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Abstract—Credit cards are key instruments in personal 
financial transactions. Credit card payment systems used in 
these transactions and operated by merchants are often 
targeted by hackers to steal the card data. To address this 
threat, the payment card industry establishes a mandatory 
security compliance standard for businesses that process credit 
cards.  A central pre-requisite for this compliance procedure is 
to identify the credit card data flow, specifically, the stages of 
the card transaction processing and the server nodes that 
touch credit card data as they travel through the organization. 
In practice, this pre-requisite poses a challenge to merchants. 
As the payment infrastructure is implemented and later 
maintained, it often deviates from the original documented 
design. Without consistent tracking and auditing of changes, 
such deviations in many cases remain undocumented. 
Therefore building the credit card data flow for a given 
payment card processing infrastructure is considered a 
daunting task that at this point requires significant manual 
efforts.  

This paper describes a tool that is designed to automate the 
task of identifying the credit card data flow in commercial 
payment systems running on virtualized servers hosted in 
private cloud environments. This tool leverages virtual 
machine introspection technology to keep track of credit card 
data flows across multiple machines in real time without 
requiring intrusive instrumentation of the hypervisor, virtual 
machines, middleware or application source code. 
Effectiveness of this tool is demonstrated through its successful 
discovery of the credit card data flow of several open and 
closed source payment applications. 

Keywords-virtual machine; payment system; card data flow; 
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I.  INTRODUCTION 
Credit cards are commonly used in payment transactions 

worldwide. Payment systems operated by merchants and 
financial institutions executing the transactions accept card 
charges and provide card processing service. These payment 
systems thus make high-value targets for financially 
motivated cyber attackers because the valuable card data 
they contain can be sold on black markets for considerable 
monetary gains. Consequently, negligence in securing 
payment systems increases the risk of credit card data loss as 
illustrated by a number of high-profile payment system 
breaches that have occurred in the recent years [1]. These 
successful attacks caused loss of tens of millions of credit 

and debit card account information and resulted in significant 
financial liabilities to the owners of these payment systems. 

To tighten the security in payment systems, the Payment 
Card Industry Security Standards Council developed and 
released the Payment Card Industry Security Standard (PCI-
DSS) [2]. The PCI-DSS standard established stringent 
security requirements to safeguard sensitive payment card 
data.  All entities that store, process, or transmit card data are 
required to comply with the PCI-DSS to ensure that their 
payment systems are better protected from unauthorized 
exposure. Noncompliant entities receive monthly fines and 
eventually may lose their ability to process card payments.  

The key pre-requisite for PCI DSS compliance is 
construction of the card data flow diagram for a payment 
processing network. That is, a merchant must determine 
precisely how card data flow through its payment systems 
from their inception, where they traverse the network, and 
where they reside. This discovery process and the resulting 
card data flow diagram help merchants understand which IT 
equipments in its organization touch the card data so as to 
tighten the security of these IT equipments according to the 
PCI DSS compliance requirements. A card data flow could 
start from a payment card swipe at a store, or a card number 
input by a user into an E-commerce web site, and consists of 
all intermediate stops in a merchant’s IT network at which 
the card information is examined or processed.  Data loss 
prevention (DLP) tools are a class of tools that are designed 
to identify network packets, files or database tables that 
contain sensitive information such as personal medical 
records or credit card numbers. DLP tools are highly 
effective when dealing with unencrypted data, but are largely 
powerless when credit card data are encrypted during their 
processing and exchange, as in the case of PCI DSS-
compliant payment systems. Today, no known tool exists 
that could automatically discover the card data flow of a 
potentially distributed payment system. Therefore, currently 
the only solution to this problem is manual card data flow 
reconstruction based on outputs from DLP tools and network 
sniffers, and system design documents. As expected, such 
manual efforts are extremely time-consuming and labor-
intensive, because the required information is difficult to 
obtain and often spread across a variety of IT elements and 
applications. 

The goal of this research is to develop a tool that is 
capable of automatically and accurately extracting the card 
data flow of payment systems that run on virtualized servers 
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hosted in private cloud environments. We focus on payment 
systems running on virtualized servers because virtualization 
technology is quickly rising to predominate in enterprise data 
centers, and many payment systems start to run inside virtual 
machines hosted on virtualized physical servers [3-5]. The 
design principles underlying the proposed tool are equally 
applicable to payment systems running directly on physical 
machines, but it is easier to implement them in virtualized 
environments because of the availability of virtual machine 
introspection technology. 

 The tool we developed, called vCardTrek, provides a 
coarse-grained system-wide view of the card data flow 
across individual VMs that are actually involved in card data 
processing. To identify the trajectory of the card data flow, a 
payment processing request is sent to the entry point of a 
credit card processing system and the vCardTrek tool is 
employed to determine the set of machines that are invoked 
and exchange network packets as a result of this request. 
Leveraging virtual machine introspection capabilities [6], 
each network flow is then correlated with its sending and 
receiving processes. vCardTrek searches the address spaces 
of these processes for the clear text credit card data as they 
travel from the entry-point process to other card data 
handling processes along the way. Even though credit card 
data may be encrypted, they are decrypted and operated on in 
these processes, and therefore the clear text version of credit 
card data exist in these processes’ memory. Once the 
processes whose memory contains credit card data are found, 
the machines involved in the credit card data flow are readily 
identified.  

Two assumptions were made when developing 
vCardTrek. First, each card data handling process processes 
each request in a synchronous fashion, i.e., it reacts to an 
input request immediately and does not queue it for later 
processing. Second, when applying vCardTrek to a network 
to discover the credit card data flow, the network is in a 
“quiescent” state in the sense that only test payment 
transactions are running through the payment system and 
false positive caused by multiple concurrent requests is 
unlikely. Both assumptions seem to hold for real-world 
payment processing systems.  

We have tested vCardTrek against 4 commercial 
payment applications and successfully built the card data 
flow path for each of these applications. To the best of our 
knowledge, this is the first known tool that could 
automatically discover the credit card data flow of 
distributed payment applications running in virtualization 
environments. Our implementation does not require 
modifications to the hypervisor, VMs, guest OS, or payment 
applications themselves. The virtual machine introspection 
capability leveraged by vCardTrek already exists in modern 
hypervisors, such as Xen and VMware’s ESX. Because 
vCardTrek addresses a real current user pain point in PCI 
DSS compliance, we expect the availability of this tool could 
significant decrease the efforts and costs in meeting the 
security regulations stipulated in the PCI DSS standard. 

II. BACKGROUND 

A. Payment Systems 
A payment application consists of multiple components 

communicating with one another using synchronous 
requests. When a credit card is swiped through a card reader 
or submitted online through a web browser, a payment 
authorization request is processed in real time by a number 
of payment application components, which run on multiple 
machines and serve to verify credit card information and to 
return a success or failure code to the originating application. 
In the synchronous communication model, a sending process 
forwards each request to the next receiving process along the 
card processing path and blocks until the corresponding 
response is received. Once the payment application verifies 
that an input request’s credit card information is accurate and 
sufficient funds are available in the account, the request is 
granted permission to proceed with the purchase. A payment 
information processing request could take up to a few 
minutes. Additional processing steps may be triggered after a 
payment request is authorized, such as submission of 
payment data to storage, marketing data collection, payment 
reconciliation and settlement etc. Fig. 1 shows the data flow 
of a typical production-mode payment information 
processing system. As the virtualization technology has 
started to sweep the enterprise IT space, we assume different 
payment application components run on distinct virtual 
machines.  

 
Figure 1.  In a VM-based payment information processing system,, 
payment application components are installed on multiple VMs, which in 
turn could reside on one or multiple physical hosts. One of the possible 
card data flow paths is shown in solid lines. A card number is entered at a 
point-of-sale (POS) terminal in a store, travels to an authorization server 
that contacts the bank to obtain a payment authorization response. The 
dashed lines show other possible interactions among payment application 
components running in the virtual machines. 
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B. Virtual Machine Introspection 
The goal of this research is to develop an automated tool 

that could discover and extract the credit card data flow from 
a possibly distributed VM-based payment processing 
application. The design and implementation of this tool is 
based on the virtual machine introspection (VMI) 
technology. VMI refers to the method of monitoring and 
analyzing the state of a virtual machine from the hypervisor. 
The term “virtual machine introspection” was introduced by 
Garfinkel and Rosenblum to describe a host-based intrusion 
detection system for virtual machines [6]. Advances in VM 
introspection gave rise to its application to digital forensic 
analysis. Using VMI, unobtrusive live system analysis may 
be performed on a target virtual machine without interfering 
with the target system’s operation in any noticeable manner. 
Although most previous VMI-related research has been 
conducted for VMs running Linux OS [7], the same 
technique can be equally effectively applied to Windows 
OS-based VMs if methods borrowed from Windows 
machine forensic analysis are properly adapted. Our tool 
utilized these methods to generate a list of active processes, 
extract useful information associated with a specific process, 
such as its virtual address space, list of open network sockets 
[8-10], etc. 

III. SYSTEM DESIGN 

A. Requirements 
The development of vCardTrek is driven by the 

following requirements, which are derived from analyzing 
card data flows in real-world production environments: 

• Effectiveness of vCardTrek does not require any 
modifications on the hypervisor, the guest OS, or the 
payment applications in the target virtualized 
payment application system.  

• vCardTrek must be agentless, in that no additional 
software needs to be installed on the VMs on which 
the target payment application system runs.  

• vCardTrek does not make any assumptions on the 
internal operations of the target payment application 
system being tracked other than the following: (1) 
The target application runs on a virtualized 
environment, and (2) Credit card numbers are 
transiently stored in memory in a particular form. 

• vCardTrek imposes minimal performance overhead 
and thus could operate seamlessly in the background 
while the target payment application runs at full 
steam.  

B. Virtualization Platform 
The vCardTrek prototype described in this paper satisfies 

all the above requirements and is based on the Xen 
hypervisor [11].  Xen supports two types of virtual 
machines: unprivileged domains, called DomU domains, and 
a single privileged domain, called Dom0. In our design, we 
deploy vCardTrek in Dom0 and run payment applications in 
DomUs. By design, Dom0 is granted complete access to the 
entire state of the guest operating systems running in DomUs 

and can determine execution properties of DomUs by 
monitoring their run-time state through direct memory 
inspection using VMI interface provided by Xen, which 
allows for rapid memory analysis of DomUs satisfying the 
goals of application-independence and real-time, lightweight 
operation. Because other hypervisors, e.g. VMWare’s ESX 
and Microsoft’s Hyper-V, support similar VMI capabilities, 
vCardTrek is expected to be equally effective when ported 
over each of these hypervisors. 

The credit card data flow of a distributed payment 
application is the trajectory of the credit card data flowing 
through the payment application components, which are 
assumed to run on DomU VMs. Moreover, because 
communications among payment application components 
may be encrypted, it is not always possible to detect credit 
card data from sniffed network packets. Given the entry 
point component of a target payment application, one needs 
to identify all other application components with which the 
first component directly or indirectly communicates, and 
then pinpoint those components that have the credit card data 
in their virtual address space. Therefore, the algorithmic 
outline of vCardTrek comprises the following high-level 
steps: (1) recursively tracing inter-VM communications 
starting from the entry-point VM that receives the test input 
request, (2) applying VMI to inspect the memory space of 
communicating VMs for the credit card number used in test 
input, and (3) reconstructing the data flow path based on the 
results from (1) and (2).  

C. Main Components 
vCardTrek consists of a network agent and an 

introspection agent, both running in the Dom0 VM of all 
physical machines on which the target payment applications 
are installed (Fig. 2).  The network agent tracks inter-VM 
communications by examining the headers of network 
packets and constructs an inter-VM communication graph 
starting from the entry-point VM.  This is possible because 
all network packets to and from a DomU VM must go 
through its associated Dom0 VM. The introspection agent 
searches the memory space of all VMs in the inter-VM 
communication graph for credit card numbers, and builds the 
resulting card data flow path.  

 

 
Figure 2.  vCardTrek cosnists of a network agent that intercepts and 
analyzes network packet headers, and an intrspection agent that searches 
the memory space of communicating VMs for credit card numbers.  
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vCardTrek’s network agent is a user-space program 
running in Dom0. As shown in Fig. 3, it intercepts network 
packets by hooking into Xen’s network bridge between the 
physical interface card and virtual network interfaces (VNI) 
(in para-virtualized machines) or emulated network devices 
(in fully-virtualized machines). When the network agent 
intercepts a packet, it extracts its source and destination 
MAC addresses and port numbers. Given a quadruple of 
source MAC address, source port number, destination MAC 
address, and destination port number, the network agent 
determines the VMs that are involved in the corresponding 
network connection, and delivers this end point information 
to the introspection agent for further processing. 

 
Figure 3.  vCardTrek’s network agent architecture. (1) Network agent taps 
into the network bridge in Dom0, extracts the ports and MAC addresses of 
the communicating VMs, (2) resolves the MAC address to the 
corresponding VM’s ID, and (3) forwards the associated VM IDs and  port 
numbers to the introspection agent. 

vCardTrek’s introspection agent is a user-space program 
running in Dom0 that receives the (src VM, src port, dst 
VM, dst port) information for each active network 
connection from the network agent, identifies the processes 
associated with each network connection, searches the 
memory of the identified processes for the credit card 
number used in the test input, and constructs the data flow 
path. From a VM ID and port number, the introspection 
agent applies VMI to examine the VM’s kernel data 
structures containing socket and process information, as 
shown in Fig. 4, to identify the process in the VM that is 
bound to the port number. After identifying the process, the 
introspection agent maps the process’s memory pages to 
Dom0 and searches the memory pages for the test credit 
card number. The introspection agent applies the above 
algorithm, starting with the entry-point process, and 
continues recursively until the physical memory space of a 
destination process no longer contains the test credit card 
number.   

IV. IMPLEMENTATION 
We implemented a vCardTrek prototype using the Xen 

hypervisor and fully-virtualized (HVM) Windows-based 
VMs (payment systems predominantly run Windows OS), on 
which payment applications are installed. The vCardTrek 
prototype consists of two parts: the network agent and the 
introspection agent, whose implementation details are 
described below. 

 
Figure 4.  vCardTrek’s introspection agent architecture. (1) Introspection 
agent obtains the DomUs names and ports numbers from the network 
agent, (2) finds the process ID bound to the specified socket on the sending 
and receiving VMs, and (3) searches the memory of the identified 
processes for the credit card number used in the transaction. 

A. Network Agent 
The network agent is implemented in C and makes use of 

the packet filtering tool ebtables to intercept all packets sent 
to or from DomUs. Ebtables is an open source utility that 
filters packets at an Ethernet bridge [12]. As of the 2.6 Linux 
kernel, the ability to perform bridge mode filtering using 
ebtables is natively included in the kernel and supported by 
default. Through command line arguments, ebtables is 
instructed to pass intercepted packets to the network agent 
using netlink sockets. Whenever the network agent receives 
a packet from ebtables, it parses the packet to extract (src 
MAC, src port, dst MAC, dst port) from the packet header. 
The src and dst MACs are then resolved to the DomU IDs 
using XenStore. In Xen, XenStore stores information about 
each DomU during its execution including the domain IDs 
and the corresponding MAC addresses. The network agent 
initiates an introspection request by sending the resulting (src 
DomU ID, src port, dst DomU ID, dst port) to the 
introspection agent. Introspection requests are processed in a 
multi-threaded fashion so that the network agent never 
blocks on these requests and allows the introspection agent 
to perform the VM analysis in parallel using separate 
threads.  

The network agent maintains a table of all the (src MAC, 
src port, dst MAC, dst port) connections being currently 
analyzed by the introspection agent to avoid issuing 
redundant introspection requests while the request processing 
is in progress. Upon completion of an introspection request, 
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the corresponding connection record is removed from this 
connection table. 

B. Introspection Agent 
The main algorithm of the introspection agent consists of 

the following four steps. First, the agent maps the physical 
memory pages of the source and destination DomUs to 
Dom0, so that it can inspect their contents. Second, it parses 
the mapped pages to extract open sockets and identify the 
processes bound to the source and destination sockets of an 
inter-VM connection. Third, it identifies the portions of the 
mapped physical memory space that belongs to the identified 
processes, so that it can focus on those portions only, and 
searches these memory portions for the test credit card 
number used. In the final and fourth step, the card data flow 
is built. 

1) Accessing DomU Memory: Xen offers low-level 
APIs to allow Dom0 to map arbitrary physical memory 
pages of a DomU to its memory space. These APIs operate 
on DomU IDs obtained from the network agent. XenAccess 
is a Dom0 user-space introspection library developed for 
Xen that is built upon the low-level APIs provided by Xen 
[13]. We leverage the PyXaFS file system, which is part of 
the XenAccess tool suite, to map physical memory pages of 
DomU’s kernel inside Dom0. PyXaFS exposes the memory 
of a DomU as a regular file on the host and allows the 
introspection agent to read a live DomU’s memory image as 
if it is a normal file. 

2) Parsing Sockets and Processes Structures: Given a 
DomU’s physical memory space, which is made accessible 
as a file, vCardTrek applies VMI to reconstruct the high-
level data structures embedded in the DomU’s kernel. This 
requires intimate knowledge of the target VM’s operating 
system structure in order to bridge the so-called semantic gap 
[14-16] between low-level memory pages and high-level 
kernel data structures, such as network connections, sockets, 
process list, page directories and tables, etc. It is non-trivial 
to reverse-engineer these guest OS-specific constructs, 
especially for a closed-source operating system such as 
Windows OS, which is the target of this project. Fortunately, 
a large body of knowledge about the Windows kernel’s 
internal structure has been accumulated and documented 
over the years. We leverage this knowledge and effectively 
solve the problem of network socket and process 
identification in a live VM’s physical memory pages using 
Volatility Framework [17]. Volatility is an open source 
Python-based framework that was specifically designed to 
assist forensic investigators with the examination of volatile 
memory. The extraction techniques utilized by Volatility 
work for Linux,  Windows, and OS X, and and include such 
capabilities as obtaining the list of running processes, open 
network sockets and connections, ability to dump a process’ 
addressable memory, etc.  

Applying the Volatility Framework to a DomU’s mapped 
physical memory space allows vCardTrek to extract the 
identification of the processes bound to the network sockets 

connections whose port numbers and addresses are 
intercepted by the network agent. 

3) Searching the Process Memory: Given a process ID 
obtained in the above step, the introspection agent traverses 
the process’s page directory and page table to find the 
physical memory pages owned by the process and scans 
only that process’s physical memory pages for the test credit 
card number.  

After the introspection agent identifies a payment 
application’s process being involved in possible credit card 
data communications, it scans the process’s physical 
memory space for the test credit card number, before it is 
deallocated or overwritten. The introspection agent may need 
to scan the same process multiple times. The first scan 
examines every memory page in the process, but each 
subsequent scan only inspects those memory pages that are 
modified since the last scan. We exploited Xen’s dirty page 
tracking capability originally designed for live migration to 
identify modified pages between consecutive scans. This 
incremental scanning approach drastically decreases the 
credit card number search overhead in subsequent scans. If 
no credit card number is found after a specified number of 
scans of a given process, the introspection agent assumes the 
process is not in the credit card data flow. 

4) Credit Card Data Flow Reconstruction: To build up 
the credit card data flow, the processes whose memory 
contains the test credit card data and the communication 
connectivity among them are combined into a graph.   

When two processes of a payment application 
communicate, there are three possible state combinations 
after searching their memory pages, as shown in Fig. 5(A): 
(1) The test credit card data found in the memory of both 
processes, (2) the test credit card data found in the memory 
of either process but not both, and (3) the test credit card data 
is found in the memory of neither process.  

 
Figure 5.  A rectangular box signifies a virtual machine. A black circle 
signifies the credit card number found in the memory of a process on a 
VM. An empty circle signifies no credit card number found in a process 
memory.The arrow indicates the direction of connection initiation, not 
traffic flow. (A) Possible states of two communicating processes at the time 
of communication.  (B) Possible states of processes in a VM at packet 
receiving time and at packet sending (the same process may serve as the 
receiving and sending process).    

Similarly, when the introspection agent scans a process’s 
memory in a VM that serves as a credit card receiver and as 
a credit card sender, there are three possible state 
combinations, as shown in Figure 5(B).  When the 
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introspection agent could not find the test credit card number 
in a process’s memory, there are three possible cases. First, 
the process does not receive the test credit card data at all. 
Second, the process receives an encrypted version of the test 
credit card data, but does not decrypt it. Third, the process 
receives the test credit card data either in clear text or in 
encrypted form, but the introspection agent scans the process 
at an inopportune time, e.g. before the decryption of an 
encrypted card number or after the clear text card number is 
overwritten. To minimize the probability of Case 3, 
vCardTrek scans each communicating process multiple times. 

Just because no credit card number is found in a process 
does not mean that the process cannot be part of a payment 
application’s credit card data flow.  For example, the process 
can receive an encrypted credit card number and pass it on to 
the next process without decrypting it. Therefore, the 
introspection agent has to scan all communicating processes 
regardless of whether the sending process contains the test 
credit card number.  

V. EVALUATION 
To demonstrate the utility of vCardTrek, the tool was 

tested on 4 payment applications, three e-commerce 
shopping carts and a point-of-sale system. These applications 
were written in different programming languages, used 
different application platforms, and employed different 
encryption techniques to protect credit card data. Although 
the number of hosts participating in the credit card data flow 
did not exceed three in any of the test cases, we observed all 
possible state combinations shown in Fig. 5. The 
experimental testbed consisted of a virtualized server that 
used Xen version 3.3 as the hypervisor and Ubuntu 9.04 
(Linux kernel 2.6.26) as the kernel for Dom0. vCardTrek 
tool was installed in the Dom0. In addition, the virtualized 
server hosted several DomU domains running Windows XP. 

A. osCommerce 
osCommerce is a popular free e-commerce and online 

store-management software program [18]. According to the 
osCommerce site, there are over 12,000 online shops 
worldwide using the program. osCommerce is a 
PHP/MySQL-based system that can be set up as a three-tier 
architecture including a front-end browser, a web server, and 
a database server. 

osCommerce was installed and tested in DomU VMs as 
shown in Fig. 6. IIS 5.1 web server, PHP 5.3.3, and 
osCommerce application were installed in the “VM-
webserver” DomU to host the osCommerce code (with 
Credit-Card-with-CVV2 module) and process web 
application requests. MySQL version 5.1.52 was installed in 
the “VM-database” DomU to store the osCommerce 
application data. The Internet Explorer browser in the “VM-
client” DomU was used to browse products and submit 
payment information. 

When testing the osCommerce system, we selected 
several items for purchase and submitted credit card 
information at checkout. Because each card transaction is 
expected to consistently span the same set of VMs and 
applications along the data flow path, only one card 

transaction is sufficient to expose the osCommerce behaviors 
in this regard. 

 

 
Figure 6.  osCommerce data flow diagram. 

Following the payment processing request, the 
vCardTrek tool determined the set of machines exchanging 
packets, identified the processes involved in these 
communications, and inspected the processes’ memory for 
the credit card number used in the transaction, while 
allowing the applications to run throughout the analysis. 
vCardTrek successfully identified the test card number in 
memory of all the components along the card flow and built 
the card data flow path as shown in Fig. 6. Table 1 shows the 
average amount of time required to identify the credit card 
data flow for each test application. 

TABLE I.  THE AMOUNT OF TIME TO IDENTIFY THE FLOW 

Application Name Time, sec 
osCommerce 7 
AbleCommerce 9 
X-Cart 9 
CreditLine 8 

B. AbleCommerce 
AbleCommerce is a commercial shopping cart system 

with more than 10,000 stores worldwide using the program 
[19]. AbleCommerce is currently named on the PCI Security 
Standards Council’s list of validated payment applications 
that have been assessed for compliance with PCI security 
standards. AbleCommerce is an ASP.NET/MSSQL-based 
system that can be set up as a three-tier architecture 
including a front-end browser, a web server, and a database 
server.  

The trial version of AbleCommerce was installed and 
tested in DomU VMs as shown in Fig. 7. IIS 5.1 web server, 
.NET framework version 3.5, and AbleCommerce 
application were installed in the “VM-webserver” DomU to 
host the AbleCommerce code and to process web application 
requests.  Microsoft SQL Express Server 2005 was installed 
in the “VM-database” DomU to store the AbleCommerce 
application data. The Internet Explorer browser in the “VM-
client” DomU was used to browse products and submit 
payment information. 
To build the card data flow, we followed the testing 
procedure as outlined in the osCommerce example. 
vCardTrek identified card data in the “VM-client” and “VM-
webserver” memory. The test card number was not found in 
the “VM-database” memory, which suggested that either the 
credit card number was not submitted to the database or the 
credit card number was in an encrypted form when it settled 
in the database. The reconstructed card data flow path is 
shown in Fig. 7. 

56



 

 
Figure 7.  AbleCommerce data flow diagram. 

C. X-Cart 
The X-Cart e-commerce shopping cart software ranked in 

the top 10 among commercial shopping cart software 
applications used by online stores [20]. X-Cart is a 
PHP/MySQL-based system that can be set up as a three-tier 
architecture including a front-end browser, a web server, and 
a database server. 

The trial version of X-Cart was installed and tested in 
DomU VMs as shown in Fig. 8. IIS 5.1 web server, PHP 
5.3.3, and the X-Cart application were installed in the “VM-
webserver” DomU to host the X-Cart code and to serve web 
application requests.  MySQL version 5.1.52 was installed in 
the “VM-database” DomU to store the X-Cart application 
data. The Internet Explorer browser in the “VM-client” 
DomU was used to browse products and submit payment 
information. 

 

 
Figure 8.  X-Cart data flow diagram. 

To reconstruct the card data flow, we followed the testing 
procedure as outlined in the osCommerce example. 
vCardTrek identified card data in the “VM-client” and “VM-
webserver” memory. The card number was not found in the 
“VM-database” memory, which suggested that either credit 
card number was not submitted to the database or the credit 
card number was in an encrypted form when it settled in the 
database. The reconstructed card data flow path is shown in 
Fig. 8. 

D. CreditLine 
CreditLine is a payment processing client-server 

application installed on point-of-sale systems [21]. 
CreditLine is currently named on the PCI Security Standards 
Council’s list of validated payment applications that have 
been assessed for compliance with PCI security standards. 

The trial version of CreditLine was installed and tested in 
DomU VMs as shown in Fig. 9. When testing the CreditLine 
system, we invoked the vCardTrek tool and performed a 
credit card transaction at the point-of-sale client application 
running in the “VM-client” machine. The “VM-client” 
established a connection with the “VM-server”, and the 
“VM-server” further initiated a connection to an external IP. 
The test card number was not found in memory of the 

processes that established the connection between the “VM-
client” and the “VM-server”. However, the test card number 
was found in memory of the “VM-server”’s process that 
established the external connection request, thus suggesting 
that the credit card number was in an encrypted or encoded 
form when it exited the “VM-client” and entered the “VM-
server”. The reconstructed card data flow path is shown in 
Fig. 9. 

 

 
Figure 9.  CreditLine data flow diagram. 

VI. RELATED WORK 
Several studies explored the problem of request 

processing path discovery in distributed systems. These can 
be roughly divided into “white box” and “black box” 
methods. White box, or instrumentation-based methods, 
require modification of middleware or applications to record 
events or inject unique identifiers that are used to reconstruct 
request processing paths [22-24]. Although capable of 
delivering precise measurements, white box methods usually 
have limited applicability in enterprise environments because 
they require knowledge, often source code, of the specific 
middleware or applications in order to enable 
instrumentation. For situations where instrumentation is not 
possible, path inference through black-box monitoring has 
also been considered [25-28]. “Black-box” monitoring does 
not require modification to the application or its framework. 
Unlike white box methods, black box methods analyze 
natively generated network packets and/or system logs, and 
infer request processing paths using statistical analysis. 
Platform agnostic black box methods are less precise but 
more suitable for enterprise environments where systems are 
composed of software from different vendors, usually 
without access to the application source code. 

The novel tool described in this article (vCardTrek) 
bridges the two approaches combining the high precision of 
the white box methods with non-invasiveness and platform 
independence of the black box methods. Similarly to the 
white box approach, vCardTrek monitors unique IDs (credit 
card numbers) to track requests, but without the necessity of 
artificial injection of these IDs. Similarly to the black box 
approach, vCardTrek treats the machines as black boxes and 
does not require knowledge of the application components or 
modification to the OS, middleware, or application source 
code to enable request tracking. Therefore, vCardTrek 
represents a novel approach to resolve the problem of card 
data flow tracking and as such is expected to be of high 
practical value in industry applications.    

Similarly to the unique identifier approach used in this 
study, Pauw et al. [28] described a mechanism for 
understanding the transaction flow in web services-based 
applications by locating application-specific conversation 
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identifies (such as order numbers) in the content of the 
messages passed between the application components in 
distributed applications. The approach treated the application 
modules as black boxes and relied on capturing the content 
of messages passed between the modules. The messages 
were assumed to have structured content. The captured 
messages were analyzed to reveal the correlations between 
instances of messages based on the extracted identifiers. 
Compared to our method, the scope of this tool is limited to 
web services-based applications only. This approach also has 
limited applicability for systems in which messages have 
encrypted content. 

In another related study, vPath [29] technique was 
developed for request processing path discovery in 
virtualization environments. vPath used a virtual machine 
monitor to watch threads and network activity and infer 
request processing paths in para-virtualized systems that 
communicated using synchronous RPC messages. Similar to 
our tool, vPath prototype was also implemented in Xen 
hypervisor but the implementation required modifications to 
the hypervisor to identify threads that sent/received TCP 
messages and changes to the guest OS to deliver information 
about TCP connections. Compared to vPath, our tool works 
on both para-virtualized and fully virtualized systems and 
does not require modifications either to the hypervisor or to 
the guest OS. 

VII. DISCUSSIONS AND CONCLUSIONS 
Because PCI DSS compliance requires explicit 

identification of hosts that participate in credit card data 
processing, the PCI community is desperately in need of a 
tool that can automatically discover the credit card data flow 
of a legacy payment application system that is potentially 
distributed across multiple hosts. This paper describes the 
design and implementation of the first known tool designed 
specifically for such discovery called vCardTrek, and shows 
its effectiveness against three e-Commerce and one POS 
payment processing applications. A key feature of 
vCardTrek is that it can discover a distributed payment 
application’s credit card data flow even if the communication 
between its component processes is encrypted. As for future 
work, we will extend vCardTrek to work for distributed 
payment applications that are installed on physical machines 
rather than virtual machines, and to work for payment 
applications that use asynchronous rather than synchronous 
communications.    
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