general description of the fundamental math is presented and no
further discussion is taken in that sense (introduction on chapter 2 and section 2.1).

As previously stated, the baseline for the PSF estimation method presented here is
described on [53]. The Kiepenheuer-Institut fiir Sonnenphysik (Kiepenheuer Institute for
Solar Physics - KIS!) provided an implementation of the Simulated Annealing as the
optimization method for the PSF estimations, besides images for the progress of this
work. This SA implementation was studied in details and its strengths and weakness
were considered while choosing the CPSO as optimization method for this work.

This work is organized on the following sequence: the next chapter (2) presents the
theoretical basis for the development of this work; the chapter 3 describes metaheuristics,
its parallel implementations and provides an overview of PSF estimation methods; the
chapter 4 shows the results obtained for this PSF estimation method with Simulated

Annealing and presents the proposed Cooperative PSO for OpenCL devices; the PSF

Thttp://www.kis.uni-freiburg.de/
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Estimation results with CPSO are shown on chapter 5, where a CPSO calibration method
is proposed and the results obtained for every experiment are shown and discussed. The

conclusions and final considerations are discussed on chapter 6.



CHAPTER 2

THEORETICAL BASIS

In ground-based solar observation systems, turbulence caused by atmosphere events, like
solar heating during daylight hours, is a well known problem that causes inhomogeneities
in atmospheric temperature and density that, in turn, affect its diffraction index. As
consequence of this effect, astronomic images captured by ground telescopes suffer from
severe distortions of the original image, a phenomenon that is called “image speckle” [45].
Regardless of their purpose, all images are produced to record information. Since the
image formation and the recording processes are always imperfect, a recorded image rep-
resents invariably a degraded version of the original scene. The two principal degradation
types, blur and noise, act in an image formation process:
e Blur can be originated from events like the relative motion between the optical sys-
tem and scene, from an out-of-focus optical system or from atmospheric turbulence
in aerial images [20].
e Noise is an ever-present effect caused by many factors, like the imaging equipment
itself and optical defects from instrumentation [54].
The spatial impulse response function, commonly referred to as the Point Spread Function
(PSF), is used to represent such distortions in the recorded image (Figure 2.1).
Adaptive optics (AO) is a technique commonly used to overcome these distortions,

where the atmospheric effect is corrected in real time by a deformable mirror whose shape

Figure 2.1: Example of a Point Spread Function.
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is continuously updated to match the current state of the atmospheric turbulence. The
correction, however, is never perfect and the long exposure images acquired with an AO
system are still affected by a residual blur which reduces the contrast of the fine details.
This residual blur is of course much less severe than the aberrations in the uncorrected
images and may be further reduced by means of post data processing [52].

Most techniques used for post-processing images are Speckle Interferometry [58], Phase
Diversity [32] and Multi-Object Multi-Frame Blind Deconvolution [51]. However, when
the instantaneous PSF of a short exposed image is known, non blind deconvolution tech-
niques can be used to obtain superior image quality, besides providing better understand-
ing of the solar AO system performance [53].

Having estimated a set of instantaneous PSF's using short exposures images, a long
exposure PSF is computed as being the mean of these instantaneous PSFs. The long
exposure PSF so constructed can be used to deconvolve long exposures for real images.
The problem in using this technique is that estimating instantaneous or long exposure
PSFs is a demanding task, because the information about the image degradation is always
incomplete [35] (e.g., when using AO system, only a limited number of Zernike modes can
be measured).

The objective of an image restoration process is to reduce the image blur occurred
during the imaging process, but because the restoration will enlarge the noises, denoising
is an interesting step to obtain a better visual effect [60]. Given that the images recorded
with a telescope are always corrupted by noise and that the estimation of an instanta-
neous PSF corresponds to a division in the Fourier domain, the presence and (pre/post)
treatment of such noise is a serious issue. However, the technique used in this work does
not require additional pre-processing over the corrupted image for direct removal of the
noise before estimating the PSF.

In the framework of Speckle-Interferomety, the Fourier-components of the observed
object are estimated using a set of short exposed images. Suitable methods are employed
in order to separately estimate the Fourier-amplitudes (based on Labeyries-Method [31]

and the extension of Woger [[57] and references therein]) and the Fourier-phases (based
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Figure 2.2: Example of Zernikes terms.
This figure shows examples of the Zernike terms 72, Z4, Z11 and Z14.

on polyspectra of the data, e.g., Triple-correlation methods [33, 55] or Extended Knox-
Thomson methods [30, 8] (the reference [36] describes the implementation of extended
Knox-Thomson method in detail)).

For the purpose of this technique, the Zernike polynomials are used to estimate how
distorted is the image compared to the original object. The Zernike polynomials are a set
of 2D orthonormal basis functions that can be used to represent aberrations in the image
formation process [54]. They represent the statistical eigenfunctions of optical distortions
that quantitatively classify each aberration by using a set of polynomials. The linear
combination of K aberrations results in an approximation of the perturbation K. Each
term contains the appropriate amount of each lower order term to make it orthogonal to
each lower order term [59]. Every term results in a specific aberration of the PSF, e.g.,
Zy is a constant called of “piston” term, Z; and Z5 are tilt terms, Z3 represents focus and
Z, is astigmatism plus defocus (Figure 2.2). When K = oo, it is an exact representation
of the aberrations.

The next section will explain how this PSF estimation method calculates the PSF
based on the Zernike terms, and how the fitness value (calculated by the error function) is
obtained. The subsequent sections will explain the original optimization algorithm used

for the estimations (Simulated Annealing, section 2.2) and the algorithm proposed to
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accelerate the results (Cooperative Particle Swarm Optimization, sections 2.3 and 2.4).
Finally, the section 2.5 will give an overview of OpenCL, which is the language used to

develop the GPU code of this work.



2.1 PSF Estimation Method

The image degradation process can be modeled as a degradation function P(z), together
with an additive noise N(z), operating on an input object O(x) to produce a degraded
image I(x). As a result of the degradation process and noise inter-fusion, the original

image becomes a degraded image, representing image blur in different degrees [23]:

I(z) = O(z) ® P(x) + N(z) (2.1)

where ® represents the convolution of the object O(z) with the degradation function P(x)
and z is a coordinate in the focal plane of the telescope.

According to the convolution theorem illustrated in the Figure 2.3, the convolution
of two spatial functions is denoted by the product of their Fourier transforms in the

frequency domain:

i(s) = o(s) - p(s) +n(s) (2.2)

where i(s), o(s), p(s) and n(s) are the Fourier transform of the image, of the object, of
the PSF and of the noise, respectively.
The instantaneous PSF P(z) is given by the modulus of the Fourier transform of the

optical field [A(u) = Ag(u)exp(id(u))] at the telescope aperture:

P(z) = |F(Ao(w)exp(ip(u)))|* (2.3)

where u is a coordinate in the telescope aperture and F' denotes the Fourier transforma-
tion. We assume the transmission Ag(u) of the telescope aperture to be constant, i.e., we
neglect scintillation effects and obstructions. Furthermore, Ag(u) is tuned such that the
PSF conserves energy.

The phase ¢(u) of the optical field is parametrized by using n Zernike terms:

o) = 3" Zifw) (24
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l Fourier Transform

Multlpllcatlon

Inverse
Transform

Image

Figure 2.3: Convolution process.
The Fourier Transform of both the Object and the PSF are multiplied together, then the Inverse transform
is applied to the result, obtaining the Convolved Object.

where every ~; is a coefficient to be applied to the respective Zernike term as its weight.
The summation in the equation (2.4) can be graphically represented as in the Figure 2.4
(for n = 8), where each summed circle can be thought of as a Zernike term multiplied
by its weight, giving as result (top left circle) a phase that would represent each kind of
aberration present in the image [49].

Given the parametrization of the wavefront phase (Equation 2.4), the Equation 2.3 as
a model for the instantaneous PSF, and the imaging model (Equation 2.2), we estimate an
instantaneous PSF by estimating a set of n Zernike expansion coefficients v that minimizes

the error function in the Equation 2.5 [18]:

Z [i(s) —(s)p(s)|” (2.5)

|s|<sc
where sc denotes the cut-off frequency of the telescope, and 6(s) and p(s) denote the
Estimates of the Fourier Transform of the object and of the PSF, respectively. Since
i(s) is directly calculated from the input image and o(s) is estimated through speckle
reconstruction, p(s) is the only value that ultimately has to be estimated.

At this PSF estimation method, no filtering of the image I(z) is used since the algo-
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Figure 2.4: Graphical representation of the phase calculation.
The upper left circle represents the sum of all 8 weighted Zernikes, where each Zernike Z; is multiplied

by its respective coefficient v; (as described on equation 2.4).

rithm inherently deals with any noise N(z) that is present in the image and its Fourier
transform.

To improve the ability of a Fourier to extract spectral data, a Windowing Function
can be used. When a windowing function is applied over the data before processing its
Fast Fourier Transform (FFT), an effect called Leakage is reduced. Leakage occurs when
a FFT is applied over the image, causing the spectral information show up at the wrong
frequencies [16]. In this work, the Hanning function [25] is used to create a window for
FFT filtering. The Hanning function can be written as described by Equation 2.6, where
N is the number of samples in the signal and n is the position within the signal.

2mn

w(n) = 0.5 4 0.5cos (T) ,0<n<N-1 (2.6)

A common way to compare the contrast of two different images is by calculating
their Root Mean Square (RMS) contrast, since it does not depend on the image’s spatial
frequency or the image’s spatial distribution of contrast [39]. The RMS contrast is defined

by Equation 2.7:

RMS = ! > (@i —7)? (2.7)
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T =

Z i (2.8)

where z; is a normalized gray-level value such as 0 < z; < 1 and ¥ is the mean

S|

normalized gray-level (Equation 2.8). To validate numerically how near the restored
image was from the original object, the RMS contrast was used in this work to compare

the contrasts of the original object O, the corrupted image I and the deconvolved image.
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2.2 Simulated Annealing

The global minimization of the error function (Equation 2.5) for this PSF estimation
method was originally obtained by an implementation of the Simulated Annealing Al-
gorithm [53]. Simulated Annealing (SA) is an algorithm that simulates a collection of
atoms in equilibrium at a given temperature [29]. At every iteration of this algorithm,
one atom is randomly displaced and the resulting change in the energy of the system,
AFE, is computed. If AE < 0, the displacement is accepted and the configuration with
the displaced atom is used as the starting point for the next iteration. When AFE > 0,
the probability that the configuration is accepted is described by the Equation 2.9.

P(AE) = exp (_;ﬂ) (2.9)

where 7' is the heat bath temperature at a given time.

Random numbers uniformly distributed in the interval [0..1] are a convenient means
of implementing the random part of the algorithm. One such number is selected and then
compared with P(AE):

e if it is less than P(AFE), the new configuration is retained and becomes the new

original configuration;

e if not, then the previous original configuration is used to start the next iteration.
By repeating this basic steps many times, one simulates the thermal motion of atoms in
thermal contact with a heat bath at temperature 7'

For the purpose of the PSF estimation, the AFE is computed as the difference from
the previous calculated error function F(v) (Equation [18]) to the current calculated one.
Every error function is computed based on a set of n random coefficients ~;(i = 1..n).

The Algorithm 1 describes how the PSF estimation technique was implemented with
SA. The original source code was provided by the Kiepenheuer-Institut fiir Sonnenphysik
(Kiepenheuer Institute for Solar Physics - KIS) and was used as base for the develop-
ment of this work. Because the SA algorithm enforces only small displacements, for this

specific optimization method only one of the coefficients 7; (Equation 2.4) is changed at
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every iteration (Algorithm 1, line 7), what means it requires n iterations to have all the

coefficients effectively changed and evaluated.

Algorithm 1 PSF Estimation by Simulated Annealing

10:
11:
12:
13:
14:
15:
16:
17:

Read Input: {I(z), O(z), number of Zernikes, number of evaluations}
Calculate i(s)
Calculate o(s)
Calculate the cooling schedule based on number of evaluations {cooling cycle and
cooling step tables}
for every cooling cycle do
for every cooling step do
for every 7; {One single Zernike term is evaluated at every iteration} do
Calculate the new phase ¢(u)
Calculate the new psf P(z) and its Fourier p(s)
Calculate the error function E(7y)
if accept new configuration based on AE {Equation 2.9} then
Save new parameter set v and the PSF P(z)
end if
end for
end for
end for
return The estimated parameter set v and the PSF P(z)

Given the SA algorithm requires a very slow cooling (lines 5 and 6 of Algorithm 1),

good results are usually obtained only after a long processing time, what makes the SA a

non feasible solution for a quick minimization of the error function (Equation 2.5).

The section 4.1 describes the initial results obtained by using the SA to estimate the

PSFs.
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Figure 2.5: Particle Swarm Optimization.
The PSO is composed of particles and each particle is composed of two vectors: position x and velocity

v. Every dimension inside a particle represents a variable of the problem being optimized.

2.3 Particle Swarm Optimization

Created in 1995 by Kennedy and Eberhart, the Particle Swarm Optimization (PSO)
algorithm is a stochastic (nondeterministic) optimization technique based on the behavior
and dynamic of a bird flock. It is used in optimization problems like neural networks
and minimization functions, where the objective is to find good regions of the search
space instead of the best possible result. This algorithm has the characteristic of quickly
converging to a local minima [11].

The PSO population is represented by a swarm composed of particles, where every
single particle contains a candidate solution for the optimization problem (Figure 2.5). At
every iteration, the particle moves towards its best personal solution found so far, at same
time as it moves towards the best global solution found so far by the entire swarm. This
behavior causes the good information to be shared among the members of the population,
contributing to the cognitive knowledge of the particles through the social knowledge of
the swarm [27].

The PSO consists of one best global position 3 (gbest) and a population P of s particles,
where every particle has n dimensions and each dimension is composed of the attributes:
the current position in the search space z;; (i = 1l..s, j = 1..n), the current velocity v; ;

and the best personal position in the search space y; ; (pbest; ;) [50].

vt +1) = wv(t) + cryi(t) [y (t) — i)

% (2.10)
+ corai(8)[9;(t) — i (1))

it +1) = x;(t) + vi(t + 1) (2.11)
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The attributes z; ; and v; ; are usually randomly initialized and y; ; is calculated before
the first iteration begins. The parameters ¢; and ¢y are the acceleration coefficients that
control the particle direction, the parameter w is the amount of inertia preserved from
the previous iteration, and r; and ry are two random values in the interval [0..1] that are
generated at each iteration for every particle. At every iteration ¢, all dimensions j € [1..n]
of the particles must be updated by the Equations (2.10) and (2.11). The Equations (2.12)

and (2.13) show the pbest and gbest calculation (respectively) for a minimization function

I3

R (O MGGV ES (O 21

zi(t+1), i flz(t+1)) < fw().

gt +1) = arg min f(y:(t+1)), 1<i<s (2.13)

Yi
To limit the movement of the particles and avoid that they escape of the search space,
the velocity limit [—vpmaz, Umaz] and the search area limit [2,,in, Timae] are defined.
A Linear Decreasing Weight (LDW) is a strategy used to control the inertia of the
particles, obtaining a better performance from the search [61], what is described by the
Equation (2.14):

Tmax —1
W = (Wini — Wend) (T—> + Wend (2.14)

where t is the current iteration time, T,,,, is the largest iteration time, w;,; is the initial
inertia weight and w,,q is the inertia weight when T,,,., is achieved. Studies have shown
that the use of a linearly decreasing inertia weight coefficient (w) gives better results than
a fixed w [26].

A mechanism to increase the particle activity while exploring the search space is the
Re-initialization of Inactive Particles [24] (reset particle). This mechanism keeps a higher
level of activity and variety of the particles such that better results can be obtained. This
is done by calculating, for each particle, the euclidean distance from the previous position
to the current position after the move. If the distance is less than a specified parameter
(e.g., 15% of the search space size), then one of the following actions are randomly selected
to ensure the convergence of the strategy:

e The particle is reset to have new values for all its variables (z, v, w, ¢; and ¢y);

e Only the parameters are reset (w, ¢; and ¢) and the particle attributes (z and v)

are not changed.
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Spliting a PSO
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Figure 2.6: Converting a PSO into a CPSO.

The original PSO has its dimensions subdivided into k£ smaller swarms.

2.4 Cooperative PSO

For problems with high dimensional search space, just like many other optimization tech-
niques, the PSO has its performance reduced by the Curse of Dimensionality , which
simply put, implies that the performance deteriorates as the dimensionality of the search
space increases. One direct solution for this problem is to divide the dimensions into K
partitions (Figure 2.6) [50]. Each partition is managed by a different swarm and every
swarm cooperates with each other, creating a Cooperative Particle Swarm Optimization
(CPSO) (Figure 2.7).

The main difference to the classical PSO is the presence of a context function b (Al-
gorithm 2, line 1), where (P;.7, -+ Pg.y) represents the pBest for swarms [1..k], and z
represents the vector x for the current particle being evaluated. This function will join
the n/K dimensions managed by the swarms, forming a complete candidate solution for
evaluation by the fitness function f.

Since there is no rule to split the swarms, the dimensions can be divided as needed by
using whatever metric that might be convenient, like for example the correlation between
the neighbor dimensions. Also, the number of dimensions per swarm does not need to
be the same for all swarms. In the case non-neighbor dimensions have much higher
correlation, they can be moved between the swarms as long as the function b is adjusted
to map them back to their original places at fitness evaluation time. For the purpose of
this work, since there is no direct correlation among the Zernike terms (dimensions), the
dimensions will be split equally among the swarms.

The algorithm 2 describes the CPSO for a minimization function.
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Figure 2.7: Cooperative PSO.
The smaller swarms now collaborate with each other to optimize the variables, reducing the dependency

between the dimensions and improving the ability of obtaining good results more quickly.

Algorithm 2 CPSO for a minimization function [50]

b(j,Z) = (Pl'ga e 7Pj—1-gazv Pj—H'Qa e Pkg)
: Initialize k swarms, with the n dimensions
distributed as needed per each swarm

N o=

3: repeat

4: for each swarm j € [1..k] do

5: for each particle i € [1..s] do

6 if (b(j, Pr.r) < £(b(j, Py;)) then

8: end if

9: if f(b(j, P;.y;)) < f(b(j, P;.y)) then

10: Py = Py,

11: end if

12: end for

13: Perform PSO update on partition P; using egs. (2.10-2.11)

14: end for
15: until stopping condition is true
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2.5 OpenCL

OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform,
parallel programming of modern processors found in personal computers, servers and
handheld /embedded devices that greatly improves speed and responsiveness for a wide
spectrum of applications [5]. Many hardware vendors, like Intel, AMD, Apple, IBM
and NVIDIA, implement OpenCL on their devices, what allows for a great code reuse
regardless the device providers. Another great advantage of OpenCL language is the fact
that any set of supported hardware can be jointly used on same program without any
special adaptation of the code.

Before processing any task on OpenCL, the respective work must be decomposed into
smaller pieces called Work Items. These work items must be organized into processing
batches called Work Groups. The task executed by a work group is computed through
an execution instance called Kernel [2]. Every kernel must be running inside one specific
OpenCL device (for example, one GPU card).

Every work item is given a unique global ID within the entire task, besides one unique
ID within its work group. Work groups are also assigned a unique group ID within the
group set. The combination of these IDs represent a specific point in an Index Space
where every work item should be working on the data. The index space supported on
OpenCL is called NDRange, which is a N-dimensional space where N can be one, two or
three and every dimension can have its specific size (Figure 2.8).

The Memory Address Space of the OpenCL architecture (Figure 2.9) is composed of:

e Global Memory: a global slow access space, where all global data is stored.

e Local Memory: a much quicker and smaller memory than Global Memory, it can be
used to share data among work items in a workgroup and to reduce access to global
memory.

e Private Memory: every work item has one fast private memory, which is similar to
CPU’s registers.

e Constant Memory: a global memory space, this is a read-only memory which can
have different advantages depending on the hardware. This is usually used for
broadcast operations.

e Host Memory: the memory on CPU side (computer’s RAM memory).

OpenCL uses an explicit memory management, meaning the data must be moved
by the code itself from Host memory to Global memory, then from Global memory to
Local memory, then from Local memory to Private memory, then all the way back. No
automatic data move is done by the devices nor by the OpenCL.

The OpenCL Framework is context based, where every context can group several
devices and every device can enqueue kernels to run on it (Figure 2.10). The code is stored

inside a .cl file, which is compiled at runtime (provided to the context for compilation).
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Figure 2.8: OpenCL Work Units.
The Index Space on OpenCL is composed by a combination of global ID, local ID, work group ID and

dimension. The work on OpenCL device is divided in NDRange size (G, Gy, G,) and Work Group size
(Sz, Sy, S-), where (G5, Gy, G.) must be multiple of (S5, .Sy, S.).
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Figure 2.9: OpenCL Address Space.

There are two main memory spaces: the Host memory and the (OpenCL) Compute Device memory. The
Compute Device memory is divided into Global/Constant memory (slow speed), Local memory (quick

speed) and Private memory (register speed).
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Queue Management Model
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Figure 2.10: OpenCL Queue Management Model.
This figures shows how the solution developed in this work deals with all aspects of a complete OpenCL

environment. The classes clFactory and clQueue are described in details on section 4.2.3.

Once the program is compiled, the kernels can be instantiated at context level for later
execution.

Before executing a kernel, a Command Queue must be instantiated for every device
where the tasks will run. The Command Queue is used to enqueue the kernels that will
run on the devices, where such queuing can be set to execute in-order (at the order the
kernels were submitted) or out-of-order (at the order the OpenCL decides internally).
When the queue is set to out-of-order, there is no guarantee that the kernels will be
executed at the same order as submitted, therefore if a specific sequence is necessary,
events can be used to force (for example) a kernel B to be executed only after a kernel
A has finished. The advantage of the out-of-order queue is not forcing the OpenCL to
follow any specific sequence, thus allowing it to decide when it is more advantageous to
submit every kernel. For that reason, this work uses out-of-order Command Queues.

At the time of calling the kernel, both the kernel instance and its parameters must
be submitted to a Command Queue. The command used to submit the kernel is non
blocking, therefore multiple kernels can be enqueued on same Command Queue without
having to wait for the previous kernels to finish. Therefore, it is OpenCL’s responsibility
to organize its work internally and make sure the kernel calls are all configured and

submitted correctly.

2.5.1 Random Numbers for CPSO on GPU Cards

One mandatory requirement of the CPSO algorithm is the generation of a large amount
of random numbers. This makes CPSO sensitive to the quality of the numbers generated,

therefore, the use of a good Random Number Generator (RNG) is critical for the quality
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of the optimization. One solution for the GPU-based CPSO is pre-generate on CPU all
the required random numbers before they are actually used. Due to memory limitation
on GPU cards, these pre-generated random numbers must be transferred from CPU to
GPU periodically, what impacts the running time given this kind of transfer is too slow
compared to the GPU clock cycle. Besides, every CPSO iteration requires a large amount
of random numbers, what in turn would require extra memory from the GPU cards to
store such values, thus reducing the capacity of processing PSF estimations in parallel.

To avoid the impact caused by this transfer, the random numbers should be generated
on GPU side. The work developed on [9] shows that it is possible to have a good GPU-
based RNG (e.g., a Xorshift implementation) that provides sufficient quality to be used
by a CPSO algorithm. The RNG used on this work is described on Algorithm 3.

Algorithm 3 Xorshift

. Input: {seed {the random seed} }
: tmp + seed[0] " (seed[0] << 11)

. seed|0] +— seed|1]

. seed|[1] + seed|2]

. seed|2] < seed|[3]

. seed[3] < seed[3] " (seed[3] >> 19) " (tmp " (tmp >> 8))
: return seed|3]

N O Ut s W N

Given that a single seed can bring a limit to the number of calls allowed for the RNG,
to minimize the risk of reducing the quality of such random numbers, every particle in
this solution contains its own seed and such seeds are refreshed with new values from
CPU at every CPSO iteration.

The chapter 4.2 describes in details how the CPSO was developed to take advantage

of the massive parallel environment provided by a GPU device.
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2.6 Considerations

The purpose of this work is to develop a parallel solution to run on OpenCL enabled
devices, so that the PSF Estimation of solar surface image could run on feasible times
with good results under cheap hardwares. The Cooperative PSO is proposed for the
optimization of the PSF parameters and a calibration method is presented (section 5.1)
to adjust the CPSO for obtaining good results under low processing times.

The next chapter discuss the optimization methods available, presenting results ob-

tained by other researches. Variations of PSF estimation methods are also discussed.
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CHAPTER 3

BIBLIOGRAPHIC REVIEW

The following section describes metaheuristics and parallel approaches for their imple-
mentation. Then, the section 3.2 provides an overview of PSF estimation methods and

describes examples of works developed for different types of PSF estimations.

3.1 Parallel Approaches for Metaheuristics

Metaheuristics is the term used to describe any stochastic optimization method used to
find good solutions for problems where it is not known how to search for good candidate
solutions [34]. Stochastic optimization is the general class of algorithms and techniques
which employ some degree of randomness to find good solutions to hard problems.

The metaheuristics can be classified into two main categories [13]:

1. Trajectory-based metaheuristics: starts with a single initial solution and at each
step of the search, the current solution is replaced by another solution found in
its neighborhood (often the best solution). This metaheuristics allows for a locally
optimal solution to be found quickly, promoting intensification in the search space.
Examples of this metaheuristics includes Simulated Annealing (SA), Tabu Search
(TS) and Local Search (LS).

2. Population-based metaheuristics: makes use of a population of solutions. The initial
population is randomly generated and then enhanced through an iterative process.
These techniques promote the diversification in the search space. Examples of this
metaheuristics includes Evolutionary Algorithms (EAs), Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO).

The main difference between intensification and diversification is that during an inten-
sification, the search focuses on examining neighbors of elite solutions. The diversification,
on the other hand, encourages the examination of unvisited regions, generating solutions
that differ in various significant ways from those seen before [21]. Considering that Zernike
terms have no correlation between each other and the estimation of their coefficients re-
quire the examination of the entire search space, only the population-based metaheuristics
were considered for the improvement of this PSF estimations method.

Parallel implementations of EAs, ACO, and PSO (described below) have been the
preferred choices for efficiently solving optimization problems related to real-world appli-
cations [7], while parallel trajectory-based metaheuristics (SA, LS) have been also used

as viable second options.
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The Ant Colony Optimization (ACO) is a metaheuristics based on the social behav-
ior of ants. It has a constructive population-based approach, where an ants population
gradually walk towards a common goal by using heuristics and pheromone information.
As the ants find their paths, they updates the pheromone values on these paths, what
guides the remaining ants to potentially better paths. After a pre-determined number of
iterations, the best path (the one with more pheromone) is chosen as the best solution
for the problem. Even though the ACO model facilitates the development of CPU-based
parallel optimizations, the work developed in [19] shows that when developing the ACO
to GPU architectures some important challenges comes up, mainly due to pheromone
management and to the size of the data structures that have to be maintained. Even
though good improvements are shown on that work, complex algorithms were required
and memory limitations become evident.

Given the ACO success strongly depends on the nature of the particular problem
and the underlying hardware available, the work developed in [17] tries to overcome the
limitations of ACO by a specific thread scheduling on GPU and by creating strategies to
access the memory. As results, even more complex algorithms were required to be able
to improve the optimization.

Basically, the ACO is meant for problems where all possible values are known before-
hand, as the Traveling Salesman Problem (where all vertices are known previously), what
makes the ACO not feasible for the PSF estimation problem.

The term Genetic Algorithm (GA) was first used by John Holland in 1975 to describe
a probabilistic search procedures designed to work on large spaces involving states that
can be represented by strings of values [22]. These methods are inherently parallel, using
a distributed set of samples from the space (a population of strings) to generate a new
set of samples. The common thread in these ideas was the use of mutation and selection,
which are the concepts at the core of the neo-Darwinian theory of evolution. Several
strategies to keep the good results are used [43], like roulette wheel selection, tournament
selection, ranking, crossover, mutation and hybridization. Currently, many variations of
the GA are being experimented, with different improvements obtained in every variant.

The work developed in [38] uses a Quantum-Inspired Genetic Algorithm (QIGA) for
the optimization. QIGA is a hybrid heuristic algorithm, inspired on the biological evolu-
tion and the unitary evolution of quantum systems. Concepts such as qubits, observations
and superposition of states are involved in different stages of the algorithm. In QIGA,
genes are modeled upon the concept of qubits (a bi-dimensional matrix of 0’s and 1’s),
which brings an additional element of randomness and a “new dimension” into the algo-
rithm. Given the complexity of the algorithm to run on CPUs and the parallel nature of
this algorithm, the implementation of QIGA developed on that work obtained large speed
ups on GPU device when compared to the CPU version.

Compared to others swarm based algorithms such as AG and ACO, the PSO has the
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advantage of easy implementation, while maintaining strong abilities of convergence and
global search. In recent years, PSO has been used increasingly as an effective technique for
solving complex and difficult optimization problems in practice [62]. Nevertheless, PSO
still needs a long time to find solutions for large scale or high complexity problems, such
as problems with large dimensions and problems which need a large swarm population
for searching in the solution space. The main reason is that the optimization process of
PSO requires a large number of fitness evaluations, which is usually done in a sequential
way on CPU.

However, the PSO is well known as a metaheuristics with high capacity for paral-
lelization. The work developed in [46] implemented a GPU-PSO algorithm by treating
each particle with its own individual thread. That work showed that the highly CPU in-
tensive tasks required by bioinspired metaheuristics for complex problems can be greatly
benefited by the massive parallel environment provided by a GPU device.

The PSO developed for GPU is not limited to a single algorithm and every different
problem might require a different PSO implementation. The work developed in [41],
for example, implemented an automated Gamming PSO and used a separate thread to
treat each dimension of every particle in each swarm. The results showed good speed up,
but the tests were not complex enough to reach the maximum capacity of the proposed
algorithm.

The work develop in [62] is another case of one thread per particle, where the thread
was implemented to iterate over all the particle’s dimensions. The results show that prob-
lems with more complex arithmetics and problems with a large number of dimensions have
much higher speed improvements when compared with the CPU version. No important
improvement was obtained while increasing the population sizes, so smaller populations
can obtain as good results as large populations by just increasing the number of iterations,
what is an opportunity to fine tune the PSO for the physical GPU characteristics.

Similarly, on [14] it was found that the number of particles does not represent any
direct improvement on the results obtained. In general, the configuration of a PSO is a
time consuming task that requires manual adjusts of several parameters, which invariably
has no correlation with the problem being optimized [56]. The PSO calibration process,
in short, is essentially a trial and error process and a bad parameter set can lead to poor
optimization results. Therefore, regarding the parameter set, it is known that the PSO
lacks an easily measurable calibration processes.

The PSO algorithm also has been used to estimate PSFs while recovering corrupted
images. On [47], both the GA and PSO are used to seek the unknown PSF of a blured im-
age, obtaining similar results on both optimization methods. Since that specific problem
had only one dimension, the conclusion of that work stated that for multi-dimensional
estimation problem, the PSO should outperform the GA.

The work developed in [12] also uses both GA and PSO to estimate unknown param-
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eters for a specific multi-dimensional problem (biochemical systems). As result, the PSO
outperformed the GA on the experiments and the work concluded that the PSO is the
best method for that specific optimization problem. A successful usage of the PSO to op-
timize unknown parameters for PSF estimation is found on [40], where the coefficients for

a filter mask are searched by a PSO to restore a corrupted image without any knowledge
of the PSF.

3.2 PSF Estimation Methods

There are several methods available to calculate the PSF, each one developed to address

peculiarities of a specific problem. Usually, one of three ways is used to calculate the PSF":

1. Using well-defined (on shape and size) targets for comparison with the corrupted
image.

2. Applying a filter over a non-corrupted image and then comparing the results with

the corrupted image.

3. Using the system design specifications and the system analytic model.

On [10], the second method is implemented by obtaining a high resolution terrestrial
image from one satellite sensor and a second terrestrial image from a low resolution sensor
of another satellite, then applying a low-pass filtering over the high resolution image and
comparing with the low resolution image. The optimization process is implemented by
adjusting the filter at every iteration, while minimizing the image differences.

The PSF methods are also divided into parametric and non-parametric:

e The parameterized models for PSF estimation requires estimation of parameters

(eg., functions or filters parameters).

e The non-parametrized models use the additional characteristics available to estimate

the PSF.
The work developed in [15] used a non-parametric model to estimate the PSF based on
a digital template registered on the camera before the image was taken, then comparing
the template with the actual image taken, what allowed for a successful calculation of the
distortion and a much better image recovering. As example of a parametric PSF model,
on [44] a single-parametric PSF was used to adjust the focus on generic blurred images.

The PSF estimation is a challenge when the type of blur or motion in the image is
unknown. Even when the PSF is known, deblurring results in amplified noise and the
high frequencies are usually lost. Besides, the deconvolution process used for restoration
is limited by the lost of spatial frequencies while restoring the corrupted image. Therefore,
the quality of the estimated PSF is critical for a good image restoration process.

The work developed in [42] used the intervention of the camera user to assist on the
blur path estimation instead of calculating the PSF directly, what proved to increase the

quality of the restoration. On [37], the PSF was estimated by adding a secondary low-
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resolution sensor in the camera to capture the real motion, what was used to calculate a
more exact PSF, then deconvolving the primary high-resolution image with the PSF so
calculated, resulting in superior images.

The model used as base for the work developed in this paper is presented on [53], where
a parametric PSF model is proposed to estimate the wavefront phase and the PSF from
the data obtained by a single imaging channel from a telescope. A series of sequential
solar images is taken and combined, generating a clear reference image that is used for
comparison with an artificial image. The artificial image is generated by convolving the
clear reference image with a random parametric PSF, where the resulting artificial image
is compared with a real distorted solar image. The difference calculated between the
artificially generated image and the real image is used for minimizing an error function,
which is optimized by a Cooperative PSO. The quality of the PSF obtained is the main
focus of the CPSO proposed here.

3.3 Considerations

Despite the fact that there are many good optimization methods available, not all of them
are of simple implementation. When developing metaheuristics methods for GPU cards,
several additional limitation can arise, what in turn could require more complex code
structures to overcome these problems. The PSO has proven to be a simple optimization
method that can be easily implemented on GPU cards, besides not suffering from any
critical limitation imposed by the GPU hardware. A good advantage of the Cooperative
PSO when compared to the other methods is the strong quality of results obtained when
the number of dimensions is very high.

Regarding calibration methods for PSO, no standard process exists for its config-
uration, meaning that it is up to the experienced PSO user to set up its parameters
heuristically.

There are many methods for PSF estimation, each one developed to solve specific
problems under well defined environments. The PSF estimation method used on this
work relies on a single imaging channel from a telescope to obtain all the data necessary
to recover the corrupted solar image. A Cooperative PSO is used to optimize the PSF
parameters and a calibration method for the CPSO is proposed for this specific PSF
estimation problem.

On next chapter, previous results obtained for this PSF estimation method with Sim-
ulated Annealing are presented, and the proposed Cooperative PSO for OpenCL devices

is detailed at implementation level.
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CHAPTER 4

POINT SPREAD FUNCTION COMPUTATION

During the development of this work, several techniques were used to improve both the
speed of the PSF estimation and the quality of the results obtained, in such a way that
a good balancing could be obtained between a reasonable estimation and the time taken
to calculate it.

The original method used as base for this work uses the Simulated Annealing as
optimization method, which generates only small changes from iteration to iteration and
requires long cooling cycles, meaning that good results need long processing times. To
better understand the PSF estimation problem, the existent SA code (provided by the
Kiepenheuer Institute) was refactored then ported to multicore. To investigate how the
PSF estimation can be processed on the massive parallel environment provided by GPUs,
the SA was also reimplemented for graphical cards. No exhaustive tests were executed
for the SA, since it was used only as reference to develop an improved PSF estimation
method with CPSO.

The optimization method proposed in this work, the PSO, is a well known fast conver-
gence method that is noise robust and built to simultaneously tackle multiple dimensions
(or Zernike terms, on this work) of the problem being optimized, instead of analyzing only
one dimension at a time. A cooperative version of the PSO (CPSO) was used to better
control the aggressive convergence behavior of the method and to take advantage of the
vector processing model of a GPU based code.

Given the GPU devices provide a SIMD environment (Single Instruction, Multiple
Data), where the same instruction is executed over multiple data points simultaneously,
additional parallelism occurs while accessing most of the data required for this method,
like for example the images, the phases, the PSFs, the Zernikes and the masks (details
provided on section 4.2).

The next section (4.1) shows directly the results obtained by the original method
proposed to estimate the PSFs (by using Simulated Annealing for optimization). The
proposal of this work is presented on section 4.2, where the estimation method and its

implementation are explained in details.
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Performance of Original Code for Multiple Cores
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Figure 4.1: Performance of the Original code per CPU core.

The original Simulated Annealing shows a good scaling behavior.

4.1 Initial Results with Simulated Annealing

The original version of this PSF estimation technique is a computationally expensive
one that requires long processing periods in a single core. For multiple cores (developed
with OpenMP - Open Multi-Processing [4]), even though we see a good scaling behavior
(Figure 4.1), it still requires a large amount of resources to process the estimations. Given
the SA requires long cooling cycles, for the purpose of this work every result presented
here was obtained after having evaluated the fitness 1635000 times.

All experiments on CPU for SA were executed on a machine with the following con-
figuration:

e 4 x AMD Opteron(tm) Processor 6136 (8 cores each processor)

e 120GiB RAM

By looking carefully at the original SA algorithm used for the PSF Estimation (Figure
4.2), one can see that the most expensive part of this technique is the computation of the
phase ¢(u), which consumes nearly 90% of the CPU time. In order to have the phase
calculated, it is necessary to iterate over each one of the n Zernike terms Z;, where every
Z; is composed by a square matrix of size (¢uia)> (for the purpose of these experiments,
width = 128). Therefore, to calculate a generic ¢(u) it is necessary to execute n(Puigin)?
multiplications plus n(@yiamn)? sums.

To minimize this problem, the code was refactored and the most computationally
expensive codes were replaced by their quicker versions, with exact same results. As part
of the refactoring, the problem of the expensive phase calculation was solved by storing

separately partial phases ¢(u);, each one containing only the +;Z;(u) of the Equation
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Percentage of Time Spent per Function on Original Code
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Figure 4.2: Time spent per function on Original code, in %.
The original Simulated Annealing shows critical problems with the phase calculation.

(2.4). This solution requires additional memory of n(gbwidth)z double values to store partial
results, but since the required additional memory is not a problem for these experiments, it
worth the cost. This solution is also possible due to the fact that the simulated annealing
algorithm requires only minor changes from iteration to iteration, what is achieved in this
work by updating only one ~; at a time.

After refactoring the code to a quicker version, the running time was improved suffi-
ciently (Figure 4.3) to be used as a good comparison measure with its parallel versions
(given the speed up metric requires the best known sequential version).

By comparing the results obtained by the experiments on CPU, we see that the refac-
toring alone was responsible for a speed up of 26 on the calculation of the phase, what
made the refactoring a real important step while improving the performance of this PSF
estimation technique. For multiple CPU cores (8 cores with OpenMP), the refactored code
still shows (on Figure 4.4) a good scaling in the PSF calculation in comparison with the
refactored version for 1 core (speed up of 6.54), but no improvement on the Fourier calcu-
lation. This happened because the code was using an open library for Fourier calculation
which did not process in multiple cores at the time this experiment was executed (FFTW
[1]). Thus, this processing time could be yet reduced by using a Fourier library that
support multiple cores. The Figure 4.5 shows the comparison of the speed up obtained
by the refactored code in both 1 and 8 cores, when compared to the original code.

A second parallel version was developed on CUDA language (NVIDIA Compute Uni-
fied Device Architecture) for machines providing GPGPU graphical cards, and this was
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Figure 4.4: Speed up of the refactored in 8 cores versus in 1 core, for the main functions.

This speed up is not considering the original code. The multiple cores were enabled by using OpenMP

library.
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Figure 4.5: Speed up per function (1 vs. 8 cores) compared to the Original Code.

This figure is comparing the original code with the refactored versions for both 1 and 8 cores.

the code that presented the best performance for SA. The experiments on GPU device
were executed on a machine with the following configuration:

e AMD Opteron(tm) Processor 8387 (4 cores each processor)

e 10GiB RAM

e GPU card model NVIDIA Tesla C1060 (30 Multiprocessors, Warp size 32, 240 Cores,

max. Block size 512, 1.30 GHz, 4GB GDDR3, CUDA 3.2)

Every kernel was executed with several different block sizes configurations, then the
configurations that presented the best results were used to optimize these kernels. The
Fourier was calculated by CUFFT library (NVIDIA CUDA Fast Fourier Transform [3]),
thus its behavior is not controlled by the user and all its results are constant among the
different configurations executed.

The Figure 4.6 presents the speed up on the total running time, obtained by the
GPU optimized version and all CPU versions, when compared to the original version.
Every result presented in the figure shows the improvement obtained in each phase of the
investigation of this PSF estimation method.

We can see that the best performance for CPU (refactored version for 8 cores) obtained
a speed up of ~28, whereas the GPU version obtained a speed up of ~147 (with 1 CPU
core and 1 GPU device). Given that both versions used CPU hardwares of approximate
processing power per core, the use of a GPU device showed an important increase on the
capacity of estimating PSFs, what justified the development of a new PSF Estimation
method to run on GPUs. Still, the GPU solution did not achieve its best possible results
because the process submitting these kernels was using 100% of the CPU time, meaning
that the CPU was acting as a bottleneck and the speedup could be even higher for the

fine tuned GPU version.
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Figure 4.6: Improvements obtained during the SA investigation.
The figure shows the Speed up obtained on the Total Time, for the Original version on multi-core, the
Refactored version, the Refactored multi-core version and the GPU optimized version, when compared

to the original code. The results clearly justify the development of a new PSF estimation method to run

on GPU devices.
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Convergence Behavior on Simulated Annealing
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Figure 4.7: Convergence behavior with Simulated Annealing.
Convergence behavior shows strong decrease in the fitness value on first evaluations only, followed by
a stuck fitness on subsequent evaluations (i.e., almost zero improvements from 1.35M to 6M), which is

caused mainly by the poor management of the Zernike dimensions on SA.

About the convergence behavior of Simulated Annealing as the chosen optimization
method for these experiments, we can see improvements occurring at every evaluation until
~69K evaluations (Figure 4.7), but the first real fitness stabilization only occurred after
~1.35M evaluations, returning to decrease the fitness values only after ~6M evaluations
(meaning no significant improvement occurred between 1.35M and 6M evaluations).

The high convergence time on SA is due to the change of only one single coefficient
at each iteration, requiring n iterations just to experiment one different value for every
Zernike coefficient. Furthermore, given this is a non guided optimization method, there is
no direct correlation between one good value kept in one iteration and the next good value
found, what makes the fitness improvements too random to obtain a better convergence
curve.

The results obtained in these initial experiments show that the SA is not a satisfactory
choice for quickly finding good results for this PSF Estimation method, since even though
good results were obtained by this method, a high processing time was required to obtain
such results and no real improvement can be obtained after a certain number of iterations,

given its weak convergence behavior.
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4.2 Cooperative PSO Proposed for OpenCL Devices

The Pooling pattern describes how expensive acquisition and release of resources can be
avoided by recycling the resources no longer needed [28]. A pool of objects holds unused
instances of same class. Once an instance is required, instead of having to create a new
one, it will be obtained directly from the pool. If no instance is available and if the pool
has not reached its maximum size, a new instance is created and assigned to the pool. In
order to create a highly parallel solution for PSF estimation based on CPSO optimization
method, it was created a set of pools and classes to maximize the object reuse during the
estimation of multiple PSFs.

The Algorithm 4 gives the succinct explanation of how the processing happens. There
are two objects’ pools that benefit from the instances already prepared for the use: one
for the CPSO instances (line 11) and another for the clQueue instances (line 14).

The PsfEstimator class is responsible for managing the CPSO instances, while the
clFactory is the class responsible for managing the clQueue instances. Every time the
clFactory class creates one clQueue instance, it selects the next device available in the
system (in round — robin sequence) so that the load can be balanced among the devices.
Every object is created on demand (lazy load) and it holds all resources until the program
terminates.

The windowing function (see section 2.1) Hanning is applied over both the original
Object O and the distorted Image I,, before they are copied to the device, such that the
FFT’s (Fast Fourier Transformations) “leakage” effect is reduced and the quality of the
results is improved (Algorithm 4, line 18).

Before every execution of a CPSO instance (line 20), the object and the image are
copied to the device (line 19) on the previously allocated resources (line 16). After the
CPSO instance has been used and the PSF was estimated, the CPSO object is released
back to the pool (line 22).

Notice that the parameter nParalellism controls the number of images I, that will
be processed in parallel (line 8), limited by the number of OpenCL devices available (one
parallel estimation per OpenCL device). The control of CPSO instances and Command

Queues through managed pools allows for a transparent parallel estimation of multiple
PSFs.
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Algorithm 4 PSF Estimation with CPSO

e e
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23:
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: Input:

. Initialize PsfEstimator with:

on cpso
Add the new clQueue to clFacto
end if

end if

Save all results to disk

end for

O(z), I(x)[], nSwarms, nParticles, nCycles,
nZernikes, w, cl, c2, reset Factor,nParallelism

nlmages = arraySize(I) {count how many images the array I contains}

nSwarms,nParticles,nZernikes,w, cl, c2,reset Factor
: for n =1 to nImages {run nParallelism threads} do
if no CPSO instance available fom PsfEstimator’s pool then
Create a new CPSO instance and assign to ¢pso
Add the new CPSO instance to PsfEstimator’s pool as in use
if no clQueue instance available from clFactory’s pool then
Create a new clQueue instance for next device (in round — robin) and set it

ry’s pool as in use

Prepare the device for epso {allocate resource, send static data, ..}
Apply Hanning windowing function over O and I,
Prepare the device for O and I,, under cpso’s area

Run ¢pso instance up to nCycles cycles

Release the CPSO instance back to PsfEstimator’s pool as not used

: Free up all local and OpenCL device resources

The Figure 4.8 gives a visual explanation of the Algorithm 4.

General View of PSF
Estimation with CPSO

PsfEstimator

Contains i
. CPSO Pool
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clQueue
clQueue Pool c%us
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Figure 4.8: Solution for PSF Estimation with CPSO.

PsfEstimator is the main class, that manages a pool of CPSO instances, which in turn contains a clQueue

object that is obtained from the clFactory class’ pool.
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The following section describes how the kernels are submitted to the OpenCL de-
vices. The section 4.2.2 explains how the CPSO data was adapted to fit the OpenCL
device memory. The detailed explanations of the classes PsfEstimator and clFactory are
described on section 4.2.3. The CPSO class is described on section 4.2.4 and the PSF

estimation flow is presented on section 4.2.5.

4.2.1 OpenCL Kernels

The PSF Estimation is processed on OpenCL device by using two different approaches:

1. At the places where the parallelism is possible (Figure 4.14, box All Particles at
Once), every work group is configured to process an entire image or an entire phase
(depending on what is being processed), and each work item will be responsible for
either one row or one column. This means that one single kernel call will process
all images or phases at once. The following configuration was used:

e Number of Dimensions! = 1

e NDRange Size? = number of sub-particles x (image width or phase width)
e Work Group size = image width or phase width

e A single kernel call processes all images or all phases.

2. The places where no extra parallelism is possible (Figure 4.14, box One Particle at
a Time), it was used the classical parallelism on OpenCL device, where every work
item is responsible for one single point in the image or phase area only (and not
an entire row or column). To help reduce the overhead of calling multiple kernels
and assist the OpenCL device in managing the kernel code, all calls for the same
kernel are submitted sequentially and the synchronization point occurs only after
the kernel was called for all images or phases (eg.: Algorithm 7, line 7).

e Number of Dimensions = 1

NDRange Size = image area or phase area

Work Group size = image width or phase width

A single kernel call processes 1 image or 1 phase.

For the CPSO algorithm (Figure 4.13), every work group is configured to process an
entire swarm and the work item will process all aspects of a sub-particle. Given the work
item is responsible for iterating through all dimensions of its sub-particle, large dimensions
are allowed to be processed with only minor additional effort for the OpenCL device (thus,
the solution supports a large number of Zernike terms). After a single CPSO kernel call,
a complete iteration is processed at once for all sub-particles in all swarms.

e Number of Dimensions = 1

IN-dimensional space is defined on section 2.5.
2NDRange is defined on section 2.5 and Sub-particle is defined on section 4.2.2.



39

e NDRange Size = number of particles x number of swarms

e Work Group size = number of particles

e A single kernel call processes all sub-particles in all swarms.

At the cases when it is necessary to work with phases bigger than the image sizes (eg.,
images of 128x128 vs. phases of 256x256), the PSF becomes larger than the own image.
On those cases, a smaller PSF must be extracted from the calculated one (Algorithm 7,
line 27), so that the resulting PSF has the same size as the image. The extracted values
can be obtained by either reading from the corners or by extracting the central portion of
the larger PSF (depending on the desired range of frequency). If the PSF has the same
size as the image size, the PSF is just taken as-is for the subsequent calculations.

All Fourier calculations were executed by ViennaCL 1.2.1 library [6], which does not
support the calculations of multiple FFT’s in a single kernel call. Therefore, all parts of
the code directly related to the FFT calculation is computing every PSF at a separate
kernel call (i.e., one sub-particle at a time). Three different parts of the code require the
FFT calculation: the Focus (Algorithm 7, line 9), the scaled Focus (line 21) and the FFT
of the scaled extracted PSF (line 36).

4.2.2 Memory Mapping for CPSO on OpenCL Device

The CPSO developed on this work was designed to run on OpenCL devices and follows
the same basic steps as any generic CPSO algorithm made to run on Host (CPU). How-
ever, to take advantage of the local (shared) memory assigned to a workgroup, reduce
the communication with the global memory and allow the entire CPSO iteration to be
calculated at one single kernel call, several additional adjusts were necessary, resulting in
a good flexibility on the number of swarms, particles and dimensions supported.

Since a particle represents an entire possible solution for the problem, every single
particle must be evaluated to obtain the best solution found by the CPSO. In this work,
a particle is always linked to an exclusive PSF because each particle contains its own
Zernike coefficients that are used to calculated a PSF. Also, given that the complete
(actual) particle containing the entire solution is split among all swarms, every subset
under every swarm of this major particle was called here sub-particle.

One important consideration when dealing with OpenCL devices is the fact that every
work item is responsible for one specific region of the memory, thus breaking this rule
would result in wrong behavior of the code. Therefore, the Private Area shown in the
Figure 4.9 is the memory location where only its respective sub-particle will be updating,
and the Shared Area is the memory region where all sub-particle in all swarms collaborate
together to have the values populated (i.e., they are not related to the device’s Private
or Local Memory). The figure shows a CPSO containing k swarms, p particles and n

dimensions.
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CPSO - GPU Memory Mapping
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Figure 4.9: CPSO - OpenCL Memory Mapping.

This figure shows how the CPSO algorithm was mapped to the OpenCL device memory. There are three
main distinct categories for the data: the swarm’s shared area, the sub-particle’s private area and the
sub-particle’s shared area. The final result of a CPSO execution is the value stored under the swarm’s

shared area, gBest.

The private area contains data that is used exclusively by the sub-particle, meaning
that no other sub-particle in any other swarm will be touching this data.

There are two types of shared area on Figure 4.9:

1. One for every joined (non split) particle p, containing data used by all sub-particles

at same swarms’ position p;

2. One for the swarms, containing data used by all sub-particles in all swarms. The
swarms’ shared area stores two values: the fitness values found by every swarm
(9BestValue) and the final result of the CPSO optimization (gBest).

Notice that the variable g Best contains the final Zernike coefficients that were ultimately
optimized, whereas the gBestValue contains fitness values calculated by every swarm
through the error function (Equation 2.5). Similarly, the pBestValue (Figure 4.10) con-
tains the actual fitness value for the Zernike coefficients of a sub-particle’s pBest.

Given that the complete particle is divided among the swarms, any fitness evaluation
requires the joining of all others sub-particles at same position p (as defined on Algorithm
2, line 1). These groupings cause some undesired overheads on OpenCL device, thus to
minimize the impact of joining these dimensions, the PSF coefficients stored inside the
sub-particle’s private area are composed by the following data (Figure 4.10), requiring

just a single read to obtain all the information necessary to calculate the fitness:
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e The subset of the Zernike coefficients zx (K = 1..k), related to its swarm’s position
K;

e A copy of the swarm’s shared area gBest from all others swarms.

The sub-particle’s pBest is stored within this private area and its contents is copied “as-is”
from its own PSF coefficients at every iteration.

The sub-particle’s shared area stores partial values and every sub-particle is responsible
for updating its section K of the area. The following data is stored inside this shared
area:

e The sub-vector for velocity v;

e The parameters w, ¢; and co;

e The random seed used by the RNG (random number generator) on OpenCL device;

e The pBestValue (actual fitness value of pBest).

As the final result of the CPSO execution, the gBest is stored inside the swarm’s

shared area and it can be easily obtained by a single read.
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CPSO - GPU Memory Mapping
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Figure 4.10: CPSO - OpenCL Memory Mapping for Sub-particle.

The sub-particle’s memory area is internally divided into Private and Shared areas. In the private area,

the PSF coefficients are built by joining the particle’s subset xx (under current swarms’ responsibility)
together with all others swarms’ gBest’s. Then, the pBest is a direct copy of this joined vector. The
shared area stores the velocity vy, that is part of a larger vector involving all swarms, where the sub
particle updates only its subsection K of this larger vector. Notice that: n = number of dimensions, k =

number of swarms, K = 1..k (swarm’s position).

4.2.3 PsfEstimator and clFactory classes

The PsfEstimator class is responsible for acquiring the CPSO instances. Every instance
of the CPSO class (section 4.2.4) is responsible for managing all the steps required to
complete one single PSF estimation, including calling all the kernels, managing the kernel
parameters, and allocating the memory on Host and on OpenCL Devices. As soon as the
CPSO instance is not required anymore, it is released back to the pool so that the same
resources can be reused by another PSF estimation, reducing the overhead of releasing
resources and then allocating them again for the next estimation.

The clFactory is the class responsible for interfacing with the OpenCL enabled de-

vices, including all startup and shutdown procedures, the .cl code compilation, the kernel
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instantiations and the management of the command queues. Once a request to acquire
a new command queue is made, the clFatory verifies if there is any unused queue on the
pool and if there is not, it creates a new one. The clFactory uses all OpenCL enabled
devices to create command queues, so every new command queue instance is created for
the next device available in the system. All information required to deal with the newly
created command queue is wrapped inside a clQueue instance, which can also be reused

after it is released.

4.2.4 CPSO class

The basic behavior of the CPSO class can be seen on the Algorithm 5. Before the PSF
estimation can occur, the CPSO instance must be initialized to process the new data, like
setting the Image, the Object and the particle’s random values (Figure 4.11, box (1)).
Every time the CPSO instance is called to estimate a new PSF (Figure 4.11,box Run
procedure), the code does a Startup for the particles based on the previously initialized
values. The iteration that calculates the CPSO optimization (Figure 4.11, box (3)) and
its error function (Figure 4.11, box (6)) is composed of:
e The execution of 1 iteration of the CPSO optimization algorithm (described previ-
ously on section 2.3) on OpenCL device (Algorithm 5, line 8);
e The renew of the Random seeds from host to OpenCL device, because the CPSO
algorithm consumes a large amount of random numbers (Algorithm 5, line 9);
e The execution of a PSF Estimation algorithm on OpenCL device, except on first
iteration (Algorithm 5, line 6).
Once the CPSO class finishes all iterations, it collects the Best values found during the
optimization and then makes it available for the external use. The best values are collected
by the CPSO algorithm while evaluating the pBest and gBest (Algorithm 5, line 8).

Algorithm 5 Run CPSO
Input: {nCycles}
Run PSF Estimator for 1 Swarm on OpenCL device (2.1) !
Copy the Results for All others Swarms on OpenCL device (2.2)
for i = 1 to nCycles {on Host (5)} do
if ¢! =1 then
Run PSF Estimation on OpenCL device (6)
end if
Run 1 Iteration of CPSO on OpenCL device (3) {best values are collected here}
Renew Random Seeds on OpenCL device (4)
end for
: Collect the Best Values from OpenCL device (7)

=
—= O

!The numbers at the end of the lines on Algorithm 5 (2.1, 2.2, 3, ..) can be found on Figures 4.11 and
4.12, for better reference.
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CPSO Instance
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Figure 4.11: CPSO workflow.

Two main procedures are executed by the CPSO instance: the Startup and the Run.

Startup the Particles

Main (2.1) Run PSF (2.2) Copy the @)
Code | Estimationforl » Results for All others —# CPSO
(Host) Swarm on GPU Swarms on GPU

Figure 4.12: Startup CPSO Particles.
The box (2.1) is the same procedure as presented on Figure 4.11 box(6)

12: return best values found

The Startup of the particles consists of one execution of the PSF Estimation for 1
swarm only (regardless of how many swarms the CPSO configuration actually contains
- Figure 4.12, box (2.1)), followed by the copy of its results to all remaining swarms
(box (2.2)). Since this is just a startup process for a CPSO algorithm, any value can
be used for its initialization as long as they are valid values, therefore the copy of the
results from a single swarm to all others swarms reduces the time required for the CPSO
initialization. At the first iteration of the algorithm (Figure 4.11, boxes [3-6]), all values
will be recalculated and new random positions will be assigned, then the copy of the
results at Figure 4.12 (box (2.2)) is not a problem.

During an iteration of the CPSO algorithm (Algorithm 6), all particles update their
pBests and then the first particle of each swarm updates the swarm’s gBest (lines 2 and
3, respectively). Then, as a strategy to keep part of the swarm near to the best results
found so far, the first particle of each swarm chooses randomly if it will have its own
position replaced or not:

e If it decides by the replacement, it replaces the particle’s position with the swarm’s

gBest (line 15);

e If not, it will do the same as all the other particles (i.e., normal particle update).
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CPSO Algorithm lteration
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Figure 4.13: CPSO Algorithm Iteration.

This flowchart describes the box(3) presented on Figure 4.11. At this part of the implementation, the

Y

gBest for each swarm is updated, and the pBest, the velocity and the position for every particle is

recalculated.

The intention with this random replacement is to reduce the impact caused by the particle
reset strategy. To avoid any tendency on the particle’s movements and to reduce conflict-
ing updates between particle’s replacement versus particle’s reset, only one particle per
swarm has its position replaced by the gBest, and the replaced position (regardless how

good or bad it is) is not verified before replaced.
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Algorithm 6 CPSO Algorithm Iteration

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Input: {resetFactor,range, nlt,itMax}
Update pBest for all particles (3.1) ! {based on Equation 2.12}
First particle of every swarm updates the swarm’s gBest (3.2) {based on Equation
2.19}
replace = random true/ false
if nlt ==1itMax then
nlt =0
reset = true
resetAll = random true/ false
else
reset = false
resetAll = false
end if
Told = T
if (this is first particle on swarm) and (replace) (3.3) then
Replace « with gBest (3.4)
else
if reset (3.5) then
Create random values for w, ¢; and ¢, (3.6)
if resetAll (3.8) then
Create random values for v and z (3.9)
end if
end if
if not resetAll then
Update v and x constrained to the search space [—range, +range] (3.7)
end if
end if
Recalculate the Linear Decreasing Weight (LDW) for w (Equation 2.14) (3.10)
if (Euclidean distance between x4 and z) < (resetFactor * range) then
nlt =nlt+1
else
nlt =0
end if
return nlt

Every particle that did not have its position replaced decides if it will be reset or not,

based on the difference between the last particle’s position x4y and the current calculated

position x (Euclidean distance on line 28), being reset only if after a certain numbers of

iterations itMax this difference is still within a certain small percentage of the search

space resetFactor (line 5). Both itMax and reset Factor must be defined heuristically.

If a reset is required, a random decision is made to select between a simple or a full

reset:

e If it is a Simple reset, it will create random values for its w, ¢; and ¢ (line 18);

!The numbers at the end of the lines on Algorithm 6 (3.1, 3.2,..) can be found on Figure 4.13, for

better reference.
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e If it is a Full reset, it will create random values for its w, ¢, co, v (velocity) and x
(position) (lines 18 and 20).
The intention with the reset strategy on this work is to keep the CPSO as aggressive as
possible (since it must obtain good results with a minimum number of iterations), but
without compromising the quality of the estimations.

The particles that were not fully reset, now calculate new values for their v and z
variables (line 24) according to the CPSO algorithm calculation for velocity and posi-
tion (equations 2.10 and 2.11, respectively). Constraints for both v and x are added
([-range,+range]) to avoid them getting out of the search space. As a final step of this
algorithm, a Linear Decreasing Weight (LDW) is applied over its w (line 27) to gradually

reduce the convergence of the optimization.

4.2.5 Algorithm for Psf Estimation

The PSF Estimation algorithm is responsible for evaluating if the values found by the
CPSO iteration is in fact a good result or not, acting as the Fitness function for this
CPSO solution (Figure 4.14). This algorithm executes many sequential calculations that
cannot be executed in parallel, thus explaining the difficulty of improving the fitness
evaluation speed of this PSF estimation method. Besides, most of these calculations
depends entirely on FFT’s to obtain the values required by the next internal step of the
algorithm, what causes an additional performance problem, given that no Fourier library
available (at the time this work was developed) could calculate more than one image per
kernel call. This means that the speed of this PSF estimation method could be further
increased by using a library that can process multiple independent FFT’s in parallel at a
single kernel call on OpenCL device.

To reduce the impact caused by the FFT’s serialization, at some parts of this solution
the images calculated by all particles were grouped together, so that all of them could
be processed at one single call of a device kernel, being split again when the FFT cal-
culation was required. It was considered the balancing between the effort for the device
to split/regroup the data vs. the benefit of calculating all the particle’s data in parallel
at once, making it parallel only at those places where it clearly would bring much more
speed improvements than additional overhead.

The Algorithm 7 shows the places where these images are processed in parallel and
the places where they are executed serially. See that most of the algorithm is sequential,
computing one PSF at a time (Algorithm 7, lines [6 -39]), having parallel PSFs being
evaluated only at lines 3, 41, 43 and 45.

Notice that all commands shown on Algorithm 7 (phase_pupil, copy, FFT, calc_psf,
reduce, scale, extract, convolution, cost and sync) are actually being executed on OpenCL

device (thus, they are actual kernel calls), but the control of every kernel is managed by
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PSF Estimation
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Figure 4.14: PSF Estimation workflow.
The PSF Estimation process has two main distinctions: the codes where only one image or phase is

calculated at every kernel call, and the codes where they are calculated all together in a single kernel.

the Host (CPU). Also, the submission of a kernel is non blocking and, for that reason,
it must be synchronized at some point. Therefore, the command sync represents the
synchronization of the Command Queue and it is called after every group of kernels has
been submitted to OpenCL. At the places where the data is grouped, the command sync
is called immediately after the kernel call (eg., line 4). However, on those places where
the data is split, the command sync is called only once after the entire group of kernels
was enqueued (eg., line 7).

The input parameter g_coefs[] is a contiguous array containing the Zernike coefficients
for all particles in all swarms, i.e., g_coefs[n] will access the Zernike coefficients for the
particle n, and nPSF's (line 2) will contain the total number of particles within all swarms
(or sub-particles).

The term Reduce used by this algorithm refers to the technique of summing up all the
values inside a vector by using parallel cores to access multiple contents at exact same
time, what increases the speed of a sum. The reduction of the cost image (Algorithm 7,
line 45) is the actual fitness result for each estimated PSF. Also, the term pupil (present
on Figure 4.14 and Algorithm 7) is simply the result of the FFT applied over the phase
(see phase calculation on Equation 2.4).

It is important to emphasize that the PSF Estimation algorithm deals with two types
of images: the original image (external parameter) and the estimated image (calculated

by the PSF Estimation algorithm). The original image is copied from external source
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to the OpenCL device’s global memory only once and no duplication is made from this

data. The estimated image is computed by Algorithm 7 and every sub-particle has its

own version of such image. Therefore, every time the term particle’s image is used in this

work, it is referring to the images estimated by every sub-particle (random image) and

not to the original image (external image).

Algorithm 7 Sequence of Kernel calls for PSF Estimation

e e e e e o e T

N DN DN NN

28:
29:
30:
31:
32:
33:
34:
35:

[\)
= O

Input: {g-obj_f ft,gimg_f ft,g_coefs|[], center_corner, g_dif fraction-mask}
nPSFs = size(g-coefs]])
g-pupil = phase_pupil(g_coefs) {Calculate all phase’s and pupil’s} (6.1) !
sync
for n =1 to nPSFs do:
Copy from g_pupil|n| to g_pupil, {Split to separate memory space}
sync
for n =1 to nPSF's do:
g-focus, = FFT(g_pupil,) {Calculate the focus} (6.2)
sync

: forn=1tonPSFs do:

g-psfn = cale_psf(g-focus,) {Calculate the PSF} (6.3)

: sync
: for n=1to nPSFs do:

summation,, = reduce(g_psf,) {Reduction of PSF} (6.4)

: sync
: for n=1to nPSF's do:

g-pupil, = g_pupil,, / summation,, {Scale the pupil} (6.5)

: sync
: for n=1to nPSFs do:

g-focus, = FFT(g_pupil,) {Calculate the scaled focus} (6.6)

: sync
: for n=1to nPSF's do:

g-psfn = calcpsf(g_focus,) {Calculate the scaled PSF} (6.7)

: 8ync
: forn=1tonPSFs do:

g-psfen, = extract(g_psf,, center_corner) {Extract the portion of interest from the
PSF} (6.8)
sync
for n =1 to nPSFs do:
summation,, = reduce(g_psfe,) {Reduce the Extracted PSF} (6.9)
sync
for n =1 to nPSFs do:
g-psfe, = gpsfe,/summation, {Scale the Extracted PSF} (6.10)
sync
for n=1to nPSF's do:

!The numbers at the end of the lines on Algorithm 7 (6.1, 6.2, ..) can be found on Figure 4.14, for

better reference.
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37:
38:
39:

40:
41:

42:
43:

44:
45:
46:
47:
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gpsfe_fft, = FFT(gpsfe,) {Calculate the FFT of the Scaled Extracted PSF'}
(6.11)
sync
for n =1 to nPSFs do:
Copy g-psfe_f ft, to gpsf_f ftin] {Regroup the Scaled Extracted PSF’s to sequen-
tial memory}
sync
g_conobj = convolution(g_obj_f ft,gpsf_fft) {Convolve the Object with all final
PSFs} (6.12)
sync
g-cost = cost(g_conobj, g-img_f ft,g-dif fraction-mask) {Calculate all Cost Images
(Convolved Object - Image) under Diffraction Mask} (6.13)
sync
final_costs = reduce(g_cost) {Reduce all Cost Images} (6.14)
sync
return final_costs { Vector of Final Cost Values}
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4.3 Considerations

The Simulated Annealing, as an optimization method that is built for search intensifi-
cation, has proven to be a weak method for finding good PSF parameters quickly. The
CPSO, on the other hand, is built to provide diversification, what is more appropriate for
estimation of multiple non-correlated continuous variables as the ones required to estimate
PSFs.

An extensive description of the proposed PSF estimation method with CPSO optimiza-
tion for OpenCL enabled devices was presented on this chapter, as long as implementation
details for the execution on OpenCL devices.

The next chapter presents the calibration method proposed to adjust the CPSO for
low-cost good results, besides presenting how the experiments were conducted. The results

obtained for every experiment are also shown and discussed.
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CHAPTER 5

EXPERIMENTAL RESULTS

In order to validate the results obtained by this method, a few distinct experiments were

executed:

1.

To calibrate the CPSO parameters (section 5.1):

A measurable CPSO calibration method is proposed to quickly determine a low-
cost configuration set that provides good and stable results. Different artificially
distorted images (Algorithm 10) are generated for every PSF estimation.

To validate the quality of the results obtained by the CPSO developed in this work
(section 5.2):

New sets of artificial images are generated to validate the quality of the estimation.
Different degrees of noise are added to the images (no noise, moderate noise and high
noise) to verify noise robustness. A validation procedure is described in details, then
the best and the worst results are presented and analyzed. Since the solar images are
of low-frequency, the method is also validated by estimating PSFs of high-frequency
artificial images (generated from the Lena image).

To verify how robust is the solution regarding the number of Zernikes and images
sizes (section 5.3):

Different number of Zernikes were used while estimating PSFs, then the processing
times were measured and compared to determine the impact on the running time as
the number of dimensions increases. Also, a calibrated CPSO was executed against

a similar image of different size, to verify if the calibrated parameters can be reused.

The section 5.4 discusses processing times, comparing this current work with the previous

work developed in [53].

All experiments were executed on a machine with the following configuration:

Intel Core i7-975 CPU (4 cores, 8 threads, 3.33 GHz, cache L2 1MB and L3 8MB)
6GiB RAM

GPU card model NVIDIA Tesla C2050 (14 Multiprocessors, Warp size 32, 448 cores,
max. Block size 1024, 1.15 GHz, 3GB GDDR5, CUDA 3.2 OpenCL 1.0)
Operating system Linux version 3.2.0-3-amd64 (Debian 3.2.23-1) (gcc version 4.6.3
(Debian 4.6.3-8))
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5.1 CPSO Calibration

Because the CPSO contains parameters that are very relevant for the quality of the
solution and for the speed of the convergence, the CPSO parameters must be calibrated for
every different problem before running the experiments. Various factors like the processing
time, the convergence behavior and the memory usage must be considered.

Given the possible combination of parameters are infinite, to determine a unique set
of parameters for all the experiments, the parameters that have no direct impact on the
processing time for the CPSO optimization method proposed on this work were fixed

heuristically, based on previous experiments:

e w=125
e =1
e ¢ =05

e resetFactor = 0.25

e nZernikes = 50

The range of the Zernike coefficients was set to [-2, 2|, representing the size of search
space. For the other parameters (nSwarms, nParticles, nCycles), 5 possible combina-
tions were chosen considering both the hardware limitations and previous experiences,
in such a way that these configurations would involve some good representation of the
possible combinations:

e 1 swarm, 256 particles (standard PSO)

3 swarms, 32 particles

3 swarms, 128 particles

5 swarms, 64 particles

e 10 swarms, 32 particles

When dealing with any PSO algorithm, one important configuration item that must
be carefully considered is the number of cycles (or iterations). In general, the larger the
number of iterations, the better the result obtained. However, on this specific PSF esti-
mation problem, one iteration means one fitness evaluation for every sub-particle within
each swarm inside the CPSO. Since the fitness evaluation implies calculating the error
function defined on Equation 2.5, which in turn requires calling the PSF Estimation code
(Algorithm 7), every iteration of the CPSO algorithm requires [nSwarms x nParticles]
PSF Estimations. This means that large CPSO configurations requires large processing
time per iteration. For that reason, the chosen nSwarms and nParticles configurations
specified previously are considering both the hardware limitations on GPU devices (in-
cluding memory limitation) and the time required to complete one iteration.

The are a few ways of defining the number of swarms and how they will be divided,
for example they can be defined according to any correlation that the particle dimensions

could have, or following some previous knowledge over the problem, or arbitrarily chosen
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for testing purposes. Since the Zernikes dimensions are uncorrelated, for the purpose of
this work the dimensions are divided in equal sizes and the number of swarms are chosen
arbitrarily, respecting the hardware limitations.

To determine the number of cycles to be used, a good convergence point must be
chosen considering both obtaining good results and running as few fitness evaluations as
possible.

Given a reasonable number of fitness evaluations, and considering that it is guaranteed
the fitness values will always be decreasing for a minimization problem, the criteria defined
on Equation 5.1 was used in this work to find a minimum number of evaluations K.
(earliest evaluation) required to reach a low cost fitness stabilization point, where C.

(earliest cycle) is the respective number of cycles (or iterations).

E.(f) = C.(f) x nSwarms x nParticles (5.1)

For every PSF estimation, a fitness cut point (F,.) was calculated by the Equation 5.2,
where n is the number of cycles (or iterations) the CPSO was executed, f(i) is the best
fitness value obtained at CPSO iteration i, and f is the mean of all values in f. The
number of cycles required to reach the fitness cut point was calculated by the Equation

5.3, by searching for the iteration ¢ whose fitness value f(i) is on the upper edge of F..

Ff) = (F+ /75 S (f6) - )1 <i<n (5.2)

C(f) =i | fli) >= F(f) (5.3)
fli+1) <= F(f)

On CPSO optimizations, a large number of execution cycles tends to produce very
similar (but decreasing) fitness values for most of the results after the convergence point
was reached. Since the intention is to discover an earliest low-cost convergence point,
these similar values must be excluded before the calibration process begins. Therefore,
to determine a better convergence point for the chosen configurations, they all were run
until the mark of 2 million fitness evaluations for one artificial Solar image, then the worst
resulting convergence point from all configurations was chosen as the cut point cutEvals
to find the earliest general convergence point nCycles (Algorithm 8, where O(x) represents

the original object and c¢fg; represents every chosen configuration).
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Algorithm 8 Calculate the Cut point to run the Calibration

1: Input: {O(z), cfg(nSwarms,nParticles)[]}

2: for i =1 to size(cfg) do

3. Generate one artificial image I,(z) from O(z) !

4:  Run CPSO(O(x), I,(z), cfgi—nSwarms,cfgi—nParticles) up to 2M evalua-
tions

5:  Calculate E, based on equations 5.1, 5.2 and 5.3

6: if E, is the worst result {higher value} then

7 cutBvals = E,

8: end if

9: end for

10: return cutEvals

Once the cut Evals was found, a set of 30 artificial Solar images of size 128x128 were
processed up to cutFwvals fitness evaluations for the 5 configurations, then their times
and earliest convergence cycles C, were measured (Algorithm 9). The mean of these
measurements (line 10) was used as criteria to manually define a calibrated set of CPSO

parameters that satisfies the needs.

Algorithm 9 Calibrate the CPSO parameters nSwarms, nParticles and nCycles

1: Input: {O(z), cfg(nSwarms,nParticles)[], cut Evals,nImages}

2: K = size(cfg)

3: fori=1to K do

4:  Generate nImages artificial images I,(x) from O(x)

5. for j =1 to nImages do

6 Run CPSO(O(z), I,(x), cfgi—=nSwarms,cfg,—nParticles) up to cutEvals

evaluations
7: Calculate C, ; based on equations 5.2 and 5.3
8: Store C.

9: end for
10:  meanC; = mean(C.) {mean of the nImages previous estimations}
11:  stddevC; = stddev(C,) {standard deviation of the nlmages previous estimations}
12:  vSwarms; = cfg;—nSwarms
13:  vParticles; = cfgi—nParticles
14: end for
15: results = [meanC, stddevC, vSwarms, vParticles]
16: Present K results and wait for user select visually the best result Kjyqg
17: nSwarms = results—vSwarms|Kpes]
18: nParticles = results—vParticles[Kpes)
19: nCycles = results—meanC|[Kpes| + results— stddevC|Kpes]
20: return nSwarms, nParticles, nCycles

As the final calibration result, the swarm and particle configuration from the matrix
results (Algorithm 9, line 15) that presented the more suitable behavior (Kpes:) is visually
chosen by the user as the calibrated CPSO parameters:

IThe Algorithm 10 describes how the artificial image I, () is generated.
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e nSwarms (line 17);

e nParticles (line 18);

e nCycles (line 19): The earliest convergence cycle nCycles was calculated as the
mean plus standard deviation of the convergence points from the chosen configura-
tion Kpegt.

All artificial images were calculated based on the Algorithm 10. Every image is artifi-

cially generated (I,) by creating one random PSF (PSF,, line 4) and convolving it with
the original object O, (line 5).

Algorithm 10 Generate Random PSF (PSF,) and Artificial Image (1)
1: Input: {O,(z, s),nZernikes, range}
2: Generate 7 as: nZernikes random numbers from [—range, +range] and normal dis-
tribution (mean = 0, standard deviation = 0.5)
Generate the phase ¢ based on equation 2.4 and ~
Calculate the PSF, based on equation 2.3 and ¢

I, =0, o PSF, {generate one artificial image (convolution)}
return PSF,, I,

It is important to mention that every CPSO parameter is meaningful and can make
significant difference for the overall results of the experiments, therefore the convergence
behavior still have many points of possible improvements which are subject to further

experiments on future works.

5.1.1 Calibration Results

Convergence Behavior for Sun Image
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Figure 5.1: Convergence behavior for Sun image.

To determine a low cost convergence point, one Solar image was processed for the 5 chosen

configurations of swarms(s) and particles(p) ([s = 1,p = 256];[s = 3,p = 32|;[s = 3,p =
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128];[s = 5,p = 64];[s = 10,p = 32]) up to 2 millions fitness evaluations each (Figure
5.1), then the slowest initial convergence point cutEvals found was taken as the upper
limit to initiate the calibration.

We can see on Figure 5.1 the standard PSO ([s = 1, p = 256]) behaving irregularly on
its convergence, whereas the CPSO with the larger number of partitions ([s = 10, p = 32])
presented the most stable behavior while running a large number of evaluations, what
demonstrates the power of the cooperation between multiple swarms while controlling the
convergence of the optimization.

The configurations with the same number of partitions ([s = 3,p = 32] and [s = 3,p =
128]) presented very similar behaviors, with the smaller number of particles (p = 32)
obtaining slightly better stabilization than with more particles (p = 128). This shows that
for a large number of evaluations, more partitions helped to stabilize the convergence, but

more particles did not improve the convergence.
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Figure 5.2: Slowest Convergence for Sun image.
The slowest convergence for the solar image was obtained at [s = 3,p = 32] (by using the
algorithm 8), requiring cut Evals = 281K evaluations to begin converge.

The Figure 5.2 shows more clearly how the number of particles affected the configu-
rations ([s = 3,p = 32]) and ([s = 3,p = 128]). While the smaller number of particles
obtained a more stable behavior, the larger number of particles resulted in an early sta-
bilization of lower cost, but both with very similar fitness values.

Even though the configuration ([s = 5, p = 64]) obtained the third place in the rank-
ing of early stabilization, its resulting fitness value obtained the second place and the
configuration ([s = 10,p = 32]) obtained the first place, what initially suggest that
([s = 10,p = 32]) would the best option for a high cost optimization.

The early stabilization of the configuration ([s = 3, p = 32]) was selected to set a value
for the parameter cutEvals (cutEvals = 281K).
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Figure 5.3: Calibration Result for Sun Image.

To calibrate the swarms(s), the particles(p) and the number of evaluation cycles(c) for
a low-cost optimization, the PSF estimation was executed for 30 artificial Solar images
(generated from the same original object) up to 281K fitness evaluations (cutFvals is
described on Figure 5.2), then their averages and standard deviations were collected for
both the earliest stabilization and the fitness values (as described by the algorithm 9).

The Figure 5.3 shows that for a low cost optimization, the configurations ([s = 1,p =
256]) and ([s = 5,p = 64]) presented bad standard deviations on their earliest stabiliza-
tions while evaluating the fitness 281K times. Their averages plus standard deviations
obtained the worst ranking on running time, but on the other hand they obtained the
third and forth places in the fitness value ranking.

The configuration ([s = 10,p = 32]) presented a very quick stabilization, but when
looking at its poor fitness value result, we can see that it happened because the average
fitness values did not converge easily after a short number of evaluations.

The configurations ([s = 3,p = 32]) and ([s = 3,p = 128]) presented very similar
results again on the fitness values, but ([s = 3,p = 32]) obtained the same fitness results
more quickly and with better standard deviations. We can see here an opposite behavior
as for the high cost optimization, because a smaller number of particles stabilized more
quickly than with a large number of particles. Also, a larger number of partitions ([s =

5,p = 64] and [s = 10, p = 32|) presented unstable behaviors for a low cost optimization
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and therefore cannot be trusted for the experiments on following sections.

After evaluating the calibration results, the winner configuration Kpes is the ([s =
3,p = 32]), where the average number of fitness evaluations required to reach the low
cost fitness stabilization area was 32K and its standard deviation was 6K (nCycles =
(32K avg. + 6K stddev.)/(3 swarms - 32 particles) = 396 cycles). Therefore the final

calibration result was:

e s—=3
o p=232
e ¢ =396

Notice the apparent correlation between the warp size (32) and the number of particles
found by the calibration (also 32), what might suggest that the algorithms that use one
thread per particle could benefit from a configuration with the number of particles equals
to the warp size.

Given the time required to evaluate each image was very similar among all executions
(208024 seconds for 2M evaluations and 87+0.7 seconds for 281K evaluations), the time

was omitted from the figures for simplification reasons.
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5.2 CPSO Validation

Once the parameters were calibrated, the CPSO was validated by processing another set
of 100 artificial Solar images of size 128x128, (generated by the Algorithm 10). Notice that
these artificial images are different from the images used during the calibration process,
what allows for a more accurate validation of how stable this method actually is. The
parameters nSwarms, nParticles and nCycles found during the calibration phase were
used here, as well as the fixed parameters w, ¢y, ¢o, resetFactor and nZernikes.

As we can see in the Algorithm 11, every output result is composed of the random
PSF (PSF,), the estimated PSF (PSF.), the artificial image (/,), the estimated image

(I.), and the deconvolved image (I, line 16, where S represents a deconvolution).

Algorithm 11 Validate the CPSO

1: Input: {O,(z), nImages, nSwarms,nParticles,nCycles,nKeep, N}
2: for + = 1 to nImages do
3:  Generate PSF, and I, based on Algorithm 10
if N, > 0 then
I, =1,+ N, {add Poisson noise}
end if
Run CPSO(O,(z), I.,(x), nSwarms, nParticles, nCycles)
if Fitness result is among the nKeep best results then
Keep PSF,, PSF,, 1,1,
10: end if
11:  if Fitness result is among the nKeep worst results then
12: Keep PSF,, PSF,, 1,, I.
13:  end if
14: end for
15: for every kept result {best and worst results} do
16: Iy =1, PSF, {deconvolve artificial image with estimated PSF'}
17 Keep Iy
18: end for
19: return best and worst vectors PSF,, PSF,, 1,, 1., 1,

This same procedure was also executed for artificial images corrupted by Poisson noise
(N, line 5):
e 100 new artificial images corrupted by moderate Poisson noise;

e Another set of 100 artificial images severely corrupted by Poisson noise.

5.2.1 Images Obtained by the Calibrated CPSO

The images presented on Table 5.1 through 5.12 show the visual results obtained by the
CPSO, calibrated with the following configuration:
o w=125

e =1
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Cy = 0.5
resetFactor = 0.25
nZernikes = 50

e s—3
o p=32
e ¢ =396

The algorithm 11 was used to return the images presented in each table below (with
nKeep = 4). The resulting images were obtained after running the calibrated CPSO for
100 artificial images of size 128x128 (generated from the same original object), then col-
lecting the best and the worst results (based on fitness value calculated by the Algorithm
7) and presenting on separated tables. Separate executions over different artificial images
were submitted for:

e Artificial Images (tables 5.1, 5.2, 5.3 and 5.4).

e Artificial Images corrupted by moderated noise (tables 5.5, 5.6, 5.7 and 5.8).

e Artificial Images severely corrupted by noises (tables 5.9, 5.10, 5.11 and 5.12).
The image deconvolution (/;) was calculated by the BiaQIm image processing suite, an
external program that is described on [48].

A separated calibration was executed for the Lena image (size 128x128) then 100 arti-
ficial images were processed. The best and the worst results were collected and presented
in Tables 5.13 and 5.14.

The Tables 5.1 and 5.3 show the best and the worst results (respectively) for the
Solar image, where we can see a clear distinction between the images (O, — I,) [a clear
solar image] and (O, — I,;) [a grayed image], what demonstrates that the PSF estimation
obtained a very approximate result (PSF,) from the real one (PSF,), even for the worst
results. The RMS contrast! showed how different the best artificial image (rms = 0.158)
was from the original object (rms & 0.206), where the deconvolved image nearly restored
the original contrast (rms & 0.200). Even on the worst result, the RMS contrast was
recovered from a bad contrast = 0.129 to a good approximation from the original = 0.193.

Notice that the worst result was not caused by any unstable behavior of the solution,
but instead it was caused by the fact that the artificial image (I,) was much more blurred
on the worst result than the artificial image on the best result. Also, the dark border
on the estimated image (/.) is generated by the windowing function used to reduce the
leakage effect caused by the Fourier calculations.

The Tables 5.2 and 5.4 show how near every PSF estimation have achieved from the
random PSF by presenting the subtraction (PSF, — PSF,). We can see that almost
empty PSF images were obtained on these subtractions, both on the best and on the

worst results, with the most important values matching each other.

IRMS contrast is defined on section 2.1.
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The Tables 5.5 and 5.7 show the best and the worst results (respectively) for the Solar
image with addition of moderate Poison noise. We can see by the resulting images that
this solution deals inherently with the presence of noise, with the final subtraction image
(O, — 1) still presenting a grayed image. The PSF subtractions presented on the Tables
5.6 and 5.8 show a matching level slightly below the matching obtained by the PSFs
without addition of noise, but still they are close results from the correct PSFs.

The images severely corrupted by noise presented on Tables 5.9 and 5.11 demonstrate
how robust is this solution for noised blurred images. Even under strong presence of
noise, the resulting PSFs (on Tables 5.10 and 5.12) remain stable and near from the
actual PSF,.

The time required to process these 100 Solar images with the configuration specified
in the beginning of this section was 39.444+0.18 seconds per image, summing up a total
of 3950 seconds for the 100 images.

Notice that the purpose of the CPSO to estimate the PSF is not find the perfect
match of the correct PSF, but instead it is built to find the closest PSF it can, given the
number of iterations, the number of swarms (or partitions) and the number of particles.
Therefore, the calibration process is meant to discover the cheapest satisfactory result
for an acceptable processing time. The results obtained by the Solar images demonstrate
that both the PSF Estimation and the Calibration process achieved their purposes, since
good resulting final images and approximate PSF's were obtained in all cases.

To validate how robust is the solution for images of different frequencies, the Lena
image was calibrated separately (with results: s = 3, p = 32, z = 50 and ¢ = 512
(49K evals.)), then 100 artificial images were generated (from the same original Lena
object) and the PSF estimation was executed for these artificial images. The results were
presented on Tables 5.13 and 5.14, where we can see close results again for both the PSFs
generated and for the estimated images. Both the best and worst results for (O, — 1)
were very similar, what shows a stable behavior while processing high frequency images.
However, the highest frequencies appear as residual values on these same subtractions
(with the deconvolved image 1), possibly caused by the deconvolution process that was
used to deconvolve the artificial images.

For all the images used for validation, the worst results (generated from the most
severely corrupted images for each set of 100 images) obtained a good the contrast recov-
ering on the deconvolved image, when compared to the respective best results.

As a final validation, the PSF, and the PSF, were compared at every iteration and
the difference was used to compare with the fitness value. It was found that the PSFs’
differences oscillate up and down whereas the fitness value is decreasing, what is likely
caused by the fact that many different PSFs can generate approximate images. Therefore,
the PSF difference does not help while estimating the PSF on this method.



Table 5.1: Best Results for Sun Images.
RMS contrasts: O, = 0.205623, I, = 0.158230, I = 0.199694
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Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

Estimated Image

(Le)

Estimated PSF
(PSF)

Difference (O, — 1)

Table 5.2: Best Results for Sun Images - PSFs Comparisons.
Configuration used: {[100 Artificial Sun Images, kept the best and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSF,«) Z

Estimated
PSF
(PSF.) »

Difference
(PSF,. —
PSF.)




Table 5.3: Worst Results for Sun Images.

RMS contrasts: O, = 0.205623, I, = 0.129243, I; = 0.192615

64

Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

Estimated Image

(Le)

Estimated PSF
(PSF.)

Difference (O, — 1)

Table 5.4: Worst Results for Sun Images - PSFs Comparisons.
Configuration used: {[100 Artificial Sun Images, kept the worst and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSF,) w

Estimated
PSF
(PSFe) <o

Difference
(PSF,. —
PSF.)
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Table 5.5: Best Results for Sun Images with moderate Poison noise.
RMS contrasts: O, = 0.205623, I, = 0.150366, I; = 0.187255

Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

Estimated PSF
(PSF.)

Deconvolved Image

(1a)

Difference (O, — 1)

Table 5.6: Best Results for Sun Images with moderate Poison noise - PSFs Comparisons.
Configuration used: {[100 Artificial Sun Images, kept the best and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSF,«) 2

Estimated
PSF
(PSF.) -

Difference
(PSF,. —
PSF.)
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Table 5.7: Worst Results for Sun Images with moderate Poison noise.
RMS contrasts: O, = 0.205623, I, = 0.146568, I; = 0.190736

Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

Estimated Image

(Le)

Estimated PSF
(PSF.)

Deconvolved Image

(1a)

Difference (O, — 1)

Table 5.8: Worst Results for Sun Images with moderate Poison noise - PSF's Comparisons.
Configuration used: {[100 Artificial Sun Images, kept the worst and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSFT) "

Estimated
PSF
(PSFC) "

Difference
(PSF,. —
PSF.)
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Table 5.9: Best Results for Sun Images severely corrupted by Poison noise.
RMS contrasts: O, = 0.205623, I, = 0.170690, I; = 0.194117

Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

1

Estimated Image

(Le)

Estimated PSF
(PSF.)

Deconvolved Image
(1a)

Difference (O, — 1)

Table 5.10: Best Results for Sun Images severely corrupted by Poison noise - PSFs Com-

parisons.

Configuration used: {[100 Artificial Sun Images, kept the best and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSF,) ,

Estimated
PSF
(PSFE) v

Difference
(PSF,. —
PSF,)
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Table 5.11: Worst Results for Sun Images severely corrupted by Poison noise.
RMS contrasts: O, = 0.205623, I, = 0.147227, I; = 0.178575

Original Object (O,)

Random PSF
(PSF,)

Artificial Image (1,)

Difference (O, — I,,)

Estimated Image

(Le)

Estimated PSF
(PSF.)

Difference (O, — 1)

Table 5.12: Worst Results for Sun Images severely corrupted by Poison noise - PSFs

Comparisons.

Configuration used: {[100 Artificial Sun Images, kept the worst and the worst], [CPSO: s=3, p=32, z=50,
¢=396 (38K evals.)], [Images: 128x128]}.

Rank #1

#2

#3

#4

Random
PSF
(PSF,) i

Estimated
PSF
(PSE.) )

Difference o
(PSF,. —
PSF,)
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Table 5.13: Best Results for Lena Images.
RMS contrasts: O, = 0.192776, I, = 0.164514, I, = 0.172227

Original Object (O,) Random PSF Artificial Image ([,) | Difference (O, — I,)
(PSF,)

Estimated Image Estimated PSF Deconvolved Image
(Ie) (PSFe) (Id)

Table 5.14: Worst Results for Lena Images.

RMS contrasts: O, = 0.192776, I, = 0.143206, I; = 0.164518

Configuration used: {[100 Artificial Lena Images, kept the best and the worst], [CPSO calibrated for
Lena: s=3, p=32, z=50, ¢c=512 (49K evals.)], [Images: 128x128]}.

Original Object (O,) Random PSF Artificial Image (I,) | Difference (O, — I,)
(PSF,)

Estimated Image Estimated PSF Deconvolved Image | Difference (O, — I;)
(Ie) (PSFE) (Id)
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5.3 Robustness and Scalability

To verify how robust is the solution as the number of Zernikes increases, 50 Solar images
were processed for different number of zernikes (nZernikes = 25,50, 150, 250, 350, 500, 600)
then their times were measured, calculating the mean time for every nZernikes config-
uration. Given the error function (fitness) is not comparable between different number
of Zernikes, the fitness results were not compared on this experiment. Furthermore, the
larger the Zernike terms the more it requires device memory, therefore the object and im-
ages size used for this Zernike experiment was smaller (64x64) than the size used during
the previous experiments (128x128).

To validate if the calibrated solution behaves similarly for different image sizes, the
CPSO parameters for one previously calibrated image of size 128x128 were used to process
another similar image of size 64x64, then both convergence behaviors were measured and
compared (64x64 vs. 128x128).

Both experiments above were executed based on the calibrated parameters set found

during the section 5.1.

5.3.1 Dependence on the Number of Zernikes

Increase on Zernike Terms

Num.Zernikes vs. Running Time
30

25

20
B Std.Dev
1 B Avg.Time
1
Configuration:
50 Sun Images G4x64
3 Swarms
0
25 50 150 250 330 500 600

4]

=]

e

32 Particles
38K evals

Processing Time per Image (seconds)

Num.Zernikes

Figure 5.4: Scaling while Increasing the Zernike terms.

To evaluate how robust is the solution as the number of Zernike terms increases, 50
Solar images of size 64x64 were processed for several number of Zernikes (nZernikes =
25,50, 150, 250, 350, 500, 600), then their averages and standard deviations of processing
times were collected.

The similar standard deviations presented in Figure 5.4 shows a stable behavior among

the number of Zernike terms used. We can see very small increases in the processing time
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occurring, having an increase of only 22.42% in the processing time from 25 to 600 Zernike
terms (17% when increasing tenfold, from 50 to 500).

The 50 images were processed in the following times (in seconds):

Table 5.15: Scaling behavior for the number of Zernike terms.

Zernike Terms Per Image (seconds) Total (seconds)
25 20.87£ 0.25 1045
50 21.2240.24 1063
150 21.75+0.19 1090
250 22.70£0.25 1138
350 23.51+0.20 1180
500 24.74+0.24 1244
600 25.65+0.20 1291

Given that the processing time of the PSF estimation method developed in this work
depends entirely on the number of Zernikes and on the image size, based on the Table
5.15 and on Figure 5.4 we can say that the number of Zernikes is not a critical factor

while reducing the processing time.

5.3.2 Calibration Reuse for Different Image Sizes

To verify if the parameter values calibrated for one object can be reused for the same (or
very similar) object of different size, a solar image of size 128x128 was firstly calibrated
and then a similar image of smaller size (64x64) was processed against the same CPSO

parameter set.

Convergence Behavior for Sun

Comparison between 62x64 and 128x128 Images

5800

5300 Convergence 64x64
E seeennnnnnnnss CoONvergence 128x128
o
E 4800 # Early Stabilization
a
E
4300
3800 - Caonfiguration:
g o 2M Evaluations
o 3 swarms 32 particles

3300
0 500000 1000000 1500000 2000000
MNum.Evaluations

Figure 5.5: Convergence Behavior for Solar images of different sizes.

The figure shows the convergence behavior for 2 artificial Solar images. These images were
generated artificially from similar Sun Objects of different sizes (64x64 and 128x128), then they
were processed up to 2 million fitness evaluations and their convergences were compared.



72

The results shown in Figure 5.5 present similar convergence behavior for both image
sizes, with the image 128x128 requiring additional evaluation cycles to converge, given
its area is 4 times bigger than 64x64. This suggests that different image sizes requires a
separated calibration, but only to adjust the parameter c(cycles), because both parameters
s(swarms) and p(particles) from image 64x64 have benefited from the same convergence

behavior as for the image 128x128.
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5.4 Processing Times for PSF Estimations

The original SA work used as base for the development of this method [53] used a cluster
of 23 servers Dell Poweredge 1950 (2 x Intel Xeon Processor 5160 per server) to process
the images, obtaining 1 PSF result at every 108 seconds (100 PSFs on 3 hours) for Solar
images of size 64x64.

Considering an observatory producing about 500-1000 daily Solar images, taken by a
full spectro-polarimetric scan with a panoramic spectropolarimeter, the PSF estimation
method with SA takes about 15-30 hours to post-process these images. Given the pro-
cessing time on the original method is linearly dependent on the number of Zernikes, a
tenfold increase on the dimensions (500 Zernikes) would take ~300 hours for these same
images, under the same SA cooling schedule.

For the same image size, the PSF Estimation method for CPSO developed on this work
takes ~221.22 seconds to obtain 1 PSF result (100 PSFs on ~36 minutes) on one CPU core
and one GPU device (see hardware details on introduction of chapter 5). For the daily 500-
1000 solar images generated by the observatory, this CPSO method would estimate the
corresponding PSFs in ~ 2h56min - 5h53min (respectively) on the same machine (under
the same configuration as the one described on section 5.2). By increasing the number
of Zernikes tenfold (500 Zernikes), the processing time would be slightly increased to ~
3h51m - 6h52m for the same images.

Given only one machine with one GPU card was used on these experiments, this
method has large room for improvements. Additional machines with multiple GPU cards
could be used to estimate PSF's in parallel, having a central point of control submitting
the requests and collecting the responses. Also, fine tuned kernels was not the focus of
this work, therefore additional adjusts for coalesced memory access could be implemented
to reduce the memory latency. Finally, as the PSF estimation method used as base for
this work heavily relies on Fourier calculations, an OpenCL FF'T kernel would need to be
implemented to allow the calculation of multiple Fourier’s at one single kernel call, what

should radically reduce the overall processing time.
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5.5 Considerations

When dealing with CPSO as the optimization method for high dimensional problems, it is
well know how difficult it can be to find a good set of parameters that leads to good results
quickly. Instead of having to use the trial and error approach, experimenting dozens of
different configurations before deciding for the best known parameters (what not always
means that stable results will be obtained among different executions), this chapter has
presented a quick measurable method to choose for a good configuration set that ensures
at least acceptable results on convenient processing times.

For validation purpose, multiple sets of different artificial solar images were processed
by the CPSO calibrated for low-cost results. The experiment was run for different blurred
images, blurred images with addition of noise and blurred images severely corrupted by
noise, then both the bests and the worsts results where collected for every different degree
of corruption. The results has shown that very approximate PSFs were obtained in all
cases, with good image recovering even on the most severe distortions. Non solar images
with high frequencies were also validated, where the results obtained were as good as the
results with the low frequency solar images.

The method was experimented for an increasing number of Zernikes and the results
show that the proposed algorithm is only slightly affected by the number of Zernikes used,
what facilitates the implementation of a simulated atmosphere while estimating the PSFs.
Also, a final experiment has suggested that similar images of different sizes can benefit
from the same CPSO parameter set by only adjusting the number of iterations.

In general, the method presented in this work has shown quick good results, strong abil-
ity of dealing with noises and robust behavior for both low-frequency and high-frequency
images (not only for solar images). Considering that a single machine and only one
OpenCL device was used to run these experiments, much better results can be obtained
by increasing the number of iterations and combining multiple OpenCL devices from
different machines, besides the possibility of using more than one OpenCL device per
machine. Given the complexity of this real life application, many others improvements
can be implemented on this work, like adjusting the kernels for coalesced memory access

and creating a new kernel for parallel FF'T calculation on OpenCL.
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CHAPTER 6

CONCLUSIONS

Considering the large number of images generated by an observatory, taken daily from
objects standing outside the atmosphere, the reduction of the time required for the post
processing of these images is critical for a good work performance.

The work presented here has proposed the creation of a parallel PSEF Estimation
solution to run on OpenCL enabled devices, so that good results could be obtained on
feasible times under cheap hardwares.

The Simulated Annealing has shown good PSF estimations, but in turn it required
unfeasible processing times to obtain such images, besides presenting a poor convergence
behavior, proving to be a weak method for finding good PSF parameters quickly.

Many good optimization methods are available but not all of them can be easily
implemented on GPU devices. Given the PSO is a simple optimization method that
can be easily implemented on GPU cards, with a strong robustness for high dimensional
problems, its Cooperative version, CPSO, was used as the optimization method for this
work. The Cooperative PSO, calibrated for low-cost good results, not only has shown
competitive results but also obtained them more quickly and with more stable behavior.

The CPSO applied for high dimensional problems can be of very hard configuration.
Since there is no standard measurable process for its configuration, its parameters rely
entirely on the user experience, what frequently leads to poor optimization results. In-
stead of having to use the trial and error approach, this work proposed a quick measurable
method to choose good parameter values to specifically reduce the processing time and
ensure at least acceptable results under convenient time frames. This proposed calibra-
tion process for CPSO has shown strong robustness, obtaining approximate PSFs even
under moderate and high noise presence. Both low-frequency and high-frequency images
obtained similar good results, meaning that different types of images (not only solar im-
ages) can benefit from this method. Similar images of different sizes can benefit from the
same calibrated CPSO parameter set, requiring only the adjust on the number of cycles
to conform with each image size.

Its demonstrated good scaling for large numbers of Zernike terms has shown that this
work can be easily adapted for atmosphere simulation algorithms, since it is not heavily
affected by a high number of dimensions.

Given the good convergence behavior presented by the CPSO, even better results can
be obtained by this solution by just increasing the number of cycles, what means that it

depends only on what is an acceptable amount of time to wait for better results.
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As application, this work brings the following contributions:

e Reduction of the time required to obtain good PSF estimations.

e Parallel PSF estimations on machines containing multiple GPU cards.

e High number of Zernikes supported.

e PSF estimations also possible for non-solar images.

From the computational standpoint, these are the contributions:

e A PSF estimation method developed to run on OpenCL devices.

e A Cooperative PSO developed for OpenCL devices, with mechanisms to increase
its aggressiveness while controlling its convergence.

e A measurable calibration procedure for CPSO to optimize complex and high dimen-
sional problems, ensuring at least acceptable results while specifically reducing the
general processing time.

Given the inherent complexity of this kind of real life application, many improvements

can still be implemented on this work, like for example:

e The creation of a measurable process to also calibrate the parameters that were
heuristically fixed on this work (w, ¢y, co, reset Factor,nZernikes).

e The implementation of a distributed solution (eg., a master-slave solution) for sub-
mitting multiple parallel estimation on multiple machines with multiple OpenCL
devices.

e The fine tuning of the OpenCL code implemented on this work, to avoid any unco-
alesced memory accesses and reduce the memory latency.

e The implementation of a FFT kernel on OpenCL language to calculate multiple
Fourier’s in parallel at a single kernel call.

In summary, the proposed PSF estimation method with CPSO optimization proved
that the costs associated with the post-processing time for the image correction process
can be reduced in many ways (like reducing hardware costs, energy usage and human
waiting time). This work has shown that the CPSO can obtain good PSFs in short time,

requiring only a low-cost easy-acquisition GPU hardware and a calibration procedure.
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CHAPTER 7
APPENDIX

7.1 Kernel Codes

The Xorshift is implemented by Listing 7.1 (on OpenCL language) and uses a random

seed on GPU side to generate the random numbers directly on device.

Listing 7.1: Xorshift Implementation for OpenCL

uint xorshift (uint4d xseed) {
uint t = seed—>x * (seed—>x << 11);
xseed = seed —>yzww;
seed—>w = seed—>w © (seed—>w >> 19) © (t © (t >> 8));
return seed—>w;
}

The Listing 7.2 shows a kernel that calculates the Phase (line 25) and Pupil (lines 31
and 32), where every work item iterates through the phase column (line 19) and every
work group calculates one entire Phase. Notice that this listing represents the OpenCL
code of the line 3 from the Algorithm 7. This is a code snippet and some lines were

omitted for simplicity reasons.

Listing 7.2: Snippet - Calculate Phase and Pupil

Jx %

¥ Input: g_coefs, g_zernikes, n_zernikes, phase_height.
¥ Qutput: g_pupil.

*/

// Every work item calculates a column.

int lid = get_local_id (0);

// Every work group calculates a PSF.

int gid = get_group_.id (0);

//Bring this PSEF’s Zernike Coefficients to local memory.

for (i=lid; i < n_zernikes; i+=get_local_size (0)){
l_coefs[i] = g_coefs[gid * n_zernikes + i];

}

float p_phase;
float2 p_pupil;
int z_pos, phase_area = phase_height % phase_height;
// For every column.
for (i=0; i < phase_height; i++){
p-phase = 0;
z_pos = i x phase_height + lid;
// Iterate through all Zernikes.
for (int j=0; j < n_zernikes; j++) {
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// Calculate the phase.
p-phase += l_coefs[j] =
g_zernikes[j * phase_area + z_pos];

}

// Calculate the pupil on private memory:
// cexp(p * I) = cos(p) + i » sin(p)
p-pupil.x = cos(phase);

p-pupil.y = sin(phase);

// Move PSF’s pupil to global memory.
g_pupil [gid * phase_area + z_pos] = p_pupil;

The listing 7.3 shows how the PSF is calculated from the Focus (representing the
OpenCL code of the line 12 from the Algorithm 7). It reads a complex number from
the global memory (Listing 7.3, line 8), converts it to real and then calculates its power,
returning the result directly to the global memory (line 13). Every work item on this

kernel calculates a single point in the PSF.

Listing 7.3: Snippet - Calculate PSF from Focus

Jx %

* Input: g_focus.

* Output: g_-psf.

*/

// Every work item calculates a single point.

int idx = get_global_id (0);

// Bring the complexr value to private memory.

float2 p-focus = g_focus[idx];

// Convert from complex to real.

float real = sqrt((p-focus.x * p_focus.x) +
(p_focus.y x p_focus.y));

// Calculate the power and return to global memory.

g_psf[idx] = real x real;

The convolution is calculated by multiplying the FFT of the extracted scaled PSF
with the FFT of the original Object (Listing 7.4, line 21). Every work item in this
kernel iterates through a column while the work group calculates an entire convolution.
Notice that the Convolved Object calculated by this kernel is in fact the FFT of the final
Estimated Imaged, calculated through the Estimated PSF, which in turn was generated
from the = vector of a CPSO sub-particle.

Listing 7.4: Snippet - Convolution

Jx %

* Input: g_obj_fft, g_-psf-fft, img_height.
* QOutput: g_conobj.

*/

// Every work item calculates a column.

int lid = get_local_id (0);

// Every work group calculates a PSF.

int gid = get_group_-id (0);
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int obj_pos, psf_pos;
float2 p_psf, p_obj, p_conv;
// For every column.
for (int i=0; i < img_height; i++){
obj_pos = i % img_height + lid;
psf_pos = gid % img_area + obj_pos;
// Bring the PSF’s FFT to the private memory.
p-psf = g_psf_fft[psf_pos];
// Bring the Object’s FFT to the private memory.
p-obj = g_obj_fft [obj_pos];
// Do the conwvolution .
p-conv = {
(p-psf.x x p_obj.x) — (p_psf.y x p_obj.y),
(p-psf.x x p_obj.y) + (p_psf.y * p_obj.x)

};
// Sends the result to global memory.
g_conobj[psf_pos] = p_conv;

The cost is calculated as the difference between the original Image’s FFT and the
Convolved object, as shown in the Listing 7.5. The result is converted to real, scaled
and then filtered by the Diffraction mask. Every work group of this kernel calculates the
cost of an entire convolved image, meaning that a single kernel call will calculate all costs
related to all CPSO particles.

Listing 7.5: Snippet - Cost Calculation

Jxk

¥ Input: g_conobj, g_img_fft, g_diffraction_mask,
* img_height.

¥ QOutput: g_cost.

*/

// Every work item calculates a column.
int lid = get_local_id (0);

// Every work group calculates a PSF.
int gid = get_group-id (0);

int img_pos, obj_pos;
float x, y;
float2 p_img, p_obj;
// For every column.
for (int row=0; row < img_height; row++){
img_pos = row * img_height + lid;
obj_pos = gid * img_area 4+ img_pos;
// Bring the Image’s FFT to the private memory.
p-img = g_img_fft [img_pos];
// Bring the Convolved Object to the private memory.
p-obj = g_conobj[obj_pos];
// Calculate the cost.
x = (p-img.x — p-obj.x);
y = (p-img.y — p-obj.y);
// Calculate a real scaled cost
// under the diffraction mask,
// then sends the result to global memory.




28 g_cost [obj_pos] = (g_diffraction_mask [img_pos]) =x
29 (sqrt(x * x +y % y) / img_area);
30 |}
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