
Abstract

When dealing with metaheuristics, one important question is how
many evaluations are worth spending in the search for better results.
This work proposes a method to estimate the best moment to stop
swarm iterations based on the analysis of the convergence behavior
presented during optimization, aiming to provide an effective balance
between saving fitness evaluations and keeping the optimization qual-
ity. An automated Convergence Stabilization Modeling operating in
Online mode (CSMOn) is proposed based on a sequence of linear re-
gressions using exponential and log-like curves. The method was tested
on the CEC13 benchmark with CCPSO2-IP E algorithm and on 30
random Max-Set functions with the swarm algorithms PSO, ABC and
CCPSO2-IP E. CEC13 results show that up to 90% less fitness evalu-
ations are performed for functions where CCPSO2-IP E has a steady
convergence, and up to 49% for functions where convergence is erratic,
while penalties for fitness are kept small. Max-Set results demon-
strates the robustness of CSMOn for the search algorithms tested. We
conclude that CSMOn is capable of adapting to an optimization in
progress, producing a good trade-off between result quality and evalu-
ation savings.

Index terms— Convergence stabilization modeling, parameter tuning,
curve fitting, online algorithms, swarm intelligence.
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1 Introduction

The increasing complexity of real world optimization problems requires pow-
erful tools with robust configuration sets. Among these tools, stochastic
metaheuristics play a special role, and there is a wide variety of literature
concerning configuration methods and usage. However, despite their impor-
tance, not much effort has been done toward algorithm-independent proce-
dures to determine a good cost/benefit number of fitness function evalua-
tions, specially for continuous problems. Apart from being quite contextual
(the solution relies on the strengths and weaknesses of the optimization al-
gorithms and the problem being optimized), their behavior also obeys the
unpredictable random numbers logic.

Traditionally, convergence modeling is directed toward asymptotic analy-
sis, severely restricted to algorithm properties [1] where rigorous assumptions
must be made, and mostly looking for global best solution under a theoreti-
cal infinite number of evaluations [2]. This has a limited practical value since
real world complex optimizations normally expect high quality solutions (lo-
cal instead of global ones) with minimal number of evaluations (instead of
accepting large processing times). Some works like [3] ally asymptotic anal-
ysis with practical usage, but still under hard restrictions and assumptions
and mostly for discrete problems with no large search spaces. In [4], a general
framework using model convergence is proposed for discrete problems, which
instead of using the best solutions only for overall convergence analysis, it
uses the population history to interfere in new generations for better quality
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of solutions. In [5], a deep analysis is made of which conditions and param-
eters selection guarantee local convergence for Particle Swarm Optimization
(PSO), but no novel process is provided for convergence modeling. Model-
based optimization (MBO) methods [6] use either distribution-based models
or surrogate models to improve convergence. The former includes the well-
known Estimation of Distribution Algorithms (EDAs), which generate new
candidate solutions according to the probability distribution estimated from
the promising candidate solutions of the current population. In the latter,
generally used when the evaluation of the cost function is very expensive or
time consuming, the original function is replaced by a cheaper coarse-grained
function that simplifies the search space, however its performance on high
dimensionality problems and the selection of the correct surrogate model are
still open research questions to be addressed. A more elaborated approach
that also requires specific mathematical formulation for every search algo-
rithm for a good performance is the Optimal Computing Budget Allocation
(OCBA) [7], which operates by iteratively allocating function evaluations to
individuals (until the total budget is exhausted) based on an allocation rule
that identifies the most promising solutions, so that noisy/costly solutions
are discarded and accuracy is improved, thus maximizing the convergence
rate [8] by estimating the fitness.

This work proposes a different approach for local convergence analysis
that is not dependent on a particular algorithm but on the standard behavior
presented by general memory-based metaheuristics (like swarm algorithms).
It treats the optimization algorithm as a black-box, thus exploring several
aspects present in the search algorithm instead of requiring core changes to
it. The main goal is to provide an on-line estimation of a good cost/benefit
stopping point for every optimization run of a swarm based search algorithm,
aiming to save function evaluations.

The hypothesis is that the inherent convergence behavior presented by
these search algorithms when entering a local minimum can be modeled by
a sequence of auto-adapted exponential and log-like curves.

The reason behind this hypothesis is that the social knowledge provided
by the swarms gradually restrict the movement of each individual within
a portion of the search area (given that the algorithm guarantees that in-
dividuals will reach a stable point [5]). Such movement toward the stable
point (and potentially toward a local minimum) yields reasonable exponen-
tial convergence rates (when major improvements occur) followed by log-like
convergence rates (when improvements slow down), providing run time data
to model the convergence speed through linear regression.

When approaching a local minimum, due to the typical large sequence of
small improvements in this region of the search space, the curve calculated
through linear regression will be biased toward recent data points and away
from initial (fast convergence) points, indicating the beginning of the con-
vergence slow down. When the slow down happens during an exponential
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convergence, the majority of the improvements already occurred and next
improvements tend to be modest. When the slow down happens during
a log-like convergence, only minor incremental improvements are expected
on subsequent evaluations, meaning that the convergence is stabilizing and
further search might not be advantageous.

Considering this hypothesis, and given a restricted computational bud-
get (limited swarm iterations, fitness evaluation or run time) on a multiple
run scenario, CSMOn can automatically determine a good moment to stop
evolving a population of solutions on a particular run and start searching on
the next run. In this case, we consider that more important than the budget
allocated to the fitness calculation of a specific particle, the challenge here is
associated with the analysis of the convergence of the best fitness achieved
by the swarm. This way, a good commitment could be found between the
drawback (performance loss) of not having optimized until the end of the
budget allocated for each independent run, and the advantages of saving
computational budget (notice that using the saved effort on subsequent op-
timization runs is out of the scope of this work).

Therefore, the proposed method Convergence Stabilization Modeling in
Online mode (CSMOn) consists in detecting local minimum traps of evo-
lution by collecting convergence data (points comprising best fitness values
and their respective number of evaluations) during the optimization run (on-
line). A sequence of 2D exponential and log-like curves is adjusted over this
data through linear regression, and a good cost/benefit stopping point is
estimated by finding out the moment when the log-like curve takes distance
from the initial convergence improvements. The source code of the CSMOn
implementation is available online at [9].

2 Mathematical Basis

Taking the convergence data as a list ` = {(xj , yj)},∀j ∈ {1, · · · , s} of size
s of strictly monotonically decreasing 2D coordinate points, yj as the jth
fitness value obtained at fitness evaluation xj , p1 as an initial position in this
list, p2 as a final position and pc as a position close to p2 (1 ≤ p1 < pc / p2 ≤
s), one way of defining a convergence stabilization is observing the relative
differences of the convergence improvements. When the difference [ypc , yp2 ]
is very small compared to the difference for the whole interval [yp1 , yp2 ], we
can observe a convergence stabilization. In such definition, the stabilization
is contextual and depends on how many convergence improvements have
been obtained and the relationship between them. Hence, the greater the
number of improvements at beginning of the sequence and the difference
between them, more improvements with small differences will be required
to state that a convergence is reaching a stabilization point at a later stage.

This section describes the curves, the linear regression method and the
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properties used in this work to model the convergence stabilization behavior.

2.1 Curves

Two curve functions are used to model the general convergence stabilization
behavior of a swarm based stochastic metaheuristic: the Exponential and
the Power functions. Large improvements typically seen at the initial of the
search or when escaping from local minimum traps are better modeled by
exponential curves, whereas log-like curves are well suited for moderate and
small improvements seen on the remaining of the search.

The natural Exponential Function Exp is defined as:

Exp(x) = αe−βx (1)

where α is the Intersect point with Y axis (α = Exp(0)) and β is the relative
growth speed of the function.

The deterioration of an exponential convergence can be detected by dis-
covering the point when the sublinear convergence begins. The list ` is said
to converge sublinearly when:

lim
s→∞

|ys − L|
|ys−1 − L|

→ 1 (2)

where L denotes the last possible y value of the sequence. Assuming the last
possible value as LM for a maximum number of M evaluations, this criteria
can be re-written for a minimization problem by an approximation as the
decay equation (3):

De(`) = 1− ys − LM
ys−1 − LM

(3)

indicating how much the current value ys differs from the previous value
ys−1 concerning the estimation of the limit achieved due to computational
limitation.

The log-like Power Function Pow can be defined as

Pow(x) = αx−β (4)

where α is the Scaling factor (α = Pow(1)) and β is the growth speed of
the function.

A logarithmic convergence commences only after the deterioration of the
exponential convergence. Thus, once the criteria (2) is satisfied, the list ` is
said to converge logarithmically when:

lim
s→∞

|ys − ys−1|
|ys−1 − ys−2|

→ 1 (5)

As in (3), this limit can be simplified by decay equation (6):

Dl(`) = 1− ys − ys−1
ys−1 − ys−2

(6)
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2.2 Linear Regression

Least Square (LS) is a linear regression method used to find the best-fitting
curve that adjusts to a data set ` of points (x, y).

Due to the rigid shape of the exponential curve, the precision of the curve
calculated through LS is increased if the data set is translated to bring the
convergence values y closer to the X axis. Let γj = yj − min(y) + 1,
∀j ∈ [p1 · · · p2] be the new translated value, then equations (7a) and (7b)
can be used to estimate the parameters β and α of the exponential curve
[10] between [p1, p2]:

βe(`, p1, p2) =

p2∑
j=p1

(xj − x)(ln(γj)− ln(γ))

p2∑
j=p1

(xj − x)2
(7a)

αe(`, p1, p2) =

 p2∑
j=p1

ln(γj)− βe
p2∑
j=p1

xj

 / (p2 − p1 + 1) (7b)

where x is the average of xj and ln(γ) is the average of ln(γj).
The exponential curve calculated through LS tends to adjust better to

the regions where the majority of points are located, quickly moving away
from the other points. Considering that in a typical convergence there are
more moderate and small improvements than initial major improvements,
there are fewer data points available to represent the beginning of the expo-
nential decay than the remaining of the convergence. Therefore, considering
that the exponential curve (1) decreases at a rate proportional to its current
value, it can be said that the beginning of the convergence slow down occurs
when the parameter αe (intersection with Y axis) has its value reduced,
when compared to the previous regression, after adding one more point to
the sequence.

The second part of the convergence stabilization modeling uses a power
curve whose parameters β and α can be estimated as follows:

βp(`, p1, p2) =

p2∑
j=p1

(log(xj)− log(x))(log(yj)− log(y))

p2∑
j=p1

(log(xj)− log(x))2
(8a)

αp(`, p1, p2) =

 p2∑
j=p1

log(yj)− βp
p2∑
j=p1

log(xj)

 / (p2 − p1 + 1) (8b)

where log(x) and log(y) are the average of log(xj) and log(yj).
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Because the growth speed βp is constant along X axis, the power curve
has a behavior similar to the exponential curve on the intersect (parameter
αp) when distantiating from initial data points (since the majority of the
points are moderate and small improvements), but occurring more slowly
than for the exponential curve (given the growth speed is constant here).

3 CSMOn: Convergence Stabilization Modeling
Operating in Online Mode

The proposed method (CSMOn) controls the execution of the optimiza-
tion algorithm by continuously requesting the metaheuristic to process un-
til the next best result is found. Every new best fitness value (fit) and
its associated number of evaluations (ne) are appended to a list of points
gb = {(nej , fitj)},∀j ∈ {1, · · · , s}, replacing ` as the convergence list for
the LS (section 2.2). The process is divided in three main phases (Figure
1):

i Initial/Major Improvements: Determine through criteria (2) and (5)
the moment when major improvements cease, ensuring the search will
stop only after first improvements have occurred. Positions 1 and
pb identify this phase (red area in Figure 1) where no regression is
performed.

ii Intermediate Improvements: After phase i, the regression process is
started and finds the point where the exponential curve (blue) takes
distance from initial convergence data (first red circle). Positions pb
and pT identify this phase (orange area), with position pT defining the
transition from exponential to logarithmic decay.

iii Final/Convergent Improvements: Once phase ii finishes, a log-like
curve (green curve) is adjusted to the remaining improvements un-
til the curve departs from initial points (second red circle). Positions
pT and pS identify this phase (yellow area), with pS defining the point
where the logarithmic sequence stabilizes (third red circle), saving un-
necessary fitness evaluations (grayed area).

Considering the search algorithm can escape from a particular stagnation
point, phases i, ii and iii can repeat along evolution.

Metaheuristics like PSO typically show the greatest improvements at the
very beginning of the search, and initial fitness values can be quite distant
from the general fitness found on the remaining of the search. In such cases,
the initial points (two points would suffice) may be considered outliers and
are not included in gb.

The following plateau-curve is proposed to model the general conver-
gence stabilization behavior of swarm based optimization algorithms (with
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Figure 1: CSMOn Method defining transition points for fast, intermediate
and slow convergence
log-like curve represented by the power curve):

Fapp(nej) =

{
Exp(nej) (1) if j ≤ pT
Pow(nej) (4) if j > pT

(9)

where Fapp is the function that approximates the real fitness fitj at nej
evaluations.

Algorithm 1 CSMOn Algorithm

1: Input: {M,R}
2: pT ← −1, pS ← −1
3: r ← 0.99 . Set r ← R for a fixed relaxation
4: append(gb, GetBest(1,M))
5: repeat
6: r ← max(r2, R) . Remove this line for a fixed relaxation
7: if pS = −1 then . Look for Exponential convergence
8: pT ← AdjustExp(gb,M, r)

9: if pT > 0 then . Log-like convergence started
10: pS ← AdjustLog(gb,M, r, pT ) . At this point,

either finishes for a given r (pS > 0) or a new exponential convergence
is detected (pS = −1) and returns to line 5

11: until nepS >= M or (r = R and pS > 0)

These are the basic CSMOn steps (Algorithm 1):

• Two problem-dependent input parameters are required: the maximum
number of fitness function evaluations for every run M (i.e. the portion
of the total budget for this run) and the relaxation parameter R ∈]0, 1[.
The relaxation controls the limit sensibility, specifying how close the
equations (3) and (6) should be from satisfying the respective criteria
(2) and (5).
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• Function GetBest(nBest,M) returns from the search algorithm a list
{(ne1, fit1), · · · (nenBest, fitnBest)}. To deal with search algorithms
that do not show a minimum initial convergence, if gb is empty, the
function will start to add elements to the list only after De(gb) ≥
.0001 (0.01% improvement). If the maximum number of evaluations
M is reached before filling the list, the search algorithm stops and the
function appends to the list a dummy entry containing the last best
fitness (M,fitM ).

• Initially one best value is obtained from the search algorithm and the
initial value for the relaxation is defined: r ∈ [R,Rs], with R > 0 and
Rs < 1. If a fixed relaxation should be used, then r = R, otherwise
it will decrease in a quadratic way from the superior to the inferior
limit. A decreasing relaxation accepts an initially less compliant expo-
nential and an increasingly more suitable log-like convergence, while
fixed relaxation uses the same compliance level throughout the search.

• Function AdjustExp(gb,M, r) requests new elements for gb to detect
the end of the major improvements (pb) and the transition point pT
between an exponential and a log-like convergence.

• Function AdjustLog(gb,M, r, pT ) requests new elements until the log-
like convergence stabilizes at point pS , indicating a possible end of the
search. However, if a new exponential convergence occurs, control is
returned to AdjustExp (line 8 in Algorithm 2) and pb and pT are reset.

• If a fixed relaxation is used, the method finishes at the first pS found.
If a quadratic decreasing relaxation is used, pS is reset, r has its value
reduced for the calculation of a new pS and the method finishes when
the relaxation reaches R. In any case, the method stops when the
maximum number of evaluations M is reached.
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Algorithm 2 AdjustExp

1: Input: {gb,M, r}
2: sprev ← s
3: append(gb, GetBest(2,M)) . Request next 2 bests results
4: if s− sprev < 2 then return −1

5: pb ← −1
6: while nes < M do
7: if De(gb) < r and Dl(gb) < r then
8: if pb = −1 then . Initialize the regression process
9: pb ← s− 2

10: α2 ← αe(gb, pb, s) (7b)
11: else . Check the incremental difference on regression
12: α1 ← α2

13: α2 ← αe(gb, pb, s)
14: if α2 < α1 then
15: return s . Transition to log-like curve

16: else . Stop the regression
17: pb ← −1

18: append(gb, GetBest(1,M)) . Request next best result
return −1

The adjustment of the exponential curve (Algorithm 2) has the following
steps:

1. A sequence of best values is requested and appended to gb as long
as the fitness improvements are substantial (i.e. until criteria (2) and
(5) are satisfied) (line 7). Then, the start of the weak part of the
exponential decay is set pb = s− 2 (line 9), marking the beginning of
the regression calculation (7b) (line 10).

2. For every next best value (line 18), a new regression is calculated in
the interval [pb, s] (line 13) and the incremental difference to previous
regression is compared to detect if the curve is biased toward recent
best values, representing a slow down on the exponential convergence
(line 14).

3. When the bias is detected, the end of the exponential curve is set
pT = s (returns the control to line 8 in Algorithm 1).

4. However, if the convergence speed increases above the defined relax-
ation r, the regression stops (line 17) and the process proceeds re-
questing the sequence of best values.
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Algorithm 3 AdjustLog

1: Input: {gb,M, r, pT }
2: sprev ← s
3: append(gb, GetBest(3,M))
4: if s− sprev < 3 then return −1

5: α1 ← αp(gb, pT , s− 1) (8b)
6: α2 ← αp(gb, pT , s)
7: while α2 ≥ α1 and nes < M do . Check incremental difference
8: if De(gb) ≥ r or Dl(gb) ≥ r then
9: return −1 . Exponential convergence detected

10: append(gb, GetBest(1,M))
11: α1 ← α2

12: α2 ← αp(gb, pT , s)
return s

Finnally, log-like curves are adjusted (Algorithm 3):

1. A sequence of best values is requested and the respective incremental
regressions (8b) are calculated for the interval [pT , s] (lines 5, 6 and
12) and then compared to detect if the curve is biased toward recent
best values, representing a logarithmic stabilization (line 7).

2. When the bias is detected, the respective position pS = s is returned,
marking the end of the relevant logarithmic decay (line 10 in Algorithm
1).

3. However, if the search algorithm escapes logarithmic convergence mov-
ing towards an exponential convergence (line 8), then the whole pro-
cess starts over from current position s, ignoring previous convergence
points.

In a multiple run scenario, the total budget has to be partitioned in
a way that every independent run has its own portion of the evaluations.
A simplistic schema to use CSMOn under this scenario would set M to
the number of evaluations assigned to every run, and the saved evaluations
be used on upcoming runs by creating a different update mechanism for
relaxation r that takes the overall remaining budget into consideration.

4 Experimental Results

Two test sets are used to experiment with CSMOn: one fixed and one ran-
domly generated. The fixed test set comprises specially difficult competition
benchmark functions for optimization called CEC13 [11] and is composed of
15 minimization functions of 1000 dimensions with global best at LM = 0:
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• Fully-separable Functions: F1, F2, F3.

• Partially Additively Separable Functions: F4, F5, F6, F7, F8, F9, F10,
F11.

• Overlapping Functions: F12, F13, F14.

• Non-separable Function: F15.

The randomized test set uses an automated and parameterized test-problem
(landscape) generator called Max-Set of Gaussians (MSG) [12, 13], which
generates nonlinear, nonseparable random test functions based on the sum
of Gaussians.

A competitive decomposition method [14] for high dimensional problems
[15, 16], CCPSO2 [17] (Cooperatively Coevolving Particle Swarm) is a recent
state-of-the-art algorithm based on the well known PSO [18] metaheuristic.
It is a variant of a previous version called CCPSO [19, 20], being recognized
by its computational simplicity and good capacity of dealing with multi-
modal complex functions and separable problems [21] [22]. CCPSO2-IP [23]
is an Iterative Partitioning method for CCPSO2 that improves its capacity
of dealing with non-separable problems by automating the task of find-
ing combination of dependent dimensions, so that CCPSO2-IP can escape
more easily from local minima traps caused by poor variable interaction.
For a comprehensive test of CSMOn under complex optimization scenarios,
CCPSO2-IP with exponential boost function (CCPSO2-IP E) has been used
to optimize CEC13 functions due to its strong capacity of escaping from lo-
cal minima and keep converging after long periods of stagnation on high
dimensional problems, producing convergence behaviors of hard prediction.
For the random MSG functions, the swarm algorithms CCPSO2-IP E, PSO
[24] and ABC [25] (Artificial Bee Colony) have been tested.

The results are then summarized with the mixed model based on confi-
dence intervals proposed by [26][26], which creates a simple pairwise com-
parison plot (between versions with and without CSMOn) that shows how
significant is the difference between results.

4.1 Configurations

Considering that the CSMOn stop condition does not entirely depend on
the number of evaluations M (i.e. it mainly depends on the convergence
behavior and the relaxation parameter), the search algorithms are processed
in two phases to compare the fitness obtained with and without the use of
CSMOn:

1. under the control of CSMOn method (i.e., until the last convergence
stabilization pS is found).
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2. it continues the optimization on the same run until M fitness evalua-
tions are performed (i.e., processing additional M − pS fitness evalua-
tions).

For the CEC13 test set, CCPSO2-IP E configuration is set as: p = 30,
Br = 0.5, maxTries = 2. The following values are used for M : M1 = 1e6,
M2 = 3e6, M3 = 6e6 and M4 = 1e7. For each M , the following values
are used for R (both for fixed and quadratic decreasing relaxations): {0.01,
0.02, ..., 0.09, 0.1, 0.2,..., 0.9}. Every benchmark function F is processed 30
times for each combination of M × R and an analysis has been conducted
aiming to evaluate:

1. The effect of the relaxation parameter: For every function F and each
combination of M × R, both the economy on the number of fitness
evaluations ((M − nepS )/M) and the complement of the relative ap-
proximation error of the fitness (1 − |(fitM − fitpS )/fitM |) are mul-
tiplied to obtain the trade-off matrix. Matrices for all 15 functions
F are averaged to illustrate the effect of the relaxation parameter as
the maximum number of evaluations increases, where higher values
mean better commitment between the fitness approximation and the
economy on function evaluations.

2. Overall advantages/drawbacks for best relaxations: From the previous
experiment, two relaxation parameters are chosen (Rlow, Rhigh). For
each function F, the best from these two parameters is used to com-
pare the best fitness obtained in every execution (for both M and pS
evaluations) and the averaged evaluation savings for each pS .

3. Detailed advantages/drawbacks for best functions: This experiment
aims to visualize how far the stabilization points (pS) found by CSMOn
are from the best possible values (restricted to M). For the best per-
formed functions F, the percentage of reduction on fitness approxima-
tion quality is compared with the percentages of economy on function
evaluations obtained by CSMOn, using as configurations all values of
M and the two previously selected relaxations.

For the second test set, the MSG landscape generator is used to create
test classes of 50 dimensions (varying the number of Gaussians randomly
in the interval [50, 100]). Configurations are empirically set to CCPSO2-IP
E: {p = 30, Br = 0.6, maxTries = 3}, PSO: {p = 30, c1 = 0.4, c2 = 1.4,
w = 0.9}[27] and ABC: {foodSource = 30, trials = 1e3}:

(4) Every search algorithm is executed 30 times and, for each execution, a
new test class is created from which a random test function is instan-
tiated and optimized 30 times independently, with M = 5e4. At the
end, 900 executions were be performed for each search algorithm.
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Figure 2: Averaged Cost/Benefit of CSMOn for CEC13 Functions. (M1 =

1e6, M2 = 3e6, M3 = 6e6, M4 = 1e7)

4.2 Results and Analysis

Experiments described in section 4.1 are discussed below. For the CEC13
functions:

Experiment 1: Figure 2(a) shows the results for fixed relaxation and
Figure 2(b) for quadratic decreasing relaxation. Although they look simi-
lar, fixed relaxation presents a smoother trade-off matrix (soft transitions
between configurations), with better results for small M and high R. How-
ever, quadratic decreasing relaxation obtains overall better results for both
high M and low R.

Experiment 2: From the previous experiment, Rlow = 0.08 andRhigh =
0.7 are chosen. Figure 3 presents the best possible results (in blue) and
CSMOn’s results (in red). Confirming the good convergence of CCPSO2-IP
E for functions F3, F5, F6, F9 and F10 [23], best results are obtained on
F5 and F9, with high relaxation R = 0.7, exceeding 90% economy (the red
values on X axis), showing that for problems where the search algorithm
is well suited, large relaxations should suffice (although some medians seem
differ, their relative differences are very small).

Function F2 processed almost up to M evaluations, meaning that CCPSO2-
IP E keeps converging throughout the search. For the other 9 functions
(comprising 36 combinations of F ×M), 28 combinations have their medi-
ans and 15 have their quartiles similar to the best possible results, with
up to 49% economy on latter 15 combinations. Fully separable F1 and F2
are special cases since for those functions CCPSO2-IP E presents an erratic
convergence with frequent transitions between poor logarithmic and mod-
erate exponential decays, meaning that the method would process up to M
evaluations if smaller relaxations were used.

Experiment 3: Figure 4 shows the percentages of advantage and draw-
back for functions F3, F5, F6, F9 and F10 with quadratic decreasing re-
laxations Rlow = 0.08 and Rhigh = 0.7. Results clearly show the advan-
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Figure 3: Comparison Between CSMOn stopping point and Processing until
M evaluations.
Quadratic decreasing R = {0.08, 0.7} (indicated below bottom axis). Red box is CSMOn
method and blue box is limited by M . Vertical axis is the fitness value. Actual number
of CSMOn’s function evaluations is given by M configuration (top axis) minus respective
percentage of economy (bottom axis).
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tages overcoming the drawbacks in all 40 combinations of F ×M ×R, with
Rhigh presenting the highest economy, reaching above 80% difference be-
tween drawback and advantage on function F10.
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Figure 4: Percentage of Economy on Fitness Evaluations × Reduction on
Fitness due to Quadratic Decreasing Relaxations (R = {0.08, 0.7}). Best config-

urations are Fitness on borders and N.Evals on center.

For the MSG functions:
Experiment 4: In the paired comparison plot (Figure 5), overlapping

intervals show that the means are not significantly different, leading to the
conclusion that there is no significant difference between results with and
without CSMOn for CCPSO2-IP E. Despite the fact that the figure shows
that PSO with and without CSMOn are not similar, the normalized fitness
difference is within a small percentage (3%), with minor importance when
compared to the economy of 27% on fitness evaluations. The small economy
obtained by CCPSO2-IP E (6%) and ABC (6.7%) occurred because these
algorithms were still converging for most of the runs, reachingM evaluations.
The 4% significance difference for ABC is due to the ”scout bees“ phase,
that reset the position from current to a different local minimum, suggesting
that CSMOn could be used to detect upfront a better moment for the scout
phase to occur.

Although not included here, additional tests with fixed relaxations have
shown that they are more conservative on convergence stabilization analy-
sis than decreasing relaxation, tending to produce smaller drawbacks with
moderate savings on erratic optimization.
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Figure 5: Paired comparison of CCPSO2-IP E, PSO and ABC search algo-
rithms, with and without CSMOn.
MSG landscape generator used to create 30 test classes per algorithm, one test function
instantiated per class and 30 executions per function using M = 5e4. Overall fitness
evaluations economy: CCPSO2-IP E=6%, PSO=27%, ABC=6.7%. Decreasing relaxation
values (R) shown on labels.

5 Conclusion

Tracking convergence trends for stochastic algorithms is not a trivial task,
however if successfully done could benefit the overall optimization by con-
trolling drawbacks resulting from fitness approximation due to evaluation
savings. This work has presented a method to track this trend for swarm
based stochastic metaheuristic.

The proposed approach (CSMOn) has been tested with CCPSO2-IP E
search algorithm on all 15 CEC13 benchmark functions. Results show that
the process presented to model the convergence stabilization behavior is
able to effectively adapt to each optimization in progress (online), obtaining
a good trade-off between the drawback resulting from the fitness approxi-
mation and the advantage of saving fitness function evaluations. The best
results are obtained with functions where CCPSO2-IP E has a stable con-
vergence behavior, presenting a great economy with the fitness consistently
approaching the best possible values (i.e. values achieved considering the
restriction of maximum number of evaluations M). At some cases, CSMOn
obtains above 90% economy with moderate drawbacks on the fitness esti-
mation, and in other cases it obtains above 70% positive difference between
advantages and drawbacks. Tests with Max-Set random functions show that
CSMOn is able to detect, for metaheuristics CCPSO2-IP E, PSO and ABC,
when the search is no longer converging, suggesting that it should be either
stopped or some additional action should be taken by the search algorithm
to reactivate the convergence.

Future work would include: the test to take into consideration long stag-
nation periods of the search algorithm; different update mechanisms for the
relaxation parameter aiming to react based on the distance to the maxi-
mum number of evaluations; a relaxation update mechanism to consider the
remaining budget in a multiple run scenario; and the test of the CSMOn
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method with non-swarm memory-based metaheuristics.
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