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Abstract—We present a robust localization algorithm for
multiple radiation sources using a network of sensors under
random underlying physical processes and measurement errors.
The proposed solution uses a hybrid formulation of particle filter
and mean-shift techniques to achieve several important features
that address major challenges faced by existing localization
algorithms. First, our algorithm is able to maintain a constant
number of estimation (source) parameters even as the number of
radiation sources K increases. In existing algorithms, the number
of estimation parameters is proportional to K and thus the algo-
rithm complexity grows exponentially with K. Second, to decide
the number of sources K, existing algorithms either require
the information to be known in advance or rely on expensive
statistical estimations that do not scale well with K. Instead,
our algorithm efficiently learns the number of sources from the
estimated source parameters. Third, when obstacles are present,
our algorithm can exploit the obstacles to achieve better isolation
between the source signatures, thereby increasing the localization
accuracy in complex deployment environments. In contrast,
incompletely specified obstacles will significantly degrade the
accuracy of existing algorithms due to their unpredictable effects
on the source signatures. We present extensive simulation results
to demonstrate that our algorithm has robust performance in
complex deployment environments, and its efficiency is scalable
to many radiation sources in these environments.

I. INTRODUCTION

There has been increasing interest in the detection and

localization of radiation sources as part of the defense strat-

egy against radiological dispersal devices (RDD) commonly

known as dirty bombs. In particular, the higher concentration

of people in urban areas increases the susceptibility to co-

ordinated dirty bomb attacks. Harmful radioactive substances

unleashed in such an attack could cause widespread health

and environmental damage, since such substances would be

hard to clean up and would cause adverse effects from long

term exposure. The ability to quickly detect and localize

illicit radiation sources is crucial. Such swift actions enable

authorities to find and remove RDDs during transport or

storage. Moreover, attackers may launch a coordinated attack

involving multiple RDDs installed at different places. In such

a scenario, we would need a system that can determine the

number of the devices, as well as the strength and location
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of each device. The majority of current localization systems

are designed for a single source, and are not effective for the

multiple sources in a coordinated attack.

In dealing with multiple sources, existing localization ap-

proaches find the most probable location and strength, i.e.

source parameters, of each source [1]–[3] by minimizing

the error between modeled and actual measurements. The

number of source parameters increases proportionally with

the number of sources K, and thus the algorithm complexity

grows exponentially with K. In addition, because the number

of sources K is not known a priori, it needs to be estimated as

well. Existing algorithms estimate the parameters of sources

for a range of assumed values of K, i.e., K = 1, 2, . . . and

use the selected K to compute the source parameters. This is

inaccurate in large sensor networks due to: (i) a large range of

possible K values but the lack of a priori knowledge about K;

(ii) superposition of signal strengths from different sources;

and (iii) large variance in sensor measurements caused by

background radiation as well as interfering sources. These

factors have been mostly addressed individually by the ex-

isting algorithms, but the models of these algorithms become

significantly more complicated when the factors are jointly

considered. For instance, a high measurement recorded by

a sensor can be from a single strong source, or it may be

induced by the combined strengths of multiple weak sources.

Consequently, we may obtain equivocal results that appear

equally valid for different values of K. Even if the estimate of

K is accurate, multiple ambiguous solutions may exist due to

the model dynamics, e.g., non-linear signal fading and a large

number of interacting system parameters.

When obstacles may be present, building an accurate model

can be infeasible as the shapes, sizes, materials, and locations

of all the obstacles must be accurately known. These data

are difficult to obtain, and incorporating them into a complete

model is a non-trivial process. In this paper, we propose a

hybrid formulation of particle filter and mean-shift techniques

to address the above-mentioned challenges faced by existing

algorithms. In our formulation, we first generate hypotheses

about the source parameters (known as particles). When a

measurement is received, the likelihoods of these particles

being one of the sources are evaluated. Unlike a standard par-

ticle filter formulation, we selectively evaluate these particles

based on the location of the sensor providing the reading.
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The selective evaluation is a major feature in our approach

that enables localization of multiple sources efficiently in a

complex environment. To compute the source parameters, the

mean-shift technique is used on the particles to determine the

most likely parameters of all the sources. Because the mean-

shift technique determines the parameters of all the sources

without knowledge of the number of sources K, we eliminate

the expensive statistical test to estimate K.

Our main contributions are as follows:

• We propose a novel localization approach for multiple

radiation sources in complex environments that (i) is

efficient in handling multiple sources; (ii) does not require

the number of sources to be known in advance, or

require its expensive statistical estimation; and (iii) does

not require detailed specifications of obstacles in these

environments.

• We introduce the notion of fusion range for use in the

particle filter. This allows our algorithm to handle mul-

tiple sources without explicitly modeling all the sources.

Subsequently, our algorithm has efficiency that scales

with a large number of sources.

• We provide quantitative results to show that the proposed

algorithm can accurately localize radiation sources and

achieve low false positive and false negative rates.

The balance of the paper is organized as follows. We discuss

related work on source localization in Section II. In Section III,

we formulate the problem under a realistic environment. We

provide necessary background on Bayesian estimation and

particle filter in Section IV. Then, we present the proposed

localization algorithm in Section V. Performance results are

provided in Section VI, Section VII concludes.

II. RELATED WORK

The detection, localization, and tracking of signal sources

(or targets) of various kinds, such as radiation sources, chemi-

cal plumes, wideband radio signals, and acoustic signals, have

been well studied [1], [3]–[10].

For radiation sources, the localization of both single and

multiple sources has been considered. Typically, the single

source localization problem is solved using least square meth-

ods or maximum likelihood estimation (MLE) methods, which

search for the most probable source parameters fitting the

sensor measurements [11], [12]. Rao et al. [4] adapt the TDOA

algorithm [13] to log-space and exploit the log-differences in

source strength measurements from three sensors to infer the

source location. To tolerate noise, Rao et al. [14] propose

the mean-of-estimator (MoE) method which first uses TDOA

to localize the source by all subsets of three sensors and

then linearly combines the localization results to give the

final answer. A similar fusion approach is presented in [5],

where sensor data are fused using the iterative pruning (ITP)

algorithm. These single source localization algorithms are not

applicable when there are multiple sources.

In localizing multiple sources, existing algorithms need to

estimate the number of sources K in addition to the source

parameters. For instance, Ding et al. [15] localize multiple

signal sources by modeling the targets with a Gaussian mixture

model and then using Akaike’s Information Criterion (AIC)

or Bayesian Information Criterion (BIC) to estimate K. Then,

expectation maximization (EM) and mean-shift algorithms are

used to localize the K sources. Their source model is generic,

and application to real-world radiation source models is not

discussed. In [1], [2], the authors first estimate the number of

sources using a similar model selection algorithm, and then

compute the source parameters using the MLE method. As

reported in [2], the accuracy of such model selection degrades

when the number of sources increases. In addition, using

EM or MLE to estimate source parameters is computationally

expensive when the model has many parameters, where each

additional source increases the number of parameters in the

model by three. As reported in [2], the algorithms do not

scale beyond four sources. In [16], the authors propose to

solve the multiple-source localization problem using convex

optimization assuming that the sources are located in a grid

over the region of interest. The proposed method discretizes

the search space and attempts to localize a source in each

discretized location in the space. Depending on the granularity

of the discretization, the algorithm can take up to 209 s to run

for a scenario with 196 sensors on a dual-core Intel Pentium

CPU at 2.40 GHz with 4 GB RAM, as reported in the paper.

This prohibits the algorithm from scaling to a large network

of sensors.

Localizing targets in environments with obstacles has also

been considered. In [17], the algorithm solves the localiza-

tion problem assuming that the placement of obstacles is

known. The algorithm discretizes the search space and finds

the probability p of a target being located inside each cell.

Because the location is known, p can be easily calculated

with considerations of the obstacle. Nonetheless, the algorithm

has complexity exponential in the number of sensors. In [18],

the proposed method uses mobile robots to search for a

radiation point source. The authors focus on planning the robot

movements such that each move maximizes the information

gain in the search. The detection and localization of the source

during the search is performed using a particle filter. Other

efforts have mainly studied how obstacles may affect sensor

communication and motion planning rather than how they

may affect the source localization algorithms. For instance,

the problem of tracking a target using mobile robots, while

detecting and avoiding obstacles that may block the target

signals, has been studied in [19], [20].

III. PROBLEM FORMULATION

We consider the localization of K radiation point sources

of unknown strengths using a network of radiation sensors

in a two-dimensional surveillance area with obstacles. Let

A = {A1, . . . ,AK} denote the set of radiation sources.

Each radiation source is parameterized by a three-value vector

Aj =
〈
Ax

j , A
y
j , A

str
j

〉
, for 1 ≤ j ≤ K. The position of

the source is given by its xy- coordinates (in cm) and the

strength of the source is a positive real number in micro-

Curies (μCi). For convenience, we define Apos
j =

(
Ax

j , A
y
j

)
.
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In a surveillance area without obstacles, the strength of A
measured at location x is

IFS (x,A) = Astr
(
1 + |x−Apos|2

)−1

. (1)

The above model has been widely used in existing work [2],

[4], [12], [18] and has been verified experimentally in [5].

The surveillance area may contain a number of obstacles

that shield the radiation rays. The obstacles can be of any

types of materials, of any shape, and located anywhere in

the surveillance area unknown to the system. The material

of the obstacle determines its effectiveness in absorbing the

radiation, i.e., materials of higher atomic numbers and higher

densities are more effective in absorbing gamma radiation. In

addition, the amount of gamma rays absorbed in the shielding

material is proportional to the thickness of the material. For

instance, 1 cm thick of lead can absorb as much radiation1

as 6 cm thick of concrete [21]. For simplicity and without

loss of generality, we assume that each obstacle is made of a

homogeneous material. Assuming that the radiation source is

on one side of the obstacle, we can model the intensity of the

source on the other side of the obstacle by

IS (l,A) = Astre−μl, (2)

where l denotes the thickness of the obstacle and μ denotes

the attenuation coefficient for the material of the obstacle. The

effects of obstacles on gamma radiation have been extensively

studied and the values of μ are published in [21].

In a realistic setup, gamma rays from a radiation source may

traverse through both free space and obstacles. The intensity

at some location x, considering both free space and obstacles,

can be obtained by combining Eq. (1) and (2),

I (x,A) = Astr

1+|x−Apos|2 exp
(∑

b∈(B ∩ xA)−μblb

)
, (3)

where B denotes a set of obstacles, B ∩ xA denotes the set

of obstacles that intersect with the straight line between x and

Apos, li denotes the total thickness of the obstacle b along

xA, and μb denotes the attenuation coefficient of obstacle b.
This model has been used in existing work as well [22].

Radiation sensors are placed at known locations in the

surveillance area. Radiation sensors measure the radiation

intensity by counting the number of ionizations occurring due

to gamma radiation in a fixed interval. The intensity is usually

reported in counts per minute (CPM). Let Si, for 1 ≤ i ≤ N ,

denote the location of sensor i. The sensor i will record the

total intensity from all the radiation sources. In addition, each

sensor i will record a background radiation Bi (in CPM)

that is universally present due to cosmic rays and the decay

of naturally occurring radio-isotopes such as Carbon-14. and

Potassium-40. Each sensor has a different efficiency in count-

ing the number of ionizations due to different manufacturing

technologies and sizes of the sensors, which causes bias in the

measurements. The efficiency constant Ei in our model allows

to correct this bias. The value of Ei can be obtained through a

1Gamma ray with energy 1 MeV.

calibration procedure described in [5]. Given all of the above,

the expected intensity (in CPM) at Si is modeled by

Ii = 2.22× 106 × Ei

∑K
j=1 I (Si,Aj) +Bi. (4)

The constant 2.22× 106 is the conversion factor from micro-

Curie to CPM. Given the expected intensity Ii, the measure-

ments by sensor i, m (Si), are modeled as a Poisson process

with average rate λ = Ii.

IV. RECURSIVE BAYESIAN ESTIMATION

AND PARTICLE FILTER

Recursive Bayesian estimation is widely used to estimate

a set of variables (called state variables), given a set of

observations. The objective is to find the best estimate of the

state variables considering all the observations available, and

refine the estimates as more observations become available.

In the formulation, the state xt at iteration t is predicted

using all information available prior to t, Dt, by computing

the prior PDF

P (xt |Dt−1 ) =

∫
P (xt |xt−1 ) P (xt−1 |Dt−1 ) dxt−1,

where Dt = {yi | i = 1 . . . t}, and yi denotes the observation

at iteration i. Then, as new information is acquired at t, the

posterior PDF is computed via Bayes rule as

P (xt |Dt ) =
P (yt |xt ) P (xt |Dt−1 )∫
P (yt |x ) P (x |Dt−1 ) dx

.

The estimated state x̂t is then computed by finding the

expectation of P (xt |Dt ).
The above formulation is general and could be applied

to any state estimation problem. With linear models and

Gaussian noise of known variance, an analytical solution of

the above can be found. In many cases, however, analytical

solutions cannot be found and thus the procedure has practical

limitations.

Particle filter addresses the Bayesian estimation by using

random samples (called particles) to approximate the PDF

in the estimation. When the number of samples becomes

very large, the samples can be proved to provide an exact

representation of the required PDF. A main feature of particle

filter is that it can be applied to non-linear, non-Gaussian

problems even if there is no general analytic expression for

the required PDF.

Particle filter works in two phases: predict and update. The

predict phase approximates the prior PDF by evolving particles

from t−1. Then, the update phase approximates the posterior

PDF by computing the probability that a particle represents

the current state, for each particle. The state estimate is then

computed as a weighted sum of all the particles. The process

is repeated when the next measurement arrives.

In a straightforward application of particle filter in radiation

source localization, one would consider the xy-coordinates

and the source strength to be the state variables. The intensity

measurements then drive the predict and update phases of the
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Fig. 1. Overview of the proposed algorithm.

particle filter. Specifically, for each particle, the expected radi-

ation intensity at each sensor is computed according to Eq. (4).

Then, the probability of obtaining the particular measurement

is assigned as the weight of the particle. Over time, the

expectation of all the particles will give an accurate estimate

of the source parameters. This simple approach performs well

in scenarios with only one source. With multiple sources,

however, the number of state variables increases proportionally

to the number of sources. This causes the parameter space to

increase exponentially. Consequently, the number of particles

needs to be increased exponentially so as to maintain a rep-

resentative PDF for the estimation. As a result, this approach

does not scale to a large number of sources. Furthermore, this

approach requires the number of sources to be known ahead of

time, which limits its applicability in many realistic situations.

Another problem with the above approach, or with any

existing radiation localization algorithm, is that the detailed

parameters of obstacles—shapes, locations, and attenuation

coefficients—are assumed to be known, so that the model

in Section III can be applied. Incorporating such data into

the localization system is a burden to the user. Moreover, the

attenuation coefficients of the obstacles need to be measured

on-site unless accurate blueprints of the deployment buildings

are readily available. Without the complete data, the expected

intensities from the sources cannot be computed because

radiation sources can induce a wide range of readings on

radiation sensors depending on the quantity and nature of

obstacles located between the sources and the sensors.

V. ALGORITHM DESIGN

In this section, we describe our algorithm for localizing

multiple sources in a complex environment (i.e., with the

presence of unknown or incompletely known obstacles) us-

ing source strength measurements by a network of sensors.

The proposed algorithm recursively refines the location and

strength estimates of all the sources based on newly acquired

measurements and all prior information. Fig. 1 outlines the

flow of the algorithm. The algorithm starts by initializing a

collection of particles, each of which hypothesizes the location

and strength of a source. In each iteration, as a new sensor

measurement becomes available, the algorithm predicts the

locations and strengths of the sources based on the previous

estimates. Then, the weights are updated according to the

newly received sensor measurement and the prior weights.

After weighting the particles, the source parameter estimates

are computed. Finally, a resampling procedure normalizes the

weights of the particles. The procedure then repeats as a new

sensor measurement arrives.

The highlights of our formulation are as follows:

• We only consider one measurement in each iteration in-

stead of all the measurements as in a typical formulation.

Furthermore, there is no ordering on the measurements.

This allows the algorithm to proceed as soon as possible,

without waiting for all the measurements. This improves

the robustness of the algorithm, and is particularly rele-

vant in wireless sensor networks because wireless trans-

missions are unreliable due to environmental factors, low

transmission power, and malfunctioning of unreliable sen-

sors. Moreover, the network latency is usually high due

to multi-hop wireless forwarding and signal interference

among a large number of communicating sensors.

• Instead of explicitly modeling each radiation source,

which is typically done [2], we simply compute the

parameter estimates without attributing them to specific

sources. When multiple estimates resolve to the same

location parameters, we classify them as belonging to

the same source, and multiple sources are distinguished

when their estimates resolve to different locations.

• We introduce the notion of fusion range for use in the

particle filter, in which particles are selectively updated

based on the locations of the sensors. The fusion range

mitigates interference between particles when there are

multiple sources.

• We apply a mean-shift technique to compute the source

parameters. Using mean-shift is crucial in order to recover

the parameters of multiple sources because our formula-

tion does not explicitly model the individual sources. This

is an important departure from traditional particle filter.

Details of integrating mean-shift into our particle filter

formulation are described in Section V-D.

Combining the above, our algorithm solves the multiple

radiation source localization problem without (i) knowing

the number of sources, (ii) increasing the complexity of the

parameter space as the number of sources increases, and (iii)

knowing all the obstacles in details. The detailed algorithm

steps are described in the following sub-sections.

A. Particle initialization

We define the initial iteration to be t = 0. At this

time, the particle filter is initialized as follows. Let P =

{p(ti)
i | i = 1, ...NP } be a set of particles in a surveillance

area. Each particle p
(ti)
i is a three-value vector in the pa-

rameter space A denoting the hypothesized source position

and strength. The superscript ti is an integer that denotes

the iteration at which the particle is updated. We will drop

the superscript where there is no ambiguity in the iteration

number. We initialize P with uniformly random particles.

The uniformly random distribution is used because we do not

assume any a priori knowledge about the location or strength

of the source. If prior knowledge is available, the particles

can be initialized according to the pre-existing distribution.
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Doing so will reduce the number of iterations required to

obtain accurate estimates of the sources.

The number of particles in P , given by |P| = NP , affects

the coverage of P in A. A larger coverage will result in a more

accurate estimate in a shorter time. We associate each particle

p ∈ P with a weight w (p) such that w (p) ≈∑
j P (Aj = p)

and
∑
P pi = 1. As such, this weight measures the probability

that an actual radiation source is located at p. It is updated

as a new sensor reading becomes available. However, as the

actual source position is unknown,
∑

j P (Aj = p) cannot be

computed. In Section V-C, we will discuss in details how we

can approximate this probability using sensor measurements.

B. Prediction

After initializing the particles, the localization process can

begin. Our algorithm refines the source estimates whenever

there is a new sensor reading. At iteration t, a sensor located

at Si delivers a measurement m (Si). Using this measurement,

we construct a set P ′ such that all the particles in P ′ are less

than di distance away from Si:

P ′ =
{
pi

∣∣∣ ‖Si − pposi ‖2 ≤ d2i

}
. (5)

This distance di is defined as the fusion range and it is specific

to Si. The value of di is selected such that a particle located at

p is within the fusion range of a handful of sensors. The fusion

range controls the affected particles in the current iteration.

It prevents the current update from affecting particles that

are far from the sensor providing this reading. Even in open

space, sources that are far away will not make significant

contributions to the sensor’s readings. By limiting the affected

particles, we would not use the particles to distinguish between

different sources explicitly. Thus, the number of estimation

parameters, and thus the complexity of our algorithm, remains

constant regardless of the number of sources.

Let us illustrate what would happen without applying the

fusion range. In this case, all the particles will be affected

in each iteration as with a typical particle filter formulation.

Fig. 2 illustrates the behavior of the algorithm without the

fusion range. When multiple sources exist, the particles will

gravitate towards a source when the sensors near the source

send updates. In Fig. 2(a), the particles were previously

concentrated near source B. At this iteration, the sensors send

measurement updates one after another. Specifically, after the

iteration t = 108, the sensors at (0,0), . . ., (0, 100), (20, 0),

. . . send updates at t = 109, . . . , 114, 115, . . . respectively. In

Fig. 2(b), the particles start to move away from source B.

After the update from the sensor at (20, 100), the particles are

concentrated near source A as shown in Fig. 2(c). When the

sensors near source B update, the particles move away from

source A as shown in Fig. 2(d).

Given P ′ which was updated prior to t, we could in general

predict the location of the source at t using some movement

model Fmovement : A→ A, and produce the updated set P ′′.
In this paper, we assume the sources to be static; therefore

P ′′ = P ′.

Sensors that have not sent updates Sources

Sensors that have sent updates Particles
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(d) t = 140

Fig. 2. Progression of particles filter without fusion range.

C. Particle weighting

After the previous step, we compute the weight of each

particle, which is the likelihood that an actual radiation source

has the same parameters as the particle. Although we do

not know the actual source parameters, we can estimate this

probability using the sensor measurements. Assuming that the

radiation source is at p, we can compute the expected sensor

reading at Si using Eq. (4). The probability of obtaining

m (Si) given p follows the Poisson distribution. Subsequently,

we update the weight of each particle in P ′′ such that

w
(
p
(t)
i

)
= P

(
m (Si)

∣∣∣ p(t)
i

)
w
(
p
(t′)
i

)
.

After updating the weights, we merge P ′′ with P to form a

global view of all the particles. Let Pnew denote the merged

set. Pnew is defined as Pnew = (P − P ′) ⋃ P ′′. The weights

of all the particles are normalized again after the merging

process such that
∑
Pnew w(pi) = 1.

The merging process plays an important role in enabling the

particle filter to localize multiple sources without increasing

the number of estimation variables. A typical particle filter

formulation updates all the particles in every iteration. Each

sensor measurement affects all the particles including particles

that are far away from the sensor which are not relevant to

the current measurement, or particles estimating mainly other

radiation sources. Furthermore, the sensor measurements close

to those particles (which will be received in the future) will

provide a better view at those locations. By updating particles

that are close to the sensor providing the measurement only,

we allow multiple sources to co-exist in the area, and yet do

not require separate variables for different sources. Equally

importantly, this allows our algorithm to localize multiple

sources without knowing the number of sources.

D. Source parameter estimation

Given the updated Pnew and associated weights, we now

compute the position and strength estimates of the radiation

784



sources. Our step here is very different from the traditional

particle-filter approach where the estimate is computed as a

weighted sum of all the particles. In our case, if the weighted

sum of all the particles were computed, we would not be able

to differentiate the multiple sources. Instead, we will obtain

the centroid of the sources.

From this point onwards, the old P is no longer used. We

will refer to Pnew as P . To obtain the estimates for individual

sources, we construct the probability distribution function

LP (x) = P (x |P ) = (
∑
Pw (pi))

−1∑
Pw (pi)φH (x− pi) .

In the above, φH is the Gaussian kernel function

φH (x) = (2π)
−3/2 |H|−1/2

exp
(− 1

2x
�H−1x

)
(6)

and H is a symmetric positive definite matrix denoting the ker-

nel bandwidth [23]. In theory, the function LP (x) is a mixture

distribution, where the number of mixture components repre-

sents the number of sources. Estimating the source parameters,

therefore, is equivalent to finding the distribution parameters

of each mixture component. This is accomplished by finding

the values of x∗ that maximize LP , i.e. ∇LP (x∗) = 0.

Note that there will be multiple solutions (i.e., local optima)

when there are multiple sources. We are interested in finding

all the solutions each of which corresponds to the estimate of

one true source. This can be efficiently accomplished by using

the mean-shift algorithm [23]. Using mean-shift, we find x∗

by repeatedly applying xi+1 = M (xi) for i = 1, 2, . . . until

convergence, where M (x) is the mean-shift term derived from

∇LP (x) and given by

M (x) =

∑
P piw (pi)φH (x− pi)∑
P w (pi)φH (x− pi)

. (7)

Given an arbitrarily selected initial value of x1, the mean-

shift algorithm will converge to the closest x∗. To find all the

radiation sources, we repeat the algorithm with different values

of x1 and merge all the results that converge to the same x∗.
The advantages of using the mean-shift algorithm in esti-

mating the source parameters are: (i) the algorithm does not

require knowledge of the number of sources when combined

with our particle filter formulation, and (ii) the algorithm is

robust under noisy sensor data.

E. Particle resampling

The last step of our algorithm, known as resampling in the

literature, replaces particles of low weights with particles of

higher weights. Resampling is important because it prevents

the particle filter from degenerating. In a particle filter without

resampling, all the particles will have decreasing weights over

time, except for the one closest to the source. Eventually, all

but one particles will have zero weight. The estimates will not

be refined further due to the lack of diversity in the particles.

As an example, consider a scenario with a single static

radiation source. We initialize NP particles randomly in the

space A. Without resampling, in each iteration, the particles

close to the radiation source will have increasingly larger

weights whereas the particles far away from the radiation

source will have increasingly lower weights. Over time, all the

particles except the particle closest to the radiation source will

have zero weight. In this case, the particle filter degenerates to

a single particle. The parameter estimation will not be refined

any further due to the lack of diversity in the particles. The

resampling step essentially solves this problem by removing

particles of low weights and multiplying particles of high

weights. In our algorithm, resampling is only performed on

the particles that are affected in the current iteration, which

are in P ′′. Particles that are not affected in the current iteration

are not resampled because they were previously resampled and

are unmodified since.

Resampling is accomplished by sampling with replacement

from P ′′ with probabilities
w(pi·)∑
P w(pj)

for all pi ∈ P ′′. The

resampled particles are assigned uniform weights. During

resampling, when the same particle is duplicated, we introduce

zero-mean Gaussian noise into the duplicated particles [24].

The standard deviation of the noise is a tunable parameter

given by σN . This prevents multiple particles from having the

same parameters, which will eventually collapse to a single

point. In our algorithm, resampling is only performed on the

particles that are affected in the current iteration, which are in

P ′′. Particles that are not affected in the current iteration are

not resampled because they were previously resampled and

are unmodified since.

The above resampling procedure eliminates particles that

do not correspond to any actual sources. As time proceeds,

areas with no radiation sources initially will have few or no

particles. If a new radiation source moves to these areas, they

will be undetected because Eq. (5) produces a null set. As

a provision for new radiation sources entering the area, we

randomly replace a small percentage of particles, e.g., 5%,

with random particles. This ensures that the new radiation

sources will be detected and localized quickly.

VI. EVALUATION

We conducted experiments to evaluate the performance of

our source localization algorithm. We measured the perfor-

mance of the algorithm by (i) localization error, (ii) number

of false positives, and (iii) number of false negatives. In

measuring the localization accuracy, the Euclidean distance

between the actual source position and the closest estimate is

used. However, each estimate must estimate a single source

only. If no estimate is within 40 units from an actual source,

the source is considered a false negative. The estimates that

cannot be traced to any actual source are considered false

positives.

We have simulated a 100 × 100 surveillance area with

N = 6 × 6 sensors placed in a uniform grid covering the

entire surveillance area. All the sensors receive a background

radiation of 0, 5, 10, or 50 CPM. These values are chosen

to match typical environmental background radiation, which

is about 5–20 CPM. Several radiation sources of strengths

4–1000 μCi are randomly placed in the surveillance area.

These source strengths correspond to typical dirty bombs that

could be used in an actual terrorist attack [5]. To put these
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Fig. 3. Localization error (a–d) and false positives/negatives (e–h) with two
sources of various strengths (without obstacles). Two sources are located at
(47, 71) and (81, 42). Background radiation is 5 CPM.

source strengths further in perspective, the radiation source in

a radiotherapy machine is more than 1000 Curies strong [25].

Each simulation is repeated 10 times and the average results

are reported. In all the simulations, the standard deviation of

resampling noise σN is set to 3.0, and the fusion range is

di = 28 for 1 ≤ i ≤ N . We use the same fusion range for all

the sensors because they are arranged in a uniform grid.

In our simulations, sensor measurements arrive sequentially

and in order. Here, we introduce the notion of time step T . In

each time step, each sensor in the surveillance area submits one

measurement update. Therefore, each time step is equivalent to

N iterations. All the simulations reported have 30 time steps.

A. Multiple source results

We report an experiment with two sources of various

strengths located at (47, 71) and (81, 42). The performance

of the algorithm is shown in Fig. 3. In the figure, the large

localization error in the first few time steps arises because we

initialize the particles uniformly randomly without additional

knowledge. As a result, the algorithm does not have enough

information to accurately localize the sources. As shown in

Fig. 4, particles start to cluster at the sources as early as

T = 1. As more sensor measurements become available, the

localization error quickly reduces to a small value.

Because the particles are randomly located at T = 0, the

algorithm may produce many false positives because many

places are thought likely to contain the source given the limited

number of measurements. As time proceeds, false positives are

reduced because the sensor measurements do not give high
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Fig. 4. Progression of particle filter over time.

weights to their particles. In addition, there is an increase in

the number of false positives for stronger sources because the

radiation from strong sources can reach a long distance. This

increases the ambiguity in the sensor measurements because

the reading could be due to a strong source located far away

or a weaker source located closer to the sensor. Thus, the

algorithm is unable to reduce the weights of particles far

away from the actual source, which produces false positives.

The problem can be mitigated by reducing the fusion range.

However, without knowing the source strengths in advance,

reducing the fusion range can increase the false negatives

because weaker sources are missed. The false negatives, on

the other hand, are close to zero except when the source

strength is very weak (e.g., 4 μCi) as shown in Fig. 3(e).

This is because the radiation from weak sources appears to

be similar to background radiation. This makes it hard for the

algorithm to distinguish between radiation from a source and

that from the background.

We evaluated the algorithm in a scenario with three sources.

The three sources are located at (87, 89), (37, 14), (55, 51),

and the background radiation is 5 CPM. The results in a three-

source simulation scenario are similar to the two-source case

as shown in Fig. 5. However, the algorithm requires more

time steps to produce accurate results. Especially with the

4 μCi source, the algorithm takes 9 time steps before pro-

ducing accurate location estimates. In terms of false positives

and negatives, similar trends are observed as the two-source

scenario.

We have also evaluated our algorithm with four different

levels of background radiation: 0, 5, 10, and 50 CPM. The

results in Fig. 6 show that our algorithm can tolerate above-

average background radiation than in typical environments.

Higher background radiation only affects the first few time

steps of the algorithm. The results also show no impact on

the false positives and negatives by the higher background

radiation.
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Fig. 5. Localization error (a–d) and false positives/negatives (e–h) with three
sources of various strengths (without obstacles). The sources are located at
(87, 89), (37, 14), (55, 51). Background radiation is 5 CPM.

B. Results with obstacles

To evaluate how obstacles affect the performance of our al-

gorithm, we repeat the two-source simulations above, but with

an added U-shape obstacle in the middle of the surveillance

area as shown in Fig. 8(a). The thickness of the obstacle is

2 length units, and the attenuation coefficient is μ = 0.0693.

This μ value corresponds to halving the radiation intensity

with every 10 units of thickness. It is selected such that the

obstacle does not completely block the radiation, but allows

some radiation to penetrate through it.

The simulation results in Fig. 9(a) show that the obstacles

improve the accuracy of our algorithm by 24.5% for source 1,

but degrade it by 2.4% for source 2. The shielding by the

obstacle, although partial, reduces the interference between

the two sources, causing the sensors to provide more accurate

readings for the individual sources. The false postives and

negatives (not shown) are, however, not significantly different

than without the obstacle. We conclude that obstacles in the

environment may have positive effects, but not significant

negative effects, in our algorithm. We will revisit the effects

of obstacles in a large-scale network in Section VI-C.

Existing work that localizes multiple radiation sources typ-

ically requires modeling all the sources and their interactions.

In many cases, ambiguities cannot be resolved because a

strong source can give a similar signature as multiple weak

sources. Obstacles in the surveillance area pose additional

challenges for the existing algorithms. On the other hand,

our algorithm can exploit the shielding effect of obstacles to

improve the localization accuracy.
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Fig. 6. Localization error (a–d) and false positives/negatives (e-h) of two
sources under various background radiation levels (without obstacles). Two
sources are located at (47, 71) and (81, 42). Source strengths are 10 μCi.

C. Large network results

In this section, we illustrate the scalability of our algorithm

by simulating a scenario with 196 sensors placed in a grid

and 9 radiation sources of non-uniform strengths (between

10–100 μCi) randomly placed in the surveillance area. This

scenario has 3× more sensors and sources compared with

that in [2]. In addition, three obstacles located in the area

have uneven thickness. The layout of this scenario is given in

Fig. 8(b).

In this simulation, we increase the number of particles to

15000, proportional to the area increase. We evaluate the

performance of our algorithm with and without the obstacles.

Fig. 7 shows that our algorithm achieves similar localization

accuracy in both the large network and the small network,

regardless of the number of sources. Similar to the results in

Section VI-A, the first few time steps produce a large number

of false positives and negatives. In this case, the total number

of false positives and negatives has increased by more than 10

times due to the increased number of sources. However, they

quickly reduce to around 0.5 on average after several time

steps.

To illustrate the effects of obstacles, we compare the

normalized localization errors for the experiments with and

without obstacles in Fig. 9(b). The results show that some

sources benefit from the obstacles more than the others. This

is largely determined by the placements of the obstacles

relative to the sources and sensors. Fig. 9(c) shows the average

improvements in the localization error in time steps 5–29. (The

first 5 time steps are omitted in the computation because they

787



0
2
4
6
8

10

0 5 10 15 20 25 30

Lo
ca

liz
at

io
n 

Er
ro

r

Time Step

Source 1
Source 2
Source 3
Source 4

(a) Sce. B: Loc. Error (w/o obs.)

0

5

10

15

20

0 5 10 15 20 25

C
ou

nt

Time Step

False Pos+
False Neg-

(b) Sce. B: False Pos/Neg (w/o obs.)

0
2
4
6
8

10

0 5 10 15 20 25 30

Lo
ca

liz
at

io
n 

Er
ro

r

Time Step

Source 1
Source 2
Source 3
Source 4

(c) Sce. B: Loc. Error (w/ obs.)

0

5

10

15

20

0 5 10 15 20 25

C
ou

nt
Time Step

False Pos+
False Neg-

(d) Sce. B: False Pos/Neg (w/ obs.)

0
2
4
6
8

10

0 5 10 15 20 25 30

Lo
ca

liz
at

io
n 

Er
ro

r

Time Step

Source 1
Source 2
Source 3
Source 4

(e) Sce. C: Loc. Error (w/o obs.)

0

5

10

15

20

0 5 10 15 20 25

C
ou

nt

Time Step

False Pos+
False Neg-

(f) Sce. C: False Pos/Neg (w/o obs.)

0
2
4
6
8

10

0 5 10 15 20 25 30

Lo
ca

liz
at

io
n 

Er
ro

r

Time Step

Source 1
Source 2
Source 3
Source 4

(g) Sce. C: Loc. Error (w/ obs.)

0

5

10

15

20

0 5 10 15 20 25

C
ou

nt

Time Step

False Pos+
False Neg-

(h) Sce. C: False Pos/Neg (w/ obs.)

Fig. 7. Localization error and false positive/negatives in Scenario B and C
without obstacles (a–b, e–f) and with obstacles (c–d, g–h) corresponding to
the layout in Fig. 8(b). Data for source 4–9 are similar and not shown.

are not representative.) The figure shows that 5 sources, S2,

S3, S6, S7, S9, benefit from the obstacles. All these sources

have at least an obstacle located near them. Three sources,

S1, S4, S8, have similar localization errors with or without

the obstacles. These sources do not have obstacles near them

except S8. Lastly, only one source, S5, is affected negatively

by the obstacle. The localization accuracy of this source drops

by as much as 25%.

D. Random sensor placement and out-of-order data delivery

We evaluate the algorithm with another realistic scenario,

Scenario C, as shown in Fig. 8(c), where 195 sensors are dis-

tributed according to a Poisson point process, and the data are

received out-of-order to simulate unpredictable transmission

latency. The locations of the source and obstacles remain the

same as Scenario B in the previous section.

The results in Fig. 7(e-h) show that Scenario C has similar

localization accuracy compared with Scenario B. However, the

false positive and false negative rates are increased by 1.6 and

0.9 on average, respectively, in the case without obstacles.

In the case with obstacles, the increases are 0.8 and 0.3 on

average, respectively. They are mainly due to out-of-order

delivery of sensor measurements that causes the particle filter

to take longer to converge.

Similarly, obstacles may improve the performance of the

algorithm. Fig. 9(c) shows that the localization accuracy is

improved when obstacles are present in both Scenario B and C.

In addition, as indicated in Fig. 7, the false positive and false

negative rates are reduced by 26% and 35%, respectively.
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Fig. 8. The location of sensors, radiation sources, and obstacles.

E. Running time

In this section, we demonstrate that our algorithm can

take advantage of a multi-core machine for efficiency, which

enables it to run quickly even for very large networks. In this

experiment, we measure the wall-clock time of the algorithm

for each iteration. We run the experiment on two machines.

The first machine is a single-socket with Intel Core2 Quad

CPU at 2.40 GHz and 2 GB RAM. The second machine is a

four-socket with 6-core Intel Xeon CPU E7450 at 2.40 GHz

and 24 GB RAM. The average execution times of the algo-

rithm are listed in Table I.

The results show that our algorithm is highly scalable, with

average 5× speed up in moving from four cores to 24 cores.

The majority of the concurrency is achieved using the mean-

shift technique. Manipulating the particles in the predict-and-

update steps consume a negligible amount of time because the

selective updates of the algorithm effectively discard a large

number of particles at the first step of the algorithm.

The algorithm takes a fraction of a second to execute on

average, even with 196 sensors and 15000 particles. However,

we notice that the first few time steps take longer than average

because particles are randomly distributed in the beginning.

As time proceeds, the particles concentrate at several spots.

Therefore, the majority of the iterations only affect a small

number of the particles, resulting in shorter execution time.
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Fig. 9. Normalized localization error of a scenario without obstacles to the
same scenario with obstacles. Values > 1 imply that obstacles improve the
accuracy.

TABLE I
AVERAGE EXECUTION TIME (SECONDS) OF THE ALGORITHM PER

ITERATION.

4-core machine 24-core machine
# Particles N = 36 N = 196 N = 36 N = 196
2000 0.23 0.22 0.04 0.048
5000 0.54 0.47 0.12 0.129
15000 2.86 1.99 0.50 0.415

VII. CONCLUSION

We have addressed the problem of localizing multiple

point radiation sources using a network of sensors with

consideration of noise and obstacles in realistic environments.

Unlike existing algorithms, the proposed algorithm does not

require knowledge about the obstacles, but the presence of

obstacles may improve the localization accuracy. The proposed

algorithm is robust against unreliable network transmission,

out-of-order data delivery, and malfunctioning sensors. The

algorithm is scalable to a large network of sensors and many

radiation sources, and the computation has significant par-

allelism that benefits from multi-core processors. Simulation

results verified the accuracy of our algorithm in a number of

realistic application scenarios.
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