

Classificação de Padrões Radiológicos por Blocos em Imagens Não Segmentadas de Tomografia Computadorizada

Aluna: Luiza Dri Bagesteiro

Orientador: Prof. Dr. Daniel Weingaertner

Co-orientador: Prof. Dr. Lucas Ferrari de Oliveira

Sumário

- Introdução
- Achados radiológicos
- Tomografia Computadorizada
- Trabalhos relacionados
- Metodologia
 - Base de imagens
 - Extração dos blocos de imagens
 - Extração de características
 - Classificação
 - Fusão dos classificadores
- Resultados e discussão
- Considerações finais
- Trabalhos futuros

- Doenças pulmonares intersticiais (DPIs) mais de 180 patologias
- Diagnóstico: histórico do paciente, exames, aspectos visuais nas imagens
 - Tomografia Computadorizada de Alta Resolução (TCAR)
- Alterações na TCAR: achados radiológicos
 - "lesões, anormalidades ou alterações na estrutura normal de um tecido observado nas imagens médicas de exames radiológicos"¹
- Importância de identificar os padrões radiológicos:
 - A combinação de achados pode fornecer um possível diagnóstico

Motivação

- Análise de imagens:
 - Reduz as indicações de biópsias pulmonares aos pacientes
 - Detecta doenças em seu estágio inicial
 - Obtém uma perspectiva sobre o grau da gravidade da patologia
- A interpretação dos exames de TC depende do especialista
- Há uma grande quantidade de cortes tomográficos por paciente
- Necessidade de uma ferramenta que forneça ao especialista uma "segunda opinião" sobre a presença de padrões radiológicos

Objetivos

- Reconhecer automaticamente padrões radiológicos em blocos de imagens não segmentadas de TCAR
 - Classificar os padrões: tecido normal, enfisema, vidro-fosco, fibrose e micronódulos, bem como áreas externas ao pulmão
 - Avaliar métodos de extração de características
 - Utilizar blocos de imagens do pulmão que representem os aspectos visuais de cada padrão

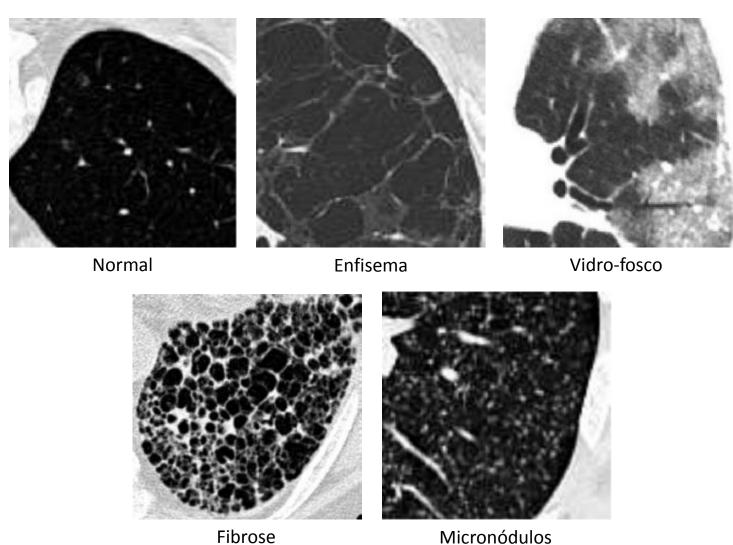
Desafios

- Aumentar as variações interclasse e diminuir as variações intraclasse
- Desenvolver método que não dependa da prévia segmentação pulmonar

Contribuições do trabalho

- Método de classificação que não depende de uma imagem segmentada
- Análise de diversos métodos de extração de características
- Método de classificação de blocos de imagens de TCAR que pode ser integrado a uma ferramenta de auxílio ao diagnóstico
- Artigo aceito e apresentado em:
 - 28th IEEE International Symposium on Computer-Based Medical Systems "Blockwise Classification of Lung Patterns in Unsegmented CT Images" Luiza Dri Bagesteiro, Lucas Ferrari de Oliveira e Daniel Weingaertner.

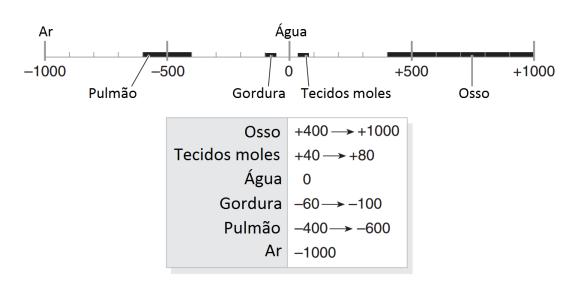
Achados radiológicos



7

Tomografia Computadorizada

- Imagens em tons de cinza de "cortes" de partes do corpo ou de órgãos
- Valor dos pixels medido em Unidades Hounsfield (Hounsfield Unit HU)



Tomografia computadorizada

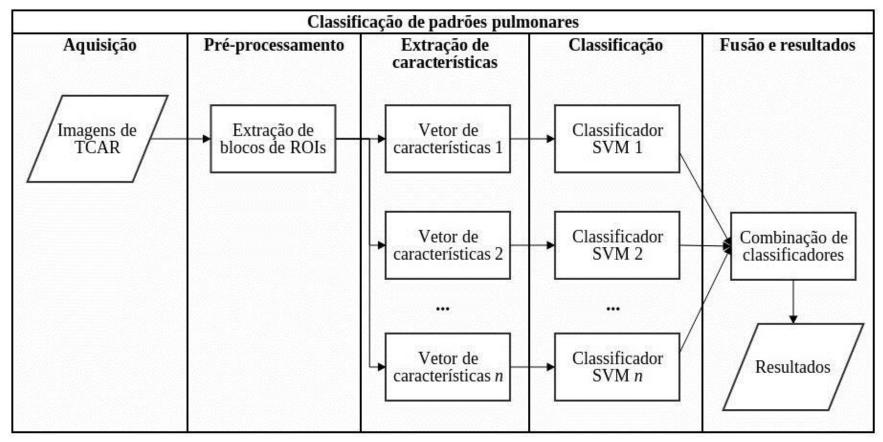
Trabalhos relacionados

Síntese dos trabalhos de análise e classificação de padrões pulmonares

Imagens	% média
Privadas - 600 ROIs	89% de acurácia
Privadas – 73.000 ROIs	94,16% de sensibilidade
Privadas - 900 ROIs	89,88% de acurácia
Públicas – 17.848 ROIs	75,81% de sensibilidade
Privadas - 600 ROIs	92,63% de acurácia
Públicas – 23.731 ROIs	82,64% de sensibilidade
Privadas – 2.360 VOIs	95,4% de acurácia
Públicas – 16.220 ROIs	74,2% de sensibilidade
Públicas – 2.503 ROIs	89% de f-score
Privadas – 100 ROIs	95% de acurácia
Privadas - 3.252 ROIs	82,6% de sensibilidade
	Privadas - 900 ROIs Públicas - 17.848 ROIs Privadas - 600 ROIs Públicas - 23.731 ROIs Privadas - 2.360 VOIs Públicas - 16.220 ROIs Públicas - 2.503 ROIs Privadas - 100 ROIs

Metodologia

Para atingir os objetivos:



Base de imagens

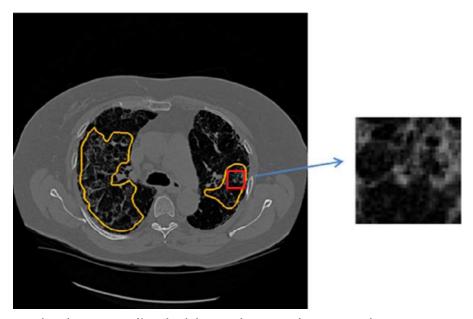
- Base de imagens de Depeursinge et al.²
- Contém conjuntos de TCAR de 113 pacientes
 - TC de alta resolução em formato DICOM
 - 512x512 pixels e níveis de cinza no intervalo [-1024, 3071]
- Ground truth
 - Máscaras dos pulmões
 - Marcação de ROIs (Regions of Interest) de 17 padrões pulmonares
 - Normal, enfisema, vidro-fosco, fibrose, micronódulos, além de áreas externas ao pulmão

² Depeursinge, A., Vargas, A., Platon, A. a. A., Poletti, P.-A., and Muller, H. (2011). Building a Reference Multimedia Database for Interstitial Lung Diseases. *Computerized Medical Imaging and Graphics*.

Extração de blocos de imagens

Extração de blocos de tecido pulmonar

- Para cada ROI pulmonar:
 - Extrai blocos de 32x32 pixels
 - Janela com meia sobreposição em x e y
 - Mínimo de 75% dos pixels pertencentes ao padrão da ROI

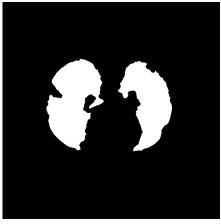


Extração de blocos de imagens

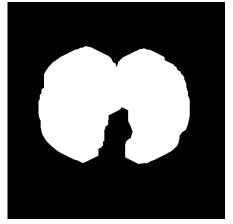
Extração de blocos externos ao pulmão

- Dilatação morfológica aplicada na máscara pulmonar
- A ROI não-pulmonar é a área dilatada que não pertence ao pulmão
- Para cada ROI não-pulmonar:
 - Extrai blocos de 32x32 pixels
 - Janela não sobreposta em x e y
 - Mínimo de 75% dos pixels pertencentes ao padrão da ROI

Imagem original



Máscara pulmonar



Máscara pulmonar dilatada

A área cinza representa a ROI não pulmoná?

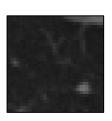
Extração de blocos de imagens

Quantidade de blocos de ROIs extraídos

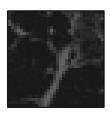
Padrão pulmonar	Quantidade de blocos
Não-pulmão	3.000
Normal	5.733
Enfisema	1.014
Vidro-fosco	1.942
Fibrose	2.736
Micronódulos	6.112

Exemplos de blocos extraídos:

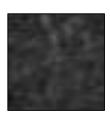
Não-pulmão



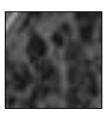
Normal



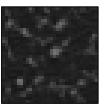
Enfisema



Vidro-fosco



Fibrose



Micronódulos

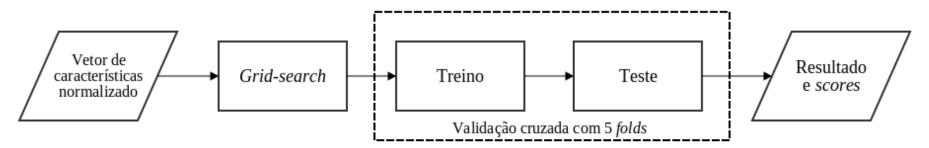
Extração de características

 Objetivo: analisar a variedade de descritores para extrair características distintas das imagens, buscando uma complementaridade entre eles

Descritor	Tamanho do vetor
$LBP_{(8,1)}^{u2}$	59
$LBP_{(8,2)}^{u2}$	59
$LBP_{(8,1)}^{riu2}$	10
$LBP_{(8,2)}^{riu2}$	10
$CLBP_S/M/C_{(8,1)}^{u2}$	200
$CLBP_S/M/C_{(8,2)}^{u2}$	200
$CLBP_S/M/C_{(8,1)}^{riu2}$	200
$CLBP_S/M/C_{(8,2)}^{riu2}$	200
$LPQ_{(8,1)}^u$	256
$LPQ_{(8,1)}^{g}$	256
$LPQ_{(8,1)}^{gd}$	256
GLCM	20
Histograma	25
Medidas estatísticas do histograma	4
Transformação top-hat	4

Classificação

- Treinar um classificador para cada descritor
- Total de 15 classificadores
- Support Vector Machine (SVM)
- Validação cruzada com 5 folds
- Divisão dos folds com base nos pacientes
- Adotada a estratégia de estimar probabilidades para as saídas geradas pelo SVM



Processo de classificação para cada característica extraída

Classificação

Número de pacientes e blocos por fold

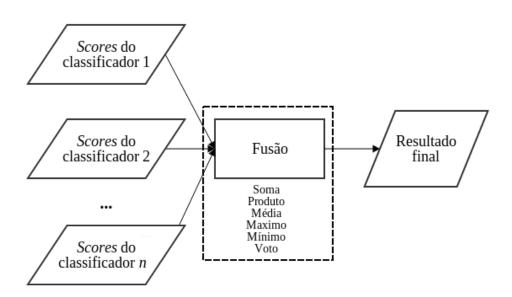
Nº de pacientes	Nª de blocos
43	4.044
19	4.214
21	3.991
17	3.962
12	4.329
	43 19 21 17

Número de exemplos de cada classe por fold

Fold	Não-pulmão	Normal	Enfisema	Vidro-fosco	Fibrose	Micronódulos
1	1.160	668	58	559	444	1.155
2	620	2.305	175	682	352	80
3	546	203	0	390	494	2.358
4	389	226	111	311	1.195	1.730
5	285	2.331	673	0	251	789

Fusão dos classificadores

- Cada classificador gerou probabilidades a posteriori
- Combinar classificadores por meio de métodos de fusão
- Gerar todas as possíveis combinações de respostas
- $\sum_{r=2}^{n} \frac{n!}{r!(n-r)!}$ = 32.752 combinações para os 15 classificadores



Processo de fusão de respostas dos classificadores

- Resultados individuais (15 classificadores)
- Resultados das fusões (10 melhores)
- Medidas:

•
$$sensibilidade = \frac{VP}{VP + FN}$$

•
$$precisão = \frac{VP}{VP + FP}$$

•
$$especificidade = \frac{VN}{VN + FP}$$

•
$$acur\'{a}cia = \frac{VP + VN}{VP + FP + FN + VN}$$

- VP verdadeiro positivo
- FP falso positivo
- FN falso negativo
- VN verdadeiro negativo

Resultados gerais dos 15 classificadores individuais (em %)

Classificador	Sensibilidade	Precisão	Especificidade	Acurácia
$CLBP_S/M/C_{(8,2)}^{riu2}$	78,99	75,95	95,55	93
$CLBP_S/M/C_{(8,1)}^{riu2}$	75,29	70,84	94,82	91,76
$CLBP_S/M/C_{(8,2)}^{u2}$	74,18	70,76	94,51	91,39
$CLBP_S/M/C_{(8,1)}^{u2}$	72,06	67,89	94,12	90,69
Transformação top-hat	69,63	61,86	93,5	89,88
Histograma	67,47	63,44	93,05	89,16
$LBP_{(8,2)}^{u2}$	66,97	64,31	92,88	88,99
$LPQ_{(8,1)}^g$	66,76	61,31	92,95	88,92
$LBP_{(8,1)}^{u2}$	66,58	62,27	92,84	88,86
$LBP_{(8,2)}^{riu2}$	66,01	62,79	92,7	88,67
$LPQ_{(8,1)}^u$	63,53	55,98	92,33	87,84
$LBP_{(8,1)}^{riu2}$	62,57	58,28	91,96	87,52
$LPQ_{(8,1)}^{gd}$	62,1	53,45	92,05	87,37
GLCM	55	53,36	90,51	85
Medidas estatísticas do histograma	41,42	42,82	87,04	80,47

Matriz de confusão da melhor configuração do CLBP ($CLBP_{(8,2)}^{riu2}$) (em %)

	NP	N	E	VF	F	М
NP	97,5	0,7	0,17	1,37	0,23	0,03
N	0,68	79,98	0,78	7,01	0,72	10,83
E	2,46	19,96	57,13	5,51	10,91	4,03
VF	3,5	24,46	0,26	39,8	23,43	8,55
F	0,58	1,1	1,86	15,1	77,6	3,76
M	0,02	9,62	0,44	1,42	2,81	85,68

- Reconhece as classes normal, fibrose e micronódulos com taxas próximas às da literatura
- Ótima taxa de reconhecimento para não-pulmão
- Problemas em identificar enfisema e vidro-fosco

Resultados gerais das 10 melhores combinações (em %)

Combinação	Sensibilidade	Precisão	Especificidade	Acurácia	TOP 2
(a)	81,65	79	96,06	93,88	92,62
(b)	81,56	79,82	96,05	93,85	92,89
(c)	81,51	79,36	96,06	93,84	93,08
(d)	81,51	78,47	96,07	93,84	92,87
(e)	81,42	78,94	96,03	93,81	92,74
(f)	81,3	79,64	96	93,77	92,83
(g)	81,3	79,35	95,99	93,77	92,59
(h)	81,23	78,93	95,99	93,74	92,71
(i)	81,09	78,99	95,97	93,7	92,69
(j)	81,03	79,07	95,94	93,68	92,63

- Melhor regra:
- **Produto**

- (d) $CLBP_{(8,1)}^{riu2}$, $CLBP_{(8,2)}^{riu2}$, top-hat (e) $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,1)}^{u2}$, top-hat (f) $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,1)}^{u2}$, $CLBP_{(8,2)}^{u2}$, top-hat (g) $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,2)}^{u2}$, top-hat, $LPQ_{(8,1)}^{u}$

- (a) $CLBP_{(8,1)}^{riu2}$, $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,2)}^{u2}$, top-hat, $LPQ_{(8,1)}^{u}$, (i) $CLBP_{(8,1)}^{riu2}$, $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,1)}^{u2}$, $CLBP_{(8,1)}^{u2}$, top-hat (j) $CLBP_{(8,2)}^{riu2}$, $CLBP_{(8,1)}^{u2}$, $CLBP_{(8,2)}^{u2}$, top-hat, $LPQ_{(8,1)}^{u}$

Matriz de confusão da melhor combinação de classificadores ($CLBP_{(8,2)}^{riu2}$ e transformação top-hat) (em %)

	NP	N	E	VF	F	M
NP	99,2	0,03	0,5	0,2	0,03	0,03
N	0,16	85,92	1,53	4,76	0,4	7,22
E	1,47	32,35	44,64	0,79	8,55	12,19
VF	2,11	29,71	0	51,29	13,65	3,24
F	1,46	1,39	1,28	11,15	79,57	5,15
М	0,03	9,21	0,29	0,74	3,96	85,77

- Aumento de sensibilidade em todas as classes, exceto na classe enfisema
 - Não pulmão: de 97,5% para 99,2%
 - Normal: de 79,98% para 85,92 %
 - Enfisema: de 57,13% para 44,64%
 - Vidro-fosco: de 39,8 % para 51,29 %
 - Fibrose: de 77,6 % para 79,57 %
 - Micronódulos: de 85,68% para 85,77 %

- Maioria das confusões:
 - enfisema e normal
 - vidro-fosco e normal
 - vidro-fosco e fibrose
- Problemas interclasse:
 - enfisema e normal possuem aparência escura
 - vidro-fosco e fibrose altas densidades
- Problemas intraclasse:
 - Enfisema e fibrose estruturas locais irregulares
 - Normal não possui textura uniforme única

- Necessidade de uma etapa de verificação
 - Reavaliar determinada amostra, extraindo características específicas
- Aumento em todas as medidas gerais, do melhor classificador individual para a melhor combinação de classificadores
- TOP 2 pode fornecer ao especialista duas respostas em forma de probabilidades
- Desvantagem: diversos erros de classificação
 - regiões pulmonares não possuem textura homogênea
 - perda de propriedades globais de textura na classificação por blocos

Comparativo com os resultados obtidos na literatura (em %)

Trabalho	Sensibilidade	Acurácia
Park et al. (2009)	92,5	89
Vo and Sowmya (2010)	94,16	-
Lim et al. (2011)*	-	89,88
Depeursinge et al. (2012)*	75,81	90,76
Chang et al. (2012)	-	92,63
Song et al. (2013)*	82,64	-
Zhao et al. (2013)	-	95,4
Li et al. (2013)*	74,2	-
Dash et al. (2014)	-	95
Pereyra et al. (2014)	82,6	-
Método proposto*	81,65	93,88

^{*} Utilizaram a base de imagens pública de Depeursinge et al. (2011)

Considerações finais

- Método que identifica seis padrões radiológicos em blocos de imagens de TCAR: não-pulmão, normal, enfisema, vidro-fosco, fibrose e micronódulos
- Melhor classificador individual: $CLBP_{(8,2)}^{riu2}$
- Melhor combinação de classificadores: $CLBP_{(8,2)}^{riu2}$ e transformação top-hat
- Possibilidade de inserção do método desenvolvido em uma ferramenta de auxílio ao diagnóstico
- Resultados preliminares já publicados em artigo

Trabalhos futuros

- Novas configurações para extrair características da transformação top-hat
- Seleção de atributos dos vetores de características
- Classificação hierárquica
- Novas regras para a fusão de classificadores
- Testar o método como um pré-segmentador para os pulmões
- Avaliação da imagem pulmonar
 - Informações de vizinhança
 - Distribuição das anormalidades

Classificação de Padrões Radiológicos por Blocos em Imagens Não Segmentadas de Tomografia Computadorizada

Luiza Dri Bagesteiro

<u>Idbagesteiro@inf.ufpr.br</u>

http://web.inf.ufpr.br/vri/alumni/2015-LuizaDriBagesteiro-Msc

Prof. Dr. Daniel Weingaertner

danielw@inf.ufpr.br

Prof. Dr. Lucas Ferrari de Oliveira

lferrari@inf.ufpr.br