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Abstract—Diagnosis of lung diseases is usually accomplished
by detecting abnormal characteristics in Computed Tomog-
raphy (CT) scans. We report an initial study for classifying
texture patterns in High-Resolution lung CTs using the Com-
pleted Local Binary Pattern (CLBP) descriptor with a Support
Vector Machine (SVM). The main contribution of the proposed
method is that it does not depend on a previously segmented
lung, as it performs a coarse segmentation by classifying body
areas outside the lungs. The classified patterns are: non lung,
normal lung tissue, emphysema, ground-glass opacity, fibrosis
and micronodules. Using image blocks of 32 × 32 pixels,
extracted from a public dataset with 113 patients, correct
blockwise classification of non lung patterns was achieved with
an accuracy of 98.91%. Regarding normal and pathological
lung patterns, a mean accuracy of 91.81% was obtained. This
is similar to the reported results in literature which used a
pre-segmented lung.

Keywords-lung diseases; lung segmentation; Completed Lo-
cal Binary Pattern; High-Resolution Computed Tomography.

I. INTRODUCTION

Diagnosis of lung diseases is usually accomplished by
detecting abnormal characteristics in Computed Tomogra-
phy (CT) scans. The visual patterns or image textures of
these characteristics have valuable information about the
nature of the abnormality, especially when there is a prior
knowledge relating patterns to diseases. The application of
image processing techniques can increase the confidence and
consistency of diagnosis [1] by providing quantitative values
for the form and/or texture of the CT image characteristics,
which in turn can be used with pattern recognition algo-
rithms to classify them according to predefined classes.

Image classification is performed in three steps [2]: the
first is image acquisition by acquiring equipment. The sec-
ond step involves image preprocessing, segmentation and
features extraction. The relevant information is obtained by
extracting and quantifying features that allow an assignment
of images to different classes. One approach is to extract
features using textures. Finally the third step uses a classifier
algorithm, (e.g. Support Vector Machines (SVM) or Neural
Networks), to classify and quantify the extracted features.

In recent years, many studies about classification of lung
diseases have been developed, but the different resolution
techniques show that there is still no consensus about what
features should be used in the classification process. Usually,

pulmonary patterns are associated to texture properties [3].
The studies have shown difficulty in differentiating certain
pulmonary patterns, which also cause confusion among spe-
cialists [4] due to its similarity, showing that this is the main
problem to be faced. Moreover, the segmentation of lungs
affected by high density pathologies is still an ongoing work
[1], and most studies about classification of lung diseases use
images of the lungs which are already segmented [5]–[10].
In other cases, a semiautomatic segmentation is applied [11].

The main goal of our research is to execute an anal-
ysis and quantification of lung disease patterns in High-
Resolution Computed Tomography (HRCT) images, per-
forming a coarse lung segmentation by also classifying body
areas outside the lungs. Based on that, this paper presents
initial results in the classification of image blocks of the
following texture patterns: non-lung (e.g. bone, tissue and
fat), normal lung tissue, emphysema, ground-glass opacity,
fibrosis and micronodules. The Completed Local Binary
Patterns (CLBP) descriptor associated with SVM classifier
were used to obtain preliminary results.

II. RELATED WORK

This section presents the recent work in classification of
pulmonary patterns. Several types of features have been
proposed for characterizing various lung disease patterns,
and extracted from Regions of Interest (ROIs) and Volumes
of Interest (VOIs). To classify the lung patterns, some
authors used private images and others used the public
database provided by Depeursinge et al. [3], which is also
adopted in our study.

Anthimopoulos et al. [5] proposed a method for clas-
sification of Interstitial Lung Diseases (ILD), using local
2D discrete cosine transform (DCT) and random forest
(RF) classification. The gray-level histogram values of the
original image were also used to formed the feature vector.
The method proposed by Dash et al. [6] used features
extracted from Discrete Wavelet Transform (DWT) and two
classifiers are trained, which are fused to obtain the final
decision. A new sparse representation based method to
classify Diffuse Lung Diseases patterns (DLD) was pre-
sented by Zhao et al. [7]. After extracting the local features
from the VOIs, an overcomplete dictionary was learned
using Singular Value Decomposition (K-SVD) algorithm,



and the descriptors were generated according to the dictio-
nary and original feature vectors. Xu et al. [8] presented
a bag-of-features based method which combined both the
original CT values and eigenvalues of Hessian matrix. A
new classification method of lung tissues was presented by
Song et al. [9]. They proposed Rotation-invariant Gabor-
LBP (RGLBP) texture and Multi-coordinate Histogram of
Oriented Gradients (MCHOG) gradient descriptor, combined
with intensity features. In addition, a new patch-adaptive
sparse approximation (PASA) method was designed based
on reference image patches. Li et al. [10] created a new
image patch classification method, based on fully automatic
feature learning. Firstly, feature extractors of different sizes
were learned using the Gaussian Restricted Boltzmann Ma-
chine (GRBM) method. Then, the image feature vectors
were obtained by convolving the feature extractors with
the image patches. Depeursinge et al. [11] proposed a
near-affine-invariant set of texture features to classify five
types of lung tissues. The texture descriptors were based on
Wavelet Transforms and the Gray-Level Histogram (GLH).
In previous similar work, Malone et al. [12] proposed to
classify body areas to perform a different lung segmentation,
with the following lung patterns: normal tissue, emphysema
and fibrosis. The method selected features among gray-level
histogram, fourier transform, fractal and autocorrelation
measures.

Table I summarizes the database used for each related
work, as well as the overall results obtained. The average
F-score reported by Anthimopoulos et al. [5] is defined in
Equation 1. Definitions of the other metrics reported in the
literature (sensitivity, accuracy and precision), as well as the
specificity measure can be found in Section IV, since they
were also used to evaluate this experiment.

Table I
SUMMARY OF RELATED WORK

Work Database Results

Anthimopoulos et al. [5] Public - 2503 ROIs Average F-score of 89%
Dash et al. [6] Private - 100 ROIs Overall accuracy of 95%
Zhao et al. [7] Private - 2360 VOIs Overall accuracy of 95.4%
Xu et al. [8] Private - 3009 VOIs Overall accuracy of 93.18%

Song et al. [9] Public - 23731 ROIs Overall precision of 80.7%
Li et al. [10] Public - 16220 ROIs Overall sensitivity of 74.2%

Depeursinge et al. [11] Public - 17848 ROIs Overall sensitivity of 76.9%
Malone et al. [12] Private - 852 ROIs Overall sensitivity of 89.5%

Favg =
1

M

M∑
c=1

Fc (1)

where M is the number of of classes and Fc is the F-score
for class c, defined as:

Fc = 2 · precisionc · sensitivityc
precisionc + sensitivityc

(2)

III. MATERIALS AND METHODS

A. Dataset

In this study, we used the publicly available database
of ILD cases provided by Depeursinge et al. [3], which
contains 113 sets of HRCT images of 512 × 512 pixels in
DICOM format. Lung masks are available for each case. The
database also provides annotated ROIs of 17 tissue patterns,
including normal tissue. Among the 17 available tissues, five
commonly seen lung patterns were selected: normal lung
(N), emphysema (E), ground-glass opacity (GG), fibrosis (F)
and micronodules (M).

The annotated ROIs were subdivided into half-
overlapping blocks of 32 × 32 pixels, which have the
best tradeoff between classification performance and
localization [11]. The consolidation pattern was not
considered since there were not sufficient extracted blocks
(61 blocks).

In order to extract blocks belonging to non-pulmonary
regions (e.g. fat and bone), the following technique was
adopted: using the lung masks provided by the database,
a morphologic dilation was applied, defined by δ(B)(X)
[13], where X is the lung mask image and B is a flat
ellipse-shaped structuring element with a fixed radius of 5
pixels. Thus, we obtain the ROI of non-lung (RNL), which
is the dilated area that does not belong to the lung mask
(RNL = δ(B)(X)−X). We decided to set this area as the
non-lung (NL) ROI because it contains more variation for
being connected to the lung borders. After that, we extracted
non-overlapping blocks of 32×32 pixels. Figure 1 shows the
method of extraction of non-lung blocks. A total of 70000
blocks were extracted, but we randomly selected only 3000
blocks of non-lung to be used in the experiment. This is an
intermediate number that was chosen based on the average
number of extracted blocks per class from the lung tissues
(see Table II).

Furthermore, for the blocks extraction, at least 75% of
the pixels need to belong the ROIs. In total, HRCT image
series of 91 patients were used to evaluate the performance
of the proposed method. Examples of extracted blocks are
presented in Figure 2.

A total of 20540 blocks were used in this experiment.
Table II summarizes the total the number of blocks for each
tissue type. All blocks were saved in DICOM format, to
preserve the original values.

Table II
SUMMARY OF THE DATASET

Pattern Number of blocks
Non-lung (NL) 3000

Normal (N) 5733
Emphysema (E) 1017

Ground-glass (GG) 1942
Fibrosis (F) 2736

Micronodules (M) 6112



(a) (b)

(c) (d)

Figure 1. Method of extraction of non-lung blocks, where (a) original im-
age, (b) lung mask (X), (c) dilated lung mask (0δ(B)(X)) and (d) resulting
image, where the gray part is the non-lung region (RNL = δ(B)(X)−X).

(a) (b) (c)

(d) (e) (f)

Figure 2. Example of extracted blocks of (a) non-lung (b) normal lung,
(c) emphysema, (d) ground-glass opacity, (e) fibrosis and (f) micronodules.

It is important to observe that the aim of only labelling
blocks with at least 75% of the ROI is to obtain good
examples of the pattern. This does not reflets a real situation
where, in the analysis of the lung CT images, a region of
32 × 32 pixels might contain more than one lung tissue
pattern.

B. Completed Local Binary Pattern

Several variants of the Local Binary Pattern (LBP) de-
scriptor have been proposed in the literature, such as the
derivative-based LBP [14], dominant LBP [15], the center-
symmetric LBP [16], and the completed LBP (CLBP) [17].
The LBPs were used as texture features to classify subtypes
of emphysema [18]–[20], and a variation of LBP was

proposed by Song et al. [9] to recognize lung patterns.
The CLBP method was proposed by Guo et al. [17] and

it provides a complete modeling of LBP, representing a
local region by its center pixel and a local difference sign-
magnitude transform (LDSMT).

For a given central pixel gc, the method calculates the
difference between gc and its P circularly and evenly spaced
neighbours gp, defined by dp = gp − gc. This difference is
decomposed into two components: sign, defined as sp =
sign(dp), and magnitude, defined as mp = |dp|.

To represent the original image, we use the center gray
level (C) and the local difference, decomposed by the
sign (S) and magnitude (M). Then, the operators CLBP C,
CLBP S and CLBP M are proposed to code the C, S and M
features, respectively, and the combination of these operators
forms the CLBP feature map of the original image.

The CLBP S operator corresponds to the original LBP
operator, whereas the CLBP M operator is coded according
to Equation 3 to make it consistent with that of CLBP S:

CLBP MP,R =
P−1∑
p=0

t(mp − c)2p, where

t(x, c) =

{
1, x ≥ c
0, x < c

(3)

where R is the radius of the neighbourhood and c is a
threshold to be determined adaptively, which is originally
defined as the mean value of mp from the whole image.

Finally, the central gray level is coded as CLBP C ac-
cording to Equation 4:

CLBP CP,R = t(gc − cI), where

t(x, cI) =

{
1, x ≥ cI
0, x < cI

(4)

where cI is set as the average gray level of the whole
image.

All the three code maps are in binary format so that they
can be easily combined to form the final histogram. A rota-
tion invariant version of CLBP M can be achieved and the
histograms of codes can be combined in different schemes.
In this experiment, the combination used to generate the
histogram was the CLBP S/M/C, which is the CLBP scheme
that presented the best results in Guo et al. [17].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The dataset was divided using a five-fold cross validation
method. The folds were split based on the patients, ensuring
that all blocks belonging to a patient remain in the same
fold, preventing training and testing with the same patient
and avoiding the over-fitting for the test images.

We evaluate two different combinations of
the CLBP S/M/C configuration. The first was
CLBP SMCu2

(P,R) that refers to the CLBP uniform
pattern and the second was CLBP SMCriu2

(P,R) that is the



rotation invariant uniform pattern. Both variations were
applied using the values (8, 1) and (8, 2) for the (P,R)
parameters. Thus, four different CLBP combinations were
tested.

Each attribute from the feature set was normalized in
the range [-1, +1]. We used the SVM classifier with a
Gaussian kernel and a one-versus-one approach. SVMs have
shown to be the best classifier in recognizing lung patterns
[21]. Furthermore, the best parameters for the classifier were
determined through a grid-search method for each fold.

The performance of the classification is measured by
sensitivity, precision, specificity and accuracy, specified by
the following equations:

sensitivity =
TP

TP + FN
(5)

precision =
TP

TP + FP
(6)

specificity =
TN

TN + FP
(7)

accuracy =
TP + TN

TP + FP + FN + TN
(8)

where FP, FN, TP, and TN stand for False Positive, False
Negative, True Positive, and True Negative, respectively.
In addition, ROC curves and the Area Under the Curve
(AUC) for each classification were calculated. Performance
measures of the blockwise classification are shown in Table
III. Figure 3 shows the magnified graphic for the ROC
curves and allows to visualize the best feature extractor
configuration.

Table III
OVERALL RESULTS FOR THE BLOCKWISE CLASSIFICATION (IN %)

Classifier Sensitivity Precision Specificity Accuracy AUC

CLBP SMCriu2
(8,2)

78.99 75.95 93 95.55 93.4

CLBP SMCriu2
(8,1)

75.29 70.84 91.76 94.82 91.2
CLBP SMCu2

(8,2)
74.18 70.76 91.39 94.51 91.1

CLBP SMCu2
(8,1)

72.06 67.89 90.69 94.12 90.1

By looking at the overall results (Table III) and the
ROC curves (Figure 3), one can see that the best results
were achieved with CLBP SMCriu2

(8,2), and the worst per-
formance was with the CLBP SMCu2

(8,1) classifier. The
remaining classifiers achieved very similar results. The con-
fusion matrix of the best CLBP classifier is presented in
Table IV.

Table IV shows that most of the confusions occurred
between emphysema and normal, ground-glass and normal,
and ground-glass and fibrosis. The inter-class confusions can
be explained by the fact that as emphysema and normal
tissue can appear quite dark in the overall lung field, it could
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Figure 3. ROC curves for CLBP SMC classifiers

Table IV
CONFUSION MATRIX FOR THE BEST CLBP SMC CONFIGURATION IN %

Class Predicted
NL N E GG F M

NL 97.5 0.7 0.17 1.37 0.23 0.03
N 0.68 79.98 0.78 7.01 0.72 10.83
E 2.46 19.96 57.13 5.51 10.91 4.03

GG 3.5 24.46 0.26 39.8 23.43 8.55
F 0.58 1.1 1.86 15.1 77.6 3.76
M 0.02 9.62 0.44 1.42 2.81 85.68

be difficult to differentiate the parenchyma details of these
two patterns and, regarding the ground-glass opacity, it can
show relatively high densities, looking similar to fibrosis [9].
On the other hand, emphysema and fibrosis contain more
irregular local structures, showing large intra-class variation.
Moreover, healthy tissue does not possess a single uniform
texture, depending on the age or the smoking history of
the patient [3] and the variable appearance of vessels and
bronchioles [12].

The overall results for CLBP SMCriu2
(8,2) can be seen

in Table V. The classification results achieved by normal
lung tissue, fibrosis and micronodules were similar to the
literature, in which the micronodules category obtained the
highest rate among some studies that used the same database
(see [9]–[11]). Normal lung category achieved better sen-
sitivity than the presented in [10], [11], but still did not
achieved scores as reported in [9].

Regarding the non-lung pattern, a sensitivity of 97.5%
was achieved for the blockwise classification, and 99.15%
for the lung tissue patterns. Malone et al. [12] obtained 98%
of sensitivity for the non-lung category, but it is important
to note that they used a private dataset.



Table V
RESULTS OF THE BLOCKWISE CLASSIFICATION FOR THE BEST

CLBP SMC CONFIGURATION IN %

Sensitivity Precision Specificity Accuracy
Non-lung 97.5 95.15 99.15 98.91
Normal 79.98 77.69 91.11 88

Emphysema 57.13 81.37 99.32 97.23
Ground-glass 39.8 43.62 94.63 89.44

Fibrosis 77.6 72.98 95.59 93.19
Micronodules 85.68 84.89 93.54 91.2

V. CONCLUSION

Diagnosis of lung diseases is usually accomplished by
analyzing CT scans searching for abnormal characteristics.
In recent years, many studies about classification of lung
diseases have been developed, but they have shown difficulty
in differentiating certain pulmonary patterns, which also
cause confusion among specialists due to their similarity.

This paper presented initial results in classification of
texture patterns from HRCT of the lung using the CLBP
descriptor with a SVM classifier. Among the pulmonary
patterns, we also classify body areas outside the lungs, in
order to perform a coarse lung segmentation. The rotation-
invariant uniform version of CLBP S/M/C showed the best
results, with the parameters P = 8 and R = 2.

Classification results comparable to the literature were
achieved for normal lung tissue, fibrosis and micronodules,
in which the micronodules category obtained the highest rate
among some studies that used the same database. However,
emphysema and ground-glass categories obtained the lowest
results reported in the literature. Our study demonstrated
this very clearly through a complete evaluation comparing
the main measures of accuracy described in the literature.
Moreover, we achieved 97.5% of sensitivity in the blockwise
classification for the non-lung pattern.

The main drawback of the proposed method is that it
performs multiple misclassifications between the classes em-
physema and normal, ground-glass and normal, and ground-
glass and fibrosis. This is one limitation of using only texture
descriptors. Some regions of the lung do not possess a
homogeneous texture.

Future work will focus on the analysis and quantification
of lung disease patterns. At the present moment, we are
simply abstractly comparing noncontiguous blocks. In order
to improve the results and to minimize the errors, we will
develop a methodology that combines the results of multiple
classifiers with CLBP (e.g. gray-level histogram, top-hat
analysis). These classifiers will be able to produce a posterior
probability P (class|input) which can be used to determine
the chance of a given region of the lung to be abnormal.
We can also work with different block sizes to classify the
CT images, since a block of 32× 32 pixels may not belong
to a sigle class. Finally, it will be possible to perform the
lung segmentation before the lung tissue classification of the

whole HRCT image.
The complete implementation of the method presented

here can be found at http://web.inf.ufpr.br/vri/alumni/
2015-LuizaDriBagesteiro-Msc.
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