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Abstract—An important first step when deploying a wireless
ad hoc network is neighbor discovery in which every node
attempts to determine the set of nodes it can communicate
within one wireless hop. In the recent years, cognitive radio
(CR) technology has gained attention as an attractive approach
to alleviate spectrum congestion. A CR transceiver can operate
over a wide range of frequencies possibly spanning multiple
frequency bands. A CR node can opportunistically utilize
unused wireless spectrum without interference from other
wireless devices in its vicinity. Due to spatial variations in
frequency usage and hardware variations in radio transceivers,
different nodes in the network may perceive different subsets
of frequencies available to them for communication. This
heterogeneity in the available channel sets across the network
increases the complexity of solving the neighbor discovery
problem in a CR network. In this paper, we design and analyze
several randomized algorithms for neighbor discovery in such
a (heterogeneous) network under a variety of assumptions.

Keywords-multi-hop multi-channel wireless network; cog-
nitive radio technology; heterogeneous channel availability;
neighbor discovery; randomized algorithm; asynchronous sys-
tem; clock drift

I. INTRODUCTION

Neighbor discovery is an important step in forming a

self-organizing wireless ad hoc network without any sup-

port from an existing communication infrastructure [1], [2].

When deployed, nodes initially may have no prior knowl-

edge of other nodes that they can (directly) communicate

with. The results of neighbor discovery can then be used

to solve other important communication problems such as

medium access control [3], [4], clustering [5], [6], collision-

free scheduling [7], [8], and topology control [9], [10]. Many

algorithms for solving these problems implicitly assume that

all nodes know their one-hop and sometimes even two-hop

neighbors.

Cognitive radio (CR) technology has recently emerged

as a promising approach for improving spectrum utilization

efficiency and meeting the increased demand for wireless

communications [11]. A CR node can scan a part of the

wireless spectrum, and identify unused or underutilized

channels in the spectrum [11]. CR nodes in a network can

then use these channels opportunistically for communication

among themselves even if the channels belong to licensed

users. The licensed users are referred to as the primary users,

and CR nodes are referred to as the secondary users. (Of

course, when a primary user arrives and starts using its

channel, the secondary users have to vacate the channel.)

Due to spatial variations in frequency usage/interference,

hardware variations in radio transceivers and uneven prop-

agation of wireless signals, different nodes in the network

may perceive different subsets of frequencies available to

them for communication. This gives rise to a multi-hop,

multi-channel, heterogeneous wireless network, abbreviated

as M2HeW network. The focus of this paper is on solving

the neighbor discovery problem in an M2HeW network.

Related Work: Most of the prior work on neighbor dis-

covery assumes a single channel wireless network (e.g., [1],

[2], [12]–[17]. Some of the neighbor discovery algorithms

for a single channel network, such as those proposed in [2],

can be easily extended to work for a multi-channel network

(including a heterogeneous network). Let the collective set

of all channels over which radio nodes in the network are

capable of operating be referred to as the universal channel

set. The main idea is to execute a separate instance of single-

channel neighbor discovery algorithm on all channels in the

universal channel set concurrently. A node only participates

in instances that are associated with channels in its available

channel set. However, this simple approach has several

disadvantages. First, it requires that all nodes have to agree

on the composition of the universal channel set. Second, the

time complexity of the algorithm for multi-channel network

(obtained as above) will always be linear in the size of

the universal channel set. This is true even if the available

channel set of all nodes contain a single common channel.

This may happen if all channels in the universal channel

set but one are busy and cannot be used by any node in

the network. In many cases, the available channel sets of

nodes may be much smaller than the universal channel set.

Third, all nodes should start executing the algorithm at the

same time. Otherwise, different nodes may tune to different

channels in the same time slot, thereby causing the multi-

channel neighbor discovery algorithm to fail.

Neighbor discovery algorithms for a multi-channel wire-

less network have been proposed in [18]–[22]. Work in
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[18] implicitly assumes that all channels are available to

all nodes, and only considers a single hop network, whereas

the work in [19] assumes that a node has multiple inter-

faces. Work in [20]–[22] assume a synchronous system in

which all nodes initiate neighbor discovery at the same

time. Moreover, the proposed algorithms are deterministic

in nature, and have high time complexity that depends on

the product of network size (actual [21], [22] or maximum

[20]) and universal channel set size. Further, work in [21],

[22] assumes that nodes can detect collisions.

Our Contributions: Our main contribution in the paper

is a randomized neighbor discovery algorithm for an M2HeW

network when the system is asynchronous that works under

the following two assumptions: (a) nodes know an upper

bound on the maximum degree of any node in the network,

and (b) the maximum drift rate of the clock of any node

is bounded by a small value (specifically, 1
7 ). It does not

require clocks of different nodes to be synchronized. Further,

clocks of any two nodes may have arbitrary offset or skew

with respect to each other.

Our algorithm for an asynchronous system is based on

that for a synchronous system. Therefore, as additional

contributions, we also present a suite of randomized neigh-

bor discovery algorithms for an M2HeW network when the

system is synchronous under a variety of assumptions such

as whether: (i) nodes start executing the neighbor discovery

algorithm at the same time and (ii) nodes know a good upper

bound on the maximum degree of any node in the network.

Roadmap: The rest of the paper is organized as follows.

We describe our system model for an M2HeW network in

Section II. We present several randomized neighbor discov-

ery algorithms for a synchronous system under a variety

of assumptions and analyze their complexity in Section III.

We present a randomized neighbor discovery algorithm

for an asynchronous system and analyze its complexity in

Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We assume a multi-hop multi-channel heterogeneous

wireless (M2HeW) network consisting of one or more radio

nodes. Let N denote the total number of radio nodes. Nodes

do not know N . Each node is equipped with a transceiver,

which is capable of operating over multiple frequencies or

channels. However, at any given time, a transceiver can

operate (either transmit or receive) over a single channel

only. Further, a transceiver cannot transmit and receive at

the same time. Transceivers of different nodes need not be

identical; the set of channels over which a transceiver can

operate may be different for different nodes.

Different nodes in a network may have different sets of

channels available for communication. For example, in a

cognitive radio network (a type of M2HeW network), each

node can scan the frequency spectrum and identify the subset

of unused or under-used portions of the spectrum, even

those that have been licensed to other users or organiza-

tions [11]. A node can potentially use such frequencies to

communicate with its neighbors until they are reclaimed by

their licensed (primary) users [11]. Due to spatial variations

in frequency usage/interference and hardware variations

in radio transceivers, different nodes in the network may

perceive different subsets of frequencies available to them

for communication. We refer to the subset of frequencies

or channels that a node can use to communicate with its

neighbors as the available channel set of the node. For a

node u, we use A(u) to denote its available channel set. We

use S to denote the size of the largest available channel set,

that is, S = max
u

|A(u)|. Note that nodes do not know S.

We say that a node v is a neighbor of node u on a channel

c if u can reliably receive any message transmitted by v on

c provided no other node in the network is transmitting on

c at the same time, and vice versa. For ease of exposition,

in this paper, we assume that the communication graph is

symmetric; our algorithms, however, can be easily extended

to handle asymmetric communication graphs as well [23].

For a node u and a channel c ∈ A(u), we use ∆(u, c) to

denote the number of neighbors, also known as degree, of

u on c. We use ∆ denote the maximum degree of any node

on any channel, that is, ∆ = max
u

max
c∈A(u)

∆(u, c).

Note that, if nodes u and v are neighbors of each other

on some channel, then u has to discover v and v has to

discover u separately. It is convenient to assume two separate

links—one from u to v and another from v to u. We use

(u, v) to denote the link from u to v. We refer to the set of

channels on which the link (u, v) can operate as the span of

(u, v) and denote it by span(u, v). Note that span(u, v) ⊆
A(u)∩A(v). We refer to the ratio of |span(u, v)| to |A(v)|
as the span-ratio of the link (u, v). Note that the span-ratio

of any link lies between 1
S

and 1. Further, the span-ratio of

(u, v) may be different from the span-ratio of (v, u) (because

|A(u)| may be different from |A(v)|). We use ρ to denote

the minimum span-ratio among all links. Note that nodes

do not know ρ. Intuitively, ρ can be viewed as a measure

of the degree of homogeneity in the network—the larger the

value, the more homogeneous the network is in terms of

channel availability for nodes and links. The running time

of our algorithms is inversely proportional to ρ. When all

links can operate on all available channels (an assumption

made frequently in the literature), ρ = 1, which minimizes

the running time of our algorithms. In general, the more

heterogeneous the network is, the larger is the running time

of our algorithms.

If nodes v and w are neighbors of node u on channel c

and both v and w transmit on c at the same time, then their

transmissions collide at u. If u listens on c at that time, then

u hears only noise. We do not assume that nodes can detect

collisions, that is, distinguish between background noise and

collision noise.
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For ease of exposition, in this paper, we assume that all

channels or frequencies over which an M2HeW network

can operate have similar propagation characteristics. As a

result, if a communication link from node u to node v can

operate over some channel c ∈ A(u)∩A(v) then it can also

operate over all channels in A(u) ∩ A(v). Our algorithms,

however, can be easily adapted to handle diverse propagation

characteristics of different channels [23].

We use “log” to refer to the logarithm to the base 2 and

“ln” to refer to the natural logarithm. In this paper, we

investigate the neighbor discovery problem both when the

system is synchronous and when the system is asynchronous.

We now describe how we model each type of system.

Synchronous System:: We assume that the execution

of the system is divided into synchronized time-slots. In

each time slot, each node can be in one of the following

three modes: (i) transmit mode on some channel in its

available channel set, (ii) receive mode on some channel

in its available channel set, or (iii) quiet mode when the

transceiver is shut-off.

Asynchronous System:: We assume that every node is

equipped with a clock. Clocks of different nodes are not

required to be synchronized. For a clock C and time t, we

use C(t) to denote the value of C at t. For a node u, we

use Cu to denote the clock of u. Clock of a node may have

non-zero drift and the drift rate may change over time. Drift

rate of a clock C at time t is given by dC
dt

− 1. If C is

an ideal clock, then, ∀t,∆t ≥ 0, C(t + ∆t) − C(t) = ∆t;

thus dC
dt

= 1. At any given time, different clocks may have

different drift rates. Further, drift rate of the same clock

may change over time both in magnitude and sign. We do,

however, assume that the magnitude of the maximum drift

rate is bounded and denote the bound by δ. This implies

that ∀t,∆t ≥ 0,

(1− δ)∆t ≤ C(t+∆t)− C(t) ≤ (1 + δ)∆t (1)

For an ideal clock, δ = 0. In practice, δ is quite small (e.g.,

10−6 seconds/second).

III. NEIGHBOR DISCOVERY IN SYNCHRONOUS SYSTEM

We first describe our algorithms assuming that all nodes

start neighbor discovery at the same time. We then relax

this assumption and describe an algorithm for the case when

nodes may start neighbor discovery at different times. Our

algorithm for the asynchronous case builds upon the last

algorithm.

A. Identical Start Times

We first assume that the nodes know some upper bound

on maximum node degree. The bound need not be tight

and, in fact, may be quite loose (since the dependence is

logarithmic on the value of the upper bound.) But all nodes

should agree on a common upper bound. We then relax this

restriction and describe an algorithm for the case when such

knowledge is not available.

1) Knowledge of Loose Upper Bound on Maximum Node

Degree: Let ∆est denote an upper bound on the maximum

node degree as known to all nodes. The execution of the

algorithm is divided into stages. Each stage consists of

⌈ log(∆est)⌉ time-slots. In each time-slot of a stage, a node

randomly chooses a channel from its available channel set

and transmits on that channel with a certain probability

(and listens on that channel with the remaining probability).

Specifically, in time-slot i of a stage, where 1 ≤ i ≤
⌈ log(∆est)⌉, a node u transmits on the selected channel,

say c, with probability min
(

1
2 ,

|A(u)|
2i

)

and listens on c with

the remaining probability.

Algorithm 1: Neighbor discovery algorithm for a synchronous system

with identical start times and knowledge of upper bound on maximum

node degree.

// Algorithm for node u

Input: An upper bound on maximum node degree, say ∆est.
Output: The set of neighbors along with the subset of

channels that are common with the neighbor.

1 while true do
// execute a stage

2 for i← 1 to ⌈ log(∆est)⌉ do
// time-slot i of the current stage

3 c← channel selected uniformly at random from
A(u);

4 p← min
(

1
2
,
|A(u)|

2i

)

;

5 tune the transceiver to c;
6 switch to transmit mode with probability p and

receive mode with probability 1− p;
7 if (in transmit mode) then
8 transmit a message containing A(u);
9 else if (heard a clear transmission) then

10 let the received message be sent by node v
containing set A;

11 add 〈v,A ∩ A(u)〉 to the set of neighbors;

A formal description of the algorithm is shown in Algo-

rithm 1. We next analyze its running time. Consider a node

u and let node v be its neighbor on a channel c. Note that

1 ≤ ∆(u, c) ≤ ∆ ≤ ∆est. Let k = max(1, ⌈ log∆(u, c)⌉).
Clearly, we have:

2k−1 ≤ ∆(u, c) ≤ 2k (2)

We say that a time-slot t covers the link (v, u) on channel

c if during t: (i) v transmits on c, (ii) u listens on c,

and (iii) no other neighbor of u transmits on c. The three

conditions collectively ensure that u receives a clear message

from v (on c during t). We say that a stage s covers

the link (v, u) on channel c if some time-slot of s covers

(v, u) on c; also, s covers (v, u) if s covers (v, u) on some

c ∈ span(v, u). Finally, we say that a sequence of stages

covers (v, u) if some stage of the sequence covers (v, u).
Consider a stage s and let τ denote the time-slot of

s that satisfies (2). We first compute the probability that
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(v, u) is covered on c during τ . Let A(τ, c), B(τ, c), C(τ, c)
denote the three events corresponding to the three conditions

(i), (ii) and (iii), respectively, required for coverage. Note

that the three events are mutually independent. Therefore

we first compute the probability of occurrence of events

A(τ, c), B(τ, c) and C(τ, c) separately. We then compute

the probability that s covers (v, u). The steps involved in

computing the probabilities are fairly standard and can be

found elsewhere [23]. We only state the results here. We

have:

Pr{A(τ, c)} ≥
1

2max(S,∆)
(3)

Pr{B(τ, c)} ≥
1

2|A(u)|
(4)

Pr{C(τ, c)} ≥
1

4
(5)

Pr(s covers (v, u)) ≥
ρ

16max(S,∆)
(6)

Now, consider a sequence of M = 16max(S,∆)
ρ

ln
(

N2

ǫ

)

stages, where ǫ denotes an upper bound on the probability

that neighbor discovery fails to complete successfully. We

show that the probability that the link (v, u) is not covered

within M stages is at most ǫ
N2 . The steps for computing

the probability are fairly standard and can be found else-

where [23]. Formally,

Pr((v, u) is not covered within M stages) ≤
ǫ

N2
(7)

Finally, we have:

Pr(neighbor discovery does not finish within M stages)

= Pr(some link is not covered within M stages)

≤ (number of links in the network) ×
ǫ

N2
≤ ǫ (8)

Therefore, we have the following theorem:

Theorem 1. Algorithm 1 guarantees that each node

discovers all its neighbors on all channels within

O
(

max(S,∆)
ρ

log(∆est) log
(

N
ǫ

)

)

time-slots with probability

at least 1− ǫ.

2) No Knowledge of Maximum Node Degree: One way

to derive a neighbor discovery algorithm when knowledge

about maximum node degree is not available is as fol-

lows. Starting with an estimate of one for the maximum

node degree, repeatedly run an instance of the algorithm

that assumes knowledge about the maximum degree for a

certain number of time-slots with geometrically increasing

values for the estimate [2]. This approach cannot be used

here because it requires computing the exact number of

time-slots for which an instance of the knowledge-aware

algorithm ought to be run such that, in case the estimate

is correct, neighbor discovery completes with a desired

success probability. Computing the number of time-slots for

our (knowledge-aware) algorithm requires nodes to a priori

know the values for other system parameters, namely N ,

S and ρ, whose values may not be known in advance. We

instead employ the following approach used in [24]. Starting

with an estimate of two, we repeatedly execute an instance of

a stage with sequentially increasing values for the estimate.

Algorithm 2: Neighbor discovery algorithm for a synchronous system

with identical start times and no knowledge of maximum node degree.

// Algorithm for node u

Output: The set of neighbors along with their available
channel set

1 d ← 2;
2 while true do
3 execute an instance of stage described in Algorithm 1

with ∆est set to d;
4 d ← d + 1;

A formal description of the algorithm is shown in Al-

gorithm 2. It can be easily verified that, once d becomes

at least ∆, each stage thereafter contains a time-slot that

satisfies (2). To reach the success probability of at least 1−ǫ,

from the analysis of Algorithm 1, it suffices for an execution

to contain M = 16max(S,∆)
ρ

ln
(

N2

ǫ

)

stages each of which

consists of a time-slot that satisfies (2). In other words,

neighbor discovery completes successfully with probability

at least 1− ǫ within ∆+M stages. Note that M = Ω(∆).
Therefore we have:

Theorem 2. Algorithm 2 guarantees that each node discov-

ers all its neighbors on all channels within O(M logM)
time-slots with probability at least 1 − ǫ, where M =
16max(S,∆)

ρ
ln

(

N2

ǫ

)

.

B. Variable Start Times

We assume that nodes know a “good” upper bound on

the maximum node degree. Although the algorithm works

even if the upper bound is loose, the running time of the

algorithm may be too large since it depends linearly on the

value of the upper bound.

The main idea behind our algorithm is to ensure that

the transmission probability of a node is same for every

time-slot (but may be different for different nodes). This

allows us to prove that a given link is covered in a time

slot with “sufficiently high” probability. Let ∆est denote an

upper bound on the maximum node degree as known to all

nodes. In each time-slot, a node u randomly selects a channel

from its available channel set, say c. It then transmits on c

with probability min
(

1
2 ,

|A(u)|
∆est

)

and listens on c with the

remaining probability. A formal description of the algorithm

is shown in Algorithm 3.

For the analysis of the running time, as in the case of

Algorithm 1, we can compute the probability of occurrence
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Algorithm 3: Neighbor discovery algorithm for a synchronous system

with variable start times and knowledge of upper bound on maximum

node degree.

// Algorithm for node u

Input: An upper bound on maximum node degree, say ∆est.
Output: The set of neighbors along with the subset of

channels that are common with the neighbor.

1 p← min
(

1
2
,
|A(u)|
∆est

)

;

2 while true do
3 c← channel selected uniformly at random from A(u);
4 tune the transceiver to c;
5 switch to transmit mode with probability p and receive

mode with probability 1− p;
6 if (in transmit mode) then
7 transmit a message containing A(u);
8 else if (heard a clear transmission) then
9 let the received message be sent by node v

containing set A;
10 add 〈v,A ∩ A(u)〉 to the set of neighbors;

of events A(τ, c), B(τ, c) and C(τ, c). We have:

Pr{A(τ, c)} =
1

|A(v)|
×min

(

1

2
,
|A(v)|

∆est

)

=
1

max{ 2|A(v)|,∆est }

≥
1

max(2S,∆est)
(9)

It can be verified that the inequalities for Pr{B(τ, c)}
in (4) and Pr{C(τ, c)} in (5) are still valid (although the

proofs have to be slightly modified). Let Ts be the time by

which all nodes have initiated neighbor discovery. Using an

analysis similar to that for Algorithm 1, we can prove the

following result:

Theorem 3. Algorithm 3 guarantees that each node

discovers all its neighbors on all channels within

O
(

max(2S,∆est)
ρ

log
(

N
ǫ

)

)

time-slots after Ts with proba-

bility at least 1− ǫ.

Note that we no longer have a factor of O(log(∆est))
in the time complexity because we do not have stages any

more.

IV. NEIGHBOR DISCOVERY IN ASYNCHRONOUS SYSTEM

Our neighbor discovery algorithm for an asynchronous

system is based on our neighbor discovery algorithm for a

synchronous system with variable start times (Algorithm 3).

Let ∆est denote an upper bound on the maximum node

degree as known to all nodes. In addition, our algorithm

makes the following assumption about the maximum drift

rate of the clock of any node δ:

Assumption 1. The maximum drift rate of the clock of any

node is bounded by 1
7 seconds/second.

The offset or skew between clocks of any two nodes may

be arbitrarily large and, in fact, may grow with time. We now

describe how to extend Algorithm 3 to solve the neighbor

discovery algorithm in an asynchronous system.

Each node divides its time into equal-sized frames. Frames

of different nodes are not required to be synchronized and

may, in fact, be misaligned. A node measures the duration

of a frame using its local clock. The length of a frame as

measured by a node using its local clock is same for all

nodes, say L. Note that, because of the clock drift, duration

of a frame, when projected on real-time, may be different

from L (shorter than L in case of positive drift and longer

than L in case of negative drift). Specifically, it can be

verified that the length of a frame in real-time lies in the

range:

L

1 + δ
≤ frame length in real-time ≤

L

1− δ
(10)

A node further divides each frame into three equal-sized

slots—equal with respect to its local clock. Therefore the

duration of a slot as measured by a node using its local clock

is L
3 . At the beginning of each frame, a node u randomly

selects a channel from its available channel set, say c. It then

transmits on c during each slot of the frame with probability

min
(

1
2 ,

|A(u)|
3∆est

)

and listens on c during the entire frame with

the remaining probability. In the former case, u transmits the

same message during each slot of the frame. In the latter

case, u listens for any clear messages it may receive during

any part of the frame. The partition of a frame into slots

is not important for a receiving node; they are only used

by a transmitting node. Also, a node may receive multiple

clear messages while listening during a single frame. The

execution of a node with respect to its local clock is shown in

Fig. 1. The execution of the network with respect to common

real-time is shown in Fig. 2.

A formal description of the algorithm is shown in Algo-

rithm 4. We now analyze the running time of the algorithm.

In our analysis, unless otherwise stated, time refers to real-

time. Of course, nodes do not have access to the real-time.

We define two notions that we use in our analysis as follows:

Definition 1 (aligned pair). We say that a pair of frames

〈f, g〉 is aligned if at least one slot of f lies completely

within g.

Definition 2 (overlapping frames). For a frame f and a

node u, let overlap(f, u) denote the set of frames of u that

overlap in real-time with f . Also, let overlapAll(f) denote

the subset of all frames that overlap in real-time with f .

For example, as per the execution shown in Fig. 2, pairs

〈f1, g1〉 and 〈f2, h1〉 are aligned whereas the pair 〈f1, h1〉 is

not. Also, overlap(g2, v) = {f1, f2} and overlapAll(g2) =
{f1, f2, g2, h1, h2}.

One of the arguments we commonly use in our analysis is:

“x adjacent slots of a node cannot strictly contain y adjacent
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length L
3

Frame of length L Slot of

Figure 1. Execution of a node with respect to its local clock. All frames are of length L. All slots are of length L

3
.

Node v

f1 f2 f3

g3g2g1

h1 h2 h3

Node w

Node u

Figure 2. Execution of the network with respect to real-time. Frames may be of different lengths (even within the same node). Slots may be of different
lengths (even within the same frame).

Algorithm 4: Neighbor discovery algorithm for an asynchronous

system with knowledge of upper bound on maximum node degree.

// Algorithm for node u

Input: An upper bound on maximum node degree, say ∆est.
Output: The set of neighbors along with the subset of

channels that are common with the neighbor.

1 p← min
(

1
2
,
|A(u)|
3∆est

)

;

2 while true do
3 c← channel selected uniformly at random from A(u);
4 tune the transceiver to c;
5 switch to transmit mode with probability p and receive

mode with probability 1− p;
6 if (in transmit mode) then
7 transmit a message containing A(u) during each slot

of the frame;
8 else

// in receive mode

9 foreach (clear message received during the frame)
do

10 let the received message be sent by node v
containing set A;

11 add 〈v,A ∩ A(u)〉 to the set of neighbors;

slots of another node” for certain specific values of x and y

with x < y. To prove this, we argue that, for the statement

to be false, the following inequality must hold:

xL

3(1− δ)
>

yL

3(1 + δ)

and then show that it contradicts Assumption 1. The above

inequality must hold for the statement to be false because

the left hand side denotes the largest possible length of the

time interval containing x adjacent slots, and the right hand

side denotes the smallest possible length of the time interval

containing y adjacent slots.

Lemma 4. A frame of a node overlaps with at most three

frames of any other node. Formally,

∀f, u :: |overlap(f, u)| ≤ 3

Proof: Assume, on the contrary, that a frame of some

node, say f , overlaps with at least four frames of another

node. This implies that there are at least two consecutive

frames that are strictly contained within f . From (10), a

frame of a node can strictly contain two frames of another

node only if the following condition holds:

L

1− δ
>

2L

1 + δ
=⇒ δ >

1

3

This contradicts Assumption 1.

Consider the link from node v to node u on channel c.

Also, consider frames f of v and g of u such that the pair

〈f, g〉 is aligned. We extend the notion of a link covered by

a time-slot (defined in Section III-A1) to a link covered by

an aligned pair of frames. Specifically, the pair of aligned

frames 〈f, g〉 covers the link (v, u) on channel c if: (i) v

transmits on c during f , (ii) u listens on c during g, and

(iii) no other neighbor of u, say w, transmits on c during

any frame in overlap(g, w). Also, 〈f, g〉 covers (v, u) if

〈f, g〉 covers (v, u) on some channel c ∈ span(v, u). The

three conditions collectively ensure that u receives a clear

message from v (on c during g) provided 〈f, g〉 is aligned.

We have:

Lemma 5. If 〈f, g〉 is aligned, then 〈f, g〉 covers (v, u) with

probability at least
ρ

8max(2S,3∆est)
.

Proof: Analogous to A(τ, c), B(τ, c) and C(τ, c) de-

fined in Section III-A1, let Â(f, g, c), B̂(f, g, c), Ĉ(f, g, c)
denote the three events corresponding to the three conditions
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(i), (ii) and (iii), respectively, required for coverage. Note

that the three events are mutually independent. As before,

we compute the probability of occurrence of the three events

separately.

Computing the probability of occurrence of Â(f, g, c):
We have:

Pr{Â(f, g, c)} = (v selects c at the beginning of f)∧

(v chooses to transmit during f)

=
1

|A(v)|
×min

(

1

2
,
|A(v)|

3∆est

)

= min

(

1

2|A(v)|
,

1

3∆est

)

≥
1

max(2S, 3∆est)
(11)

Computing the probability of occurrence of B̂(f, g, c):
We have:

Pr{B̂(f, g, c)} = (u selects c at the beginning of g)∧

(u chooses to listen during g)

=
1

|A(u)|
×

{

1−min

(

1

2
,
|A(u)|

3∆est

)}

{

min(x, y) ≤ x
}

≥
1

|A(u)|
×

(

1−
1

2

)

=
1

2|A(u)|
(12)

Computing the probability of occurrence of Ĉ(f, g, c):
Let N (u, c) denote the set of neighbors of u on c. Note

that, if N (u, c) only contains v, then Pr{Ĉ(f, g, c)} = 1.

Otherwise, we have:

Pr{Ĉ(f, g, c)}

=
∏

w∈N (u,c)
w 6=v

Pr

(

w does not transmit on c during any frame

in overlap(g, w)

)

=
∏

w∈N (u,c)
w 6=v

∏

h∈overlap(g,w)

Pr

(

w does not transmit on c

during h

)

=
∏

w∈N (u,c)
w 6=v

∏

h∈overlap(g,w)

{1− Pr(w transmits on c during h)}

≥
∏

w∈N (u,c)
w 6=v

∏

h∈overlap(g,w)

{

1−
1

|A(w)|
×min

(

1

2
,
|A(w)|

3∆est

)}

=
∏

w∈N (u,c)
w 6=v

∏

h∈overlap(g,w)

{

1−min

(

1

2|A(w)|
,

1

3∆est

)}

{

min(x, y) ≤ y
}

≥
∏

w∈N (u,c)
w 6=v

∏

h∈overlap(g,w)

(

1−
1

3∆est

)

{

using Lemma 4, |overlap(g, w)| ≤ 3
}

≥
∏

w∈N (u,c)
w 6=v

(

1−
1

3∆est

)3

=

(

1−
1

3∆est

)3(|N (u,c)|−1)

{

|N (u, c)| − 1 = ∆(u, c)− 1 ≤ ∆est

}

≥

(

1−
1

3∆est

)3∆est

{

∀x ≥ 2,

(

1−
1

x

)x

is a monotonically increasing

function of x and thus ≥
1

4

}

≥
1

4
(13)

Finally, using a derivation similar to that for (6), it can

be shown that 〈f, g〉 covers (v, u) with probability at least
ρ

8max(2S,3∆est)
.

For a frame f , we use node(f) to denote the node to

which f belongs. For example, as per the execution show

in Fig. 2, node(f1) = v and node(h1) = w. We now define

a precedence relation between pairs of frames referred to as

frame-pairs for short.

Definition 3 (precedence relation). For frame-pairs 〈f, g〉
and 〈p, q〉, we say that 〈f, g〉 precedes 〈p, q〉, denoted

〈f, g〉 ⊏ 〈p, q〉, if (i) node(f) = node(p), (ii) node(g) =
node(q), (iii) the start time of f is before that of p, and

(iv) the start time of g is before that of q.

For example, as per the execution shown in Fig. 2,

〈f1, g1〉 ⊏ 〈f2, g2〉 and 〈f1, g1〉 ⊏ 〈f3, g2〉 but 〈f1, g1〉 6⊏
〈f1, g2〉. We next define a notion on a sequence of frame-

pairs that intuitively enables us to treat coverage provided

by different frame-pairs as essentially independent events.

Definition 4 (admissible sequence). A sequence σ of M

frame-pairs
{

〈fik , gjk〉
}

1≤k≤M
is admissible with respect

to the link (v, u) if it satisfies the following conditions:

1) ∀i : 1 ≤ k ≤ M : node(fik) = v and node(gjk) = u,

2) ∀i : 1 ≤ k < M : 〈fik , gjk〉 ⊏ 〈fik+1
, gjk+1

〉,
3) ∀i : 1 ≤ k ≤ M : 〈fik , gjk〉 is aligned, and

4) ∀i : 1 ≤ k < M : overlapAll(gik)∩overlapAll(gik+1
)

= ∅.

For a sequence σ of frame-pairs that is admissible with

respect to (v, u), we say that σ covers (v, u) if some frame-

pair in the sequence covers (v, u).

Lemma 6. Let σ be a sequence of
8max(2S,3∆est)

ρ
ln

(

N2

ǫ

)

frame-pairs such that σ is admissible with respect to (v, u).
Then the probability that σ does not cover (v, u) is at most
ǫ

N2 .
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Proof: For convenience, let M =
8max(2S,3∆est)

ρ
ln

(

N2

ǫ

)

. Let Ek with 1 ≤ k ≤ M

denote the event that 〈fik , gjk〉 covers (v, u) on some

channel. Note that the occurrence of the event Ek

depends only on frames in overlapAll(gjk). Since σ is an

admissible sequence, for all x and y, with 1 ≤ x < y ≤ M ,

overlapAll(gjx) ∩ overlapAll(gjy ) = ∅. In other words,

the set of frames that overlap with the frame gjx are

distinct from the set of frames that intersect the frame gjy .

Since, for each frame, a node chooses its action randomly,

events Eks are mutually independent of each other. Using

a derivation similar to that of (7), it can be shown that σ

does not cover (v, u) with probability at most ǫ
N2 .

We next show that any execution of the network must

contain a “sufficiently long” sequence of admissible frame-

pairs. In the rest of this section, let Ts denote the time by

which all nodes have initiated the neighbor discovery algo-

rithm, Algorithm 4. To show the existence of a “‘sufficiently

long” admissible sequence, we first show that, for any instant

of time T after Ts and, for any pair of neighboring nodes,

there is an aligned pair of frames after but “close” to T .

Lemma 7. Consider a link from node v to node u and some

instant of time T with T ≥ Ts. Let fi (respectively, gi) with

i ≥ 1 denote the ith full frame of node v (respectively, node

u) after T . Then some frame in {f1, f2} is aligned with some

frame in {g1, g2}.

Proof: Note that the frames f1 and f2 together contain

six slots. Let ai for i = 1, 2, . . . , 6 denote the start times

of the six slots numbered in the increasing order of their

start times (see Fig. 3). Likewise, let bi for i = 1, 2, . . . , 6
denote the start times of the six slots of the frames g1 and g2.

a1 a2 a3 a4 a5 a6

f2f1

g1 g2

b6b5b4b3b2b1

Node u

Node v

T

Figure 3. Slots used in the proof of Lemma 7.

Claim 1: We first show that b1 ≤ a5. Assume, on the

contrary, that a5 < b1. Note that, by definition of g1, there

is only a partial frame of u between T and b1. This, in turn,

implies that a partial frame of u contains at least four slots

of v. This can happen only if the following condition holds:

L

1− δ
>

4L

3(1 + δ)
=⇒ δ >

1

7

This contradicts Assumption 1.

Claim 2: Likewise, we can show that a1 ≤ b5.

b5

a1

a1 a5

a1 a2

b1
b1 b4

(a) (c)

(b) (d)

a2
a1

b1 b4

b1 b4

Figure 4. Various cases in the proof of Lemma 7.

Claim 3: If ai−1 ≤ b1 ≤ ai for some i with 1 < i ≤ 5, then

b1 ≤ ai < ai+1 ≤ b4. It suffices to show that ai+1 ≤ b4.

Assume, on the contrary, that b4 < ai+1. This implies that

ai−1 ≤ b1 < b4 < ai+1. In other words, two adjacent slots

of v strictly contain an entire frame of u. This can happen

only if the following condition holds:

2L

3(1− δ)
>

L

1 + δ
=⇒ δ >

1

5

This contradicts Assumption 1.

We now prove the lemma statement. We consider two

cases depending on whether f1 or g1 has earlier start time.

• Case 1 (a1 < b1): In this case, we have a1 < b1 ≤ a5
(see Fig. 4(a)). The rightmost inequality follows from

Claim 1. The time interval from a1 to a5 consists of

four contiguous slots of v: [a1, a2], [a2, a3], [a3, a4] and

[a4, a5]. Clearly, b1 lies in at least one of them. (If b1
lies on the boundary of two slots, we select the earlier

one.) In any case, using Claim 3, we can show that

at least one of the slots [a2, a3], [a3, a4], [a4, a5] or

[a5, a6] is contained in the frame g2. This implies that

either 〈f1, g1〉 or 〈f2, g1〉 is aligned.

• Case 2 (b1 ≤ a1): If a2 ≤ b4, then b1 ≤ a1 < a2 ≤ b4
(see Fig. 4(b)). In other words, the first slot of the frame

f1 is contained with the frame g1, which implies that

〈f1, g1〉 is aligned. Therefore assume that b4 < a2. We

have two subcases depending on where a1 lies relative

to b4. Let b7 denote the end time of the frame g2.

– Case 2.1 (a1 ≤ b4): In this case, we show that the

slot [a2, a3] is contained within the frame [b4, b7] (see

Fig. 4(c)). To that end, we first prove that a3 < b7.

If not, then a1 ≤ b4 < b7 ≤ a3. In other words, two

adjacent slots of v strictly contain an entire frame of

u. This can happen only if the following condition

holds:

2L

3(1− δ)
>

L

1 + δ
=⇒ δ >

1

5
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This contradicts Assumption 1. Therefore, we have

b4 < a2 < a3 < b7, which implies that the pair

〈f1, g2〉 is aligned.

– Case 2.2 (b4 < a1): In this case, we show that the

slot [a1, a2] is contained within the frame [b4, b7] (see

Fig. 4(d)). To that end, we show that a2 ≤ b7. If not,

then a1 ≤ b5 < b7 < a2. (The inequality a1 ≤ b5
follows from Claim 2.) In other words, one slot of v

strictly contains at least two adjacent slots of u. This

can happen only if the following condition holds:

L

3(1− δ)
>

2L

3(1 + δ)
=⇒ δ >

1

3

This contradicts Assumption 1. Therefore, we have

b4 < a1 < a2 ≤ b7, which implies that the pair

〈f1, g2〉 is aligned.

In all cases, we show that one of the four pairs 〈f1, g1〉,
〈f1, g2〉, 〈f2, g1〉 or 〈f2, g2〉 is aligned.

We now show that existence of a “sufficiently long”

admissible sequence in any execution of Algorithm 4.

Lemma 8. Consider a link from node v to node u. Further,

consider an execution of the network after Ts that contains

at least M full frames of u as well as v. Then the execution

contains a sequence of at least M
6 frame-pairs such that the

sequence is admissible with respect to (v, u).

Proof: The proof is by construction. The construction

is in two steps. In the first step, we construct a sequence of

frame-pairs γ that is “almost” admissible in the sense that it

satisfies the first three properties of an admissible sequence

but may not satisfy the fourth property. We show that γ

contains at least M
2 frame-pairs. In the second step, using

γ, we construct a sequence of frame-pairs σ that satisfies

all four properties of an admissible sequence. We also show

that σ contains at least M
6 frame-pairs.

Constructing γ: To obtain the first frame-pair 〈fi1 , gi1〉
that is aligned, we apply Lemma 7 to Ts. Now, assume

that we have already selected k frame-pairs satisfying the

first three properties of an admissible sequence. Let the kth

frame-pair be denoted by 〈fik , gik〉. To select the next frame-

pair, let Tk be defined as the earlier of the end times of

frames fik and gik . To obtain the next frame-pair that is

aligned, we apply Lemma 7 to Tk. Let the frame-pair be

denoted by 〈fik+1
, gik+1

〉. Clearly, the extended sequence

(consisting of k + 1 aligned frame-pairs) satisfies the first

and third properties of an admissible sequence. The second

property holds because the start times of both fik and gik are

before Tk, whereas the start times of both fik+1
and gik+1

are after Tk. We repeatedly select aligned frame-pairs using

Lemma 7 until we run out of frames of either u or v. We

now establish a lower bound on the length of γ. Note that,

when selecting the (k+1)st pair, the first full frame of node

v after Tk (namely frame f1 in the statement of Lemma 7)

is adjacent to the frame fik . This follows from the definition

of Tk. This, in turn, implies that the frame fik+1
obtained

using Lemma 7 is within a distance of two of the frame fik .

Likewise, the frame gik+1
is within a distance of two of the

frame gik . As a result, γ contains at least M
2 frame-pairs.

Constructing σ: To construct a sequence σ that also

satisfies the fourth property of an admissible sequence,

we choose every third frame-pair of γ starting with the

first frame-pair 〈fi1 , gi1〉. Clearly, σ also satisfies the first

three properties of an admissible sequence (since it is a

subsequence of γ). Let the kth frame-pair of σ be denoted

by 〈fjk , gjk〉. To prove that σ satisfies the fourth property

as well, assume, on the contrary, that some frame, say h,

overlaps with two consecutive frames gjk and gjk+1
for some

k. Note that, since we selected only every third frame-pair

of γ to construct σ, there are at least two other frames of

u between gjk and gjk+1
. This implies that h overlaps with

at least four frames of u, which contradicts Lemma 4. This

establishes that the length of σ is at least M
6 .

Finally, we have the main result.

Theorem 9. Let Ts be the time by which all nodes have

initiated neighbor discovery. Also, let Tf be the ear-

liest time by which each node has executed at least
48max(2S,3∆est)

ρ
ln

(

N2

ǫ

)

full frames since Ts. Then Algo-

rithm 4 ensures that each node discovers all its neighbors

on all channels with probability at least 1− ǫ by time Tf .

Proof: Consider a link (v, u). From Lemma 8, the

execution from Ts to Tf contains a sequence of at least
8max(2S,3∆est)

ρ
ln

(

N2

ǫ

)

frame-pairs such that the sequence

is admissible with respect to (v, u). From Lemma 6, the

probability that (v, u) is not covered by Tf is at most
ǫ

N2 . This implies that the probability that some link in the

network is not covered by Tf is at most ǫ.

We now bound the length of the interval Tf − Ts.

Theorem 10. Let Ts and Tf be as defined in Theorem 9.

Then the length of the interval Tf −Ts is upper bounded by
{

48max(2S,3∆est)
ρ

ln
(

N2

ǫ

)

+ 1
}(

L
1−δ

)

.

Proof: By our choice of Tf , there exists some node

such that Tf −Ts contains exactly
48max(2S,3∆est)

ρ
ln

(

N2

ǫ

)

full frames of that node. The first frame of that node in the

execution may be partial frame. From (10), the length of

each frame is upper bounded by L
1−δ

. Combining the three

facts, we obtain the result.

V. CONCLUSIONS

In this paper, we have presented several randomized

algorithms for neighbor discovery in an M2HeW network

for both a synchronous system and an asynchronous system.

Our algorithms and/or its analysis can be easily extended

for cases when (a) the communication graph is asymmetric,

(b) channels are not reliable, and/or (c) channels have diverse
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propagation characteristics. Due to space limitations, details

have been omitted and can be found elsewhere [23].
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