

Blockwise Classification of Lung Patterns in Unsegmented CT Images

Luiza D. Bagesteiro, Lucas F. Oliveira and Daniel Weingaertner {Idbagesteiro, Iferrari, danielw}@inf.ufpr.br Vision, Robotics and Images Research Group (VRI), Department of Informatics Federal University of Parana (UFPR), Curitiba, Brazil

Summary

- Introduction
- Related Work
- Materials and Methods
 - Dataset
 - Completed Local Binary Pattern (CLBP)
- Experimental Results
- Discussion
- Conclusion and Future Work

Introduction

- Diagnosis of lung diseases
 - Abnormal characteristics in CT scans
 - Information extracted from visual patterns
 - Techniques of image processing can increase the confidence and consistency of diagnosis
- Image classification
 - Image acquisition
 - Feature extraction
 - Classification

Introduction

- Main goal
 - To execute an analysis and quantification of lung disease patterns in High-Resolution CT images
 - To perform a coarse lung segmentation by also classifying body areas outside the lungs
- Initial results
 - Classification of image blocks of: non-lung (e.g. bone, tissue and fat), normal lung tissue, emphysema, ground-glass opacity, fibrosis and micronodules.
 - Completed Local Binary Patterns (CLBP) descriptor
 - Support Vector Machine classifier

Pulmonary patterns

Normal tissue

Emphysema

Ground-glass opacity

Fibrosis

Micronodules

Computed Tomography

Radiography

- Provided by Depeursinge *et al.*¹
- Multimedia collection of cases with interstitial lung diseases (ILDs)
- High-Resolution CT images in DICOM format
- Ground truth
 - Lung masks
 - Annotated ROIs (Regions of Interest) of 17 tissue patterns
 - Normal
 - Emphysema
 - Ground-glass
 - Fibrosis
 - Micronodules

Blue: emphysema Red: fibrosis

7

- Extraction of lung tissue blocks
 - Half-overlapping blocks at *x*, *y* of 32x32 pixels
 - At least 75% of the pixels need to belong the ROI

Example of block extraction from annotated ROI (Song et al.²)

² Song, Y., Cai, W., Zhou, Y., and Feng, D. D. (2013). Feature-Based Image Patch Approximation for Lung Tissue Classification. IEEE Trans. Med. Imaging, 32(4):797-808.

- Extraction of non-lung blocks
 - Morphology dilation applied in the lung mask
 - The non-lung ROI is the dilated area which does not belong to the lung mask
 - Non-overlapping blocks at *x*, *y* of 32x32 pixels
 - At least 75% of the pixels need to belong the ROI

Original image

Lung mask

Dilated lung mask

The gray area is the non-lung ROI

-			
Pattern	Number of blocks		
Non-lung	3000		
Normal tissue	5733		
Emphysema	1017		
Ground-glass	1942		
Fibrosis	2736		
Micronodules	6112		

Summary of the dataset

Examples of the extracted blocks

Micronodules

- Proposed by Guo *et al*.³
- It represents a local region by its center pixel g_c and a local difference sign-magnitude transform d_p .
- This difference is decomposed into sign s_p and magnitude m_p : $s_p = sign(d_p)$ and $m_p = |d_p|$
- The original image is represented by its center gray level, sign and magnitude
- The combination of these operators forms the CLBP feature map

³ Z. Guo, D. Zhang, and D. Zhang, "A completed modeling of local binary pattern operator for texture classification," Image Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1657–1663, June 2010.

Experimental Results

- Testing four configurations for CLBP descriptor
 - $CLBP_{(8,1)}^{u2}$
 - $CLBP_{(8,2)}^{u2}$
 - $CLBP_{(8,1)}^{riu2}$
 - $CLBP_{(8,2)}^{riu2}$
 - where u2 is the uniform pattern and riu2 is the rotation invariant uniform pattern
- Five-fold cross validation method
 - Splitting folds based on patients
- SVM classifier
 - Gaussian kernel and one-vs-one approach

Experimental Results

• Measures:

• sensitivity =
$$\frac{TP}{TP+FN}$$

• precision =
$$\frac{TP}{TP+FP}$$

• specificity =
$$\frac{TN}{TN+FP}$$

•
$$accuracy = \frac{TP+TN}{TP+FP+FN+TN}$$

- TP true positive
- FP false positive
- FN false negative
- TN true negative

Experimental Results

	Sensitivity	Precision	Specificity	Accuracy
$CLBP^{riu2}_{(8,2)}$	78.99	75.95	93	95.55
$CLBP^{riu2}_{(8,1)}$	75.29	70.84	91.76	94.82
$CLBP^{u2}_{(8,2)}$	74.18	70.76	91.39	94.51
<i>CLBP</i> ^{<i>u</i>2} _(8,1)	72.06	67.89	90.69	94.12

Overall results for the blockwise classification (in %)

Confusion matrix for the best CLBP configuration (in %)

	Non-lung	Normal	Emphysema	Ground-glass	Fibrosis	Micronodules
Non-lung	97.5	0.7	0.17	1.37	0.23	0.03
Normal	0.68	79.98	0.78	7.01	0.72	10.83
Emphysema	2.46	19.96	57.13	5.51	10.91	4.03
Ground-glass	3.5	24.46	0.26	39.8	23.43	8.55
Fibrosis	0.58	1.1	1.86	15.1	77.6	3.76
Micronodules	0.02	9.62	0.44	1.42	2.81	85.68

Discussion

- Major confusions:
 - Emphysema and normal
 - Ground-glass and normal
 - Ground glass and fibrosis
- Problems:
 - Small inter-class variation between emphysema and normal, and groundglass and fibrosis
 - Large intra-class variation for emphysema and fibrosis
 - Healthy tissue does not possess a single uniform texture
- Normal tissue, fibrosis and micronodules achieved similar results to the literature
- Non-lung pattern obtained a high sensitivity

Conclusion and Future Work

- Initial results in classification of texture patterns from HRCT of the lung using the CLBP descriptor with a SVM classifier
- Also classifying body areas outside the lungs
- $CLBP_{(8,2)}^{riu2}$ was shown to be the best CLBP configuration
 - Good classification results for non-lung, normal lung, fibrosis and micronodules
 - Multiple misclassifications involving emphysema and ground-glass
- Future work
 - Analysis and quantification of lung diseases patterns
 - Combination of multiple classifiers using *a posteriori* probabilities
 - Lung segmentation based on non-lung pattern

- A. Depeursinge, A. Vargas, A. Platon, A. Geissbuhler, P.-A. Poletti, and H. Mller, "Building a reference multimedia database for interstitial lung diseases," Computerized Medical Imaging and Graphics, vol. 36, no. 3, p. 227238, 2011.
- Z. Guo, D. Zhang, and D. Zhang, "A completed modeling of local binary pattern operator for texture classification," Image Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1657–1663, June 2010.

Thank you!

Blockwise Classification of Lung Patterns in Unsegmented CT Images

Luiza D. Bagesteiro, Lucas F. Oliveira and Daniel Weingaertner {Idbagesteiro, Iferrari, danielw}@inf.ufpr.br Vision, Robotics and Images Research Group (VRI), Department of Informatics Federal University of Parana (UFPR), Curitiba, Brazil