

Design and Analysis of A Distributed Multi-leg Stock Trading System

Jia Zou1, Gong Su2, Arun Iyengar2, Yu Yuan1, Yi Ge1

1IBM Research – China; 2IBM T. J. Watson Research Center
1Diamond Bldg, ZGC Software Park, Beijing 100193, China; 219 Skyline Dr Hawthorne NY 10532-1596, USA

1{ jiazou, yuanyu, geyi }@cn.ibm.com; 2{ gongsu, aruni }@us.ibm.com

Abstract: We present the design, optimization and analysis of a
highly flexible and efficient multi-leg stock trading system.
Automated electronic multi-leg trading allows atomic processing
of consolidated orders such as “Buy 200 shares of IBM and sell
100 shares of HPQ”. While the expressive power of multi-leg
trading brings significant value to investors, it also poses major
challenges to stock exchange architecture design, due to
additional complexities introduced in performance, tradability,
and fairness. Performance can be significantly worse due to the
need to coordinate transactions among multiple stocks at once.
This paper studies the performance of multi-leg trading under
different fairness constraints and variability in order price and
order quantity. We identify the major performance bottlenecks
when using traditional atomic commitment protocols such as 2-
Phase Commit (2PC), and propose a new look-ahead algorithm
to maximize transaction concurrency and minimize performance
degradation. We have implemented a base-line 2PC prototype
and a look-ahead optimized prototype on IBM z10 zSeries
eServer mainframes. Our experimental results show that the
look-ahead optimization can improve throughput by 58% and
reduce latency by 30%.

Keywords- computer-driven trading, distributed coordination,
multi-leg trading, transaction processing, two-phase commit.

I. INTRODUCTION
Electronic stock and commodity trading has revolutionized

financial markets. Major stock exchanges such as the NYSE
and NASDAQ handle large volumes of requests electronically.
These exchanges must handle high request rates, serve requests
with low latencies, and be highly available. Because of the
need for high performance, the systems are designed for
requests involving single stocks and not requiring coordination
among multiple stocks which can add considerable overhead.

There is considerable interest in multi-leg stock trading in
which multiple stocks are traded atomically in the same
transaction. To illustrate the problem, consider the following
multi-leg order: “buy 200 shares of IBM at price ≤ $130, sell
100 shares of HPQ at price ≥ $30, and buy 300 shares of
MSFT at price ≤ $20.” This multi-leg order will not trade
unless stock prices for IBM, HPQ, and MSFT allow each order
on an individual stock, known as a leg, to execute. If the multi-
leg order is tradable, then all legs are executed atomically. The
key issue is that in order to determine if the entire multi-leg
order is tradable and to execute it atomically, trading on all
three stocks has to be suspended for a period of time. This
reduces performance considerably.

Currently, stock exchanges do not support automated multi-
leg trading of this type due to the overhead and complexity. A

transaction of this type would have to be executed by a human.
Stock exchanges and investment banks are aware of the fact
that true automatic multi-leg trading would bring significant
business value if it could be efficiently implemented. Among
other things, it will enable investors to submit and trade only
one order rather than multiple related orders with significantly
lower transaction cost and enhance existing financial products
like ETF[21] or basket swap[22] by offering investors more
flexibility.

This paper examines the complexities and performance
problems associated with multi-leg trading, and presents a new
algorithm called look-ahead for alleviating the high
coordination overhead. Our look-ahead algorithm could be a
key component of distributed systems which need to
atomically coordinate buying and selling of stocks and other
commodities. The optimizations that we present in this paper
minimize the time during which trading on a stock comprising
a multi-leg order is suspended.

In order to achieve scalability, stock exchanges use
multiple nodes for trading in which different stocks might trade
on different nodes. Therefore, processing a multi-leg order will
often incur communication overhead for coordinating two or
more nodes. Thus, multi-leg trading is typically significantly
slower than single-leg trading. One way to solve the problem is
to only allow the stock exchange to specify the stock and
trading quantity of each leg and disallow mixed-trading
between single-leg and multi-leg orders. That way, multi-leg
orders could be processed independently from single-leg orders
which would avoid slowing down single-leg orders. However,
this would severely limit the flexibility and value of multi-leg
trading. Given that mixed-trading between single-leg and
multi-leg order is needed, performance of single-leg trading
will also be slowed down by multi-leg trading.

Another issue is that different fairness of trading rules and
variance of prices and quantities of requests will affect
performance and tradability. Because tradability, fairness and
performance are all important, trade-offs must be made among
them in many aspects, e.g. trading rule design, financial
product design, capacity planning, and overload control. It is
thus important to understand their quantitative relationships.

We have implemented two stock trading systems. The first
is a base-line prototype based on 2PC[1,2,19] and efficient
session management. The second uses our look-ahead
algorithm to reduce the overhead of coordinating multi-leg
transactions. The main idea is that even if stock trading on a
symbol is suspended due to processing a multi-leg order, some
single-leg orders can continue to execute if certain identified
conditions can be satisfied. In this way, the look-ahead

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.70

13

algorithm uses fine-grained state machines to schedule requests
for maximum concurrency while maintaining fairness
constraints. Our results show that, the proposed look-ahead
solution can achieve up to 58% throughput gain and up to
30% latency reduction.

We also quantitatively evaluated a number of performance
factors like percentage of multi-leg orders, number of legs,
price/quantity variance and different priority ordering rules.
We found that increasing the number of legs decreases
performance and tradability. Increasing the percentage of
multi-leg orders will decrease performance and tradability, but
will not always decrease the throughput gain from the look-
ahead optimization. Using priority ordering rules requiring
more legs to be at the front of the priority queue before a multi-
leg order can trade will decrease performance and tradability,
but will increase throughput gain from the look-ahead
optimization. Variance in price and quantity will decrease
tradability, but increase performance, however, not always
increase the throughput gain from the look-ahead optimization.

The key contributions of this paper include: i) Design and
implementation of a highly flexible and efficient prototype
multi-leg trading system; ii) A look-ahead algorithm which can
speedup multi-leg trading significantly and is useful for a broad
class of coordinated transaction systems with ordering
constraints; iii) A detailed performance evaluation quantifying
a number of performance factors, with useful insights for
making the right trade-off in many aspects of multi-leg trading.

The organization of this paper is as follows. Section II
introduces a common stock exchange architecture and defines
the multi-leg trading problem. Section III presents the design
and implementation of our base-line multi-leg trading system.
Section IV describes the novel look-ahead optimization
scheme. Section V provides a detailed performance evaluation
and analysis. Section VI describes related work. Section VII
concludes the paper and future works.

II. BACKGROUND

A. Single-leg Trading and Stock Exchange Architecture
It is beneficial to understand general stock exchange

architecture and how orders are handled for single-leg trading.
As shown in Fig. 1(a), the architecture is typically multi-tiered
and consists of multiple gateway nodes (GW) running order
dispatchers, multiple execution venue nodes (EV) matching
orders for one or more specified stock symbols, and multiple
history recorder (HR) nodes writing trading results into
persistent storage. EVs are the most critical components of the
stock exchange where all trades are executed.

A single-leg order is a buy or sell order involving only one
stock symbol. GW nodes are responsible for dispatching
received orders to corresponding EVs. The order matching
process carried out by EVs should be strictly consistent with
the following price-time priority rules[9]: i). price-priority
rule: for buy orders, higher price has higher priority; but for
sell orders, lower price has higher priority; ii). time-priority
rule: if multiple orders offer the same price, the order arriving
earlier has a higher priority.

For example, when a GW node receives a single-leg order
saying “Sell 100 shares of HPQ stock at $30.1”, it will dispatch

the order to the EV corresponding to HPQ for processing.
When the EV receives the order, it matches the order against
its order book, which is an in-memory list of all outstanding
orders (those orders that didn’t have a match since they were
received). If a match is found, for example there is an order
buying 300 shares of HPQ stock at $30.1, a trade of 100 shares
of HPQ stock at $30.1 occurs. Otherwise, the order is entered
into the order book. The fact of whether a trade happens or not
is sent to the HR to write to persistent storage. The GW sends
an acknowledgment to the client at the end of each transaction.
Fig. 1(b) shows a typical order book of an EV. It has two sides:
buy and sell. Orders on each side are first ordered by their price,
and then ordered by their arrival time, according to the price-
time rule. Readers should pay particular attention to the fact
that the order book immediately gives the highest-to-lowest
priority ordering for both sides: [S1, S6, S7] for the buy side and
[S4, S2, S3, S0] for the sell side (S5 is not in the book because it
was traded).

 (a) Distributed Stock Exchange (b) Book Structure for Open Orders

Figure 1. Common Architecture for Single-leg Trading

B. Multi-leg Trading Problem Definition
Multi-leg (also known as bundled) stock trading allows the

investors to submit multiple stock trading orders (legs) in a
consolidated order, which will be executed atomically as a
single transaction.[10] The consolidated order could be traded if
and only if all legs can be traded. There are two large
categories of multi-leg orders: fixed and arbitrary.

The fixed type only allows the stock exchange to specify
the stock and trading quantity of each leg, comprising a basket
of specified stocks with the amount of each stock in the basket
also fixed. Investors can submit buy or sell orders to trade
those baskets. Fixed multi-leg trading, i.e. ETF[21] or basket
swap[22], is automated in many stock exchanges by treating the
basket as a new stock. Baskets are only allowed to be traded
among themselves and not with single-leg orders, which
severely constrains market liquidity and trading flexibility.

The arbitrary type allows investors to specify the stock
symbol, price limit and trading quantity for each leg, as
illustrated in Table 1.

Table 1. A multi-leg order with three limit order legs
Leg no. Sequence no. Symbol Action Price Amount
1 0000-0002 IBM Buy $120.00 200
2 0000-0002 HPQ Sell $30.00 100
3 0000-0002 MSFT Buy $40.00 300
Arbitrary multi-leg trading has not yet been automated in

electronic stock exchanges due to the high coordination
overhead. This is the problem we attempt to solve in this

14

paper. The challenges are from three aspects of trading
requirements: tradability, fairness, and performance.

i) Tradability. Tradability relates to how frequently orders
are traded. It is one important metric because stock exchanges
should guarantee that, at most times, there is enough supply
and demand to allow prices to be determined consistently to
attract buyers and sellers. In arbitrary multi-leg trading, the
content of each leg is unknown a priori, so if multi-leg orders
are only allowed to trade among themselves as practiced for
the fixed type, the tradability will be low[11]. Therefore, it is
necessary to support mixed trading of multi-leg orders with
single-leg orders. In addition, smaller variance in price and
quantity typically will also bring better tradability.

ii) Fairness. There is no existing priority ordering rule
directly applicable to the situation where a multi-leg order can
trade with a single-leg order, which is also a challenge this
work is facing. But one intuitive principle is that the price-time
priority rule should be maintained among all single-leg orders.
In addition, fairness rules between a single-leg order and a
multi-leg order, and those between two multi-leg orders are
needed.

iii) Performance. A typical performance requirement for
single-leg trading is to handle orders within 10 milliseconds,
from the time a GW receives an order to the time it notifies the
client that the order has completed. An EV should be able to
handle thousands of orders per second. In addition, single-leg
order performance should not be significantly compromised by
introducing multi-leg orders. This is difficult to achieve
because multi-leg trading can require blocking multiple EVs
concurrently in order to determine if an order can be executed
atomically.

Tradability, fairness, and performance also impact each
other. For example, enforcing stricter fairness results in fewer
orders being traded and more outstanding multi-leg orders, thus
worse tradability and performance. Our goal is to understand
the trade-offs among these factors and provide an efficient
design and implementation of a multi-leg trading system for
distributed stock exchanges.

III. BASE-LINE PROTOTYPE

A. Trading Rule Design
Although it is straightforward to determine the trading

priority ordering of single-leg orders, it becomes tricky to
define the trading priority ordering of multi-leg orders. We
propose a flexible priority rule for multi-leg orders that can be
adjusted with a parameter to obtain desired degree of fairness.
We call this the K-top-priority rule:

A multi-leg order with n total legs can be traded if and only
if at least K legs (1 ≤ K ≤ n) have the highest priority and a
tradable match in their respective order books.

In practice, two special cases are of particular interest. When
K=n, a multi-leg order can be traded if and only if all the legs
have the highest priority and a tradable match in their
respective order books. This is called all-top-priority rule.
When K=1, a multi-leg order can be traded if and only if at

least one leg has the highest priority and a tradable match in its
order. This is called the single-top-priority rule.

Intuitively, as K increases, the degree of fairness increases
but the tradability decreases. For example, the all-top-priority
rule is strictly consistent with the price-time priority rule in all
EVs (fairness is guaranteed between all combinations of
single-leg orders and multi-leg orders) and thus offers the best
fairness. However, the tradability of this rule is also the worst
because the probability of a multi-leg order getting traded is
the lowest. Both the all-top-priority rule and single-top-priority
rule are supported in our prototype and are compared in
Section V.

B. Processing Flow
The stock symbol attached in each leg in arbitrary multi-leg

orders can only be determined at run-time. The GW dispatches
an incoming multi-leg order to all the legs’ corresponding EVs.
Use the example order in Table 1, the first leg will be
dispatched to the EV handling IBM stock, the second leg will
be dispatched to the EV handling HPQ stock, and so on, as
shown in Fig. 2.

Figure 2. Dispatching of Multi-leg orders

EVs process all incoming legs of multi-leg orders and
single-leg orders in the order in which they are received. Each
time, the EV will fetch one order from the queue for processing.
The order will be matched against the order book as shown in
Fig. 1(b) according to the price-time priority rule. If the order
does not have a match, it will be inserted into the order book as
an outstanding order and remain there until being triggered by
later incoming orders.

Otherwise, if the order has a match, there could be the
following possibilities: i) Single vs. Single: an incoming
single-leg order matches an outstanding single-leg order; ii)
Single vs. Multi: an incoming single-leg order matches an
outstanding leg of a multi-leg order; iii) Multi vs. Single: an
incoming leg of a multi-leg order matches an outstanding
single-leg order; and iv) Multi vs. Multi: an incoming leg of a
multi-leg order matches an outstanding leg of a multi-leg order
in order book.

In the Single vs. Single case, the order and its match will be
traded as described in Section II.A. In the Single vs. Multi and
Multi vs. Single cases, one multi-leg order is involved. To
maintain atomicity and ensure that a multi-leg order is traded
only if all legs can be traded, the EV should coordinate with
other EVs corresponding to other legs of the multi-leg order
(also called partner EVs) to achieve a consensus on whether

15

the trade should go through. During the time of coordination,
in our base-line design, all involved EVs are locked and are not
allowed to fetch and process new incoming orders from the
receiving queue. This is to avoid violating the time-priority and
price-priority rules. Locking all EVs for coordination is a
simple but safe design for the base-line prototype. If the
consensus is “trade”, the multi-leg order will be traded and
removed from the order book; otherwise, the multi-leg order
will be inserted into the order book to wait to be triggered by
later incoming orders. The “trade” or “not trade” information
will be sent to an HR node to write to persistent storage. The
Multi vs. Multi case can result in extremely complex
coordination scenario due to the possibility of cascading of
matches. Therefore, it is disallowed by the matching function.

C. Distributed Coordination Protocol Design
Once a leg of a multi-leg order becomes the top priority

order in its EV, a match with an incoming single-leg order
triggers a multi-leg session to coordinate with other legs’ EVs
to determine whether this multi-leg order could trade or not.
Given a specified priority rule, coordination logic should
define message flows to determine whether this multi-leg order
can trade with other single-leg orders based on the status of
each leg. This is very similar with the distributed consensus
problem, which exists in systems like distributed database/file
system, multicasting, streaming and so on. 2PC is a widely
used distributed consensus protocol that decides on a series of
Boolean values (“commit” or “abort”). In 2PC, the coordinator
node communicates the state of a transaction to peer nodes.
When the transaction state transitions to “prepare” at a peer
node, the peer responds with a “yes” or “no” vote. The
coordinator counts these responses; if all peers respond “yes”
then the transaction commits. Otherwise it aborts. In our base-
line prototype, we utilize 2PC for multi-leg coordination and
the basic message flows are shown in Fig. 3(a) and Fig. 3(b).

(a) The message flow if EVIBM (coordinator) initiates the session

(b) The message flow if EVHPQ (non-coordinator) initiates the session

Figure 3. Message Flows for Distributed Coordination

Fig. 3(a) is the case when a coordinator EV initiates a
multi-leg session. The message flow is essentially the same as
a traditional 2PC. Fig. 3(b) is the case when a non-coordinator
EVHPQ initiates a multi-leg session, which is different from a
traditional 2PC where a session is always initiated by the
coordinator. As shown in the figure, there are actually fewer
messages involved in this case. Since the query from the non-
coordinator EVHPQ immediately tells the coordinator EVIBM
that its leg of the multi-leg order is tradable. Therefore, there is
no need for EVIBM to send a query to EVHPQ.

3PC[2,19,27] and Paxos[3] are similar consensus protocols but
can handle more failure situations and are more adaptive to
unreliable massive distributed systems. After coordination, if
all involved EVs agree to “trade”, all legs will be removed
from their respective books and traded; otherwise, all legs will
remain in their respective order books. The reasons we
introduce the coordinator into multi-leg sessions include: i)
without a coordinator, many message transmissions will be
redundant and incur unnecessary communication overhead; ii)
without a coordinator, it will be more difficult to mark the
global end of a distributed coordination session.

D. Architectural Design Considerations
Now we discuss various architectural design decisions and

optimizations for implementing an efficient multi-threaded EV
system supporting highly flexible and efficient multi-leg
trading, as shown in Fig. 4.

Figure 4. Layered design in EV

1. Messaging and Threading. We use Websphere MQ
Low Latency Messaging (LLM)[4], an IBM product, for
messaging services among GW, EV, and HR nodes. LLM
provides high performance unicast and multicast messaging
services with reliable and ordered delivery of messages. It uses
a publish-subscribe model in which a topic corresponds to a
stream of messages. We implement a multi-threading model
with a scheduler dispatching messages of different topics
(Requests, Queries or Replies/Final replies) to different threads
respectively. The states of order books and on-going multi-leg
sessions are stored in shared memory and could be accessed by
different types of threads concurrently.

2. Session Management. To support fine-grained
processing and maximum parallelism, we need an efficient
mechanism to store the states of all the multi-leg sessions in
each EV and make sure that all EVs have consistent session
data for each multi-leg order. We designed an EV-specific
hash-table for this purpose. The hashing index is computed on
the global unique sequence number of multi-leg orders. Each
hash bucket contains a list of cells holding a structure
representing a multi-leg session. Each cell structure contains a
mutex object for synchronization and a log facility for

16

deadlock debugging. The session management is consistent
with the 2PC coordination protocol.

In addition, the session management uses various
optimizations to minimize message communication overhead.
For example, if the coordinator finds a queried leg can not
trade, it will send a negative final reply to the initiator of the
query and terminate the session, instead of sending queries to
all other EVs, because according to the “all or nothing”
atomicity of multi-leg order definition, if one leg can not trade,
the entire multi-leg order can not trade. A similar optimization
is that if the coordinator receives a negative reply, it will send
final replies immediately instead of waiting for all replies.
Another type of optimization is based on inferring the content
of replies from received queries. For example, EVA is waiting
for EVB’s decision about a multi-leg order M1, while EVB is
waiting for EVA for the same multi-leg order. However,
because EVA will send queries to EVB if and only if EVA can
trade M1, EVB can infer that the trading result of M1 at EVA
must be positive. Similarly, EVA can infer the trading result of
M1 at EVB to be positive. Thus, both EVA and EVB can stop
waiting and continue processing, reducing unnecessary waiting.

3. Deadlock Avoidance and Lock Granularity Tuning.
As with all distributed systems, care must be taken to avoid
deadlocks. There are two types of deadlock in our base-line
prototype using 2PC. One is cross-EV deadlocks, e.g. EVA
sends a query to EVB and waits for EVB’s reply, EVB sends a
query to EVC and waits for EVC’s reply, and EVC sends a query
to EVA and waits for EVA’s reply. This will form a deadlock
loop if each EV has a single thread to handle all message types.
As mentioned in messaging and threading, our prototype uses a
separate thread and topic for each message type, and thus
avoids this deadlock.

The other type of deadlock situation is caused by fine-
grained locking inside an EV. We designed fine-grained locks
for optimal performance, e.g. locks on order books, session
tables, and other shared state, etc. In addition, we also have
locks on individual hash table buckets instead of the whole
hash table. Deadlock due to two threads have different locking
sequences is well-known and is avoided by enforcing
consistent locking sequences by all threads.

4. Primary-Primary High Availability. High availability
is also an important requirement for stock exchanges. In our
prototype, we achieve continuous availability by using the
primary-primary architecture described in Su and Iyengar[6].
The basic idea is to maintain a mirror of each EV through the
use of a reliable shared memory called Coupling Facility[7] and
an efficient total ordering algorithm. The mirror allows non-
disruptive failover of any single EV failure. Interested readers
are referred to the primary-primary paper[6] for more details.

E. Analysis of Fairness and Performance
Fairness Analysis. From each EV’s local point of view, the

base-line design of the multi-leg trading prototype satisfies the
following fairness properties:

i) Single-Single constraint. A higher priority single-leg
order always trades before a lower priority single-leg order.
This is based on the observation that on the arrival of a single-
leg order, one of the following happens:

• It has the highest priority, and it may or may not
match the highest priority order on the opposite side

• It does not have the highest priority, and it is not
allowed to trade

It is clear that when a trade does occur, it is always between
the two highest priority orders on the opposite sides.

ii) Multi-Multi constraint. A higher priority multi-leg
order always trades before a lower priority multi-leg order.
This is not difficult to see because each multi-leg order is
traded logically the same way as a single-leg order by blocking
all EVs involved. Thus, the argument for the single-single
constraint above applies here equally.

iii) Single-Multi constraint. If the all-top-priority rule is
adopted, then a higher priority single-leg order always trades
before a lower priority multi-leg order. The all-top-priority rule
dictates that all legs of a multi-leg order must have the highest
priority for it to be tradable. Therefore, by definition, all higher
priority single-leg orders must have been traded before the
multi-leg order becomes tradable.

Performance Analysis. Compared with single-leg trading,
the major overhead incurred by multi-leg trading is in
coordinating a consensus, during which all involved EVs are
blocked as described in Section III.B. In each multi-leg session,
there are three different EV roles: initiator which is the first
EV sending out a query and initiating the multi-leg session;
coordinator which is specified by the GW for the multi-leg
order; and participants which represent all other EVs
corresponding to other legs of the multi-leg order. The
blocking time for the initiator is defined as the elapsed time
from the time it sends out a query until the time it receives a
final reply. The latency for the coordinator is defined as the
elapsed time from the time it sends out queries on behalf of the
initiator until it sends out the final replies. The blocking time
for a participant is defined as the elapsed time from the time it
receives a query sent by the coordinator until the time it
receives a final reply. Although the session-level optimizations
described in Section III.D optimize the blocking time for the
base-line prototype, the performance degrades significantly due
to the blocking time introduced by multi-leg trading, as shown
in Fig. 11-13 in Section VI. Therefore, more sophisticated
solutions are required to further reduce the blocking time.

IV. LOOK-AHEAD OPTIMIZATION

A. Main Idea of Look-ahead Algorithm
In Section III, we identified that a major performance

overhead of the base-line prototype is in coordinating a
consensus: trade or not trade, for a Multi vs. Single or Single
vs. Multi trade. A solution is to allow incoming orders to
continue being processed before the coordinator sends final
replies, which we called look-ahead. However it is not easy to
determine which orders should be allowed to trade or not in the
blocking duration. That’s because the final tradability of the
multi-leg order is unknown until the end of the multi-leg
session and the priority ordering constraint must be enforced.

To preserve consensus atomicity, the commitment that “the
blocked multi-leg order can trade in EVHPQ” should not be
compromised in the blocking duration before it receives its

17

final reply (for non-coordinators) or before it sends out the
final reply (for the coordinator). We find that as long as the
above commitment could be kept (which means at least one
single-leg order remaining in the order book could be traded
with the blocked order), allowing more orders to be traded in
the blocking duration will neither affect the tradability of the
multi-leg order nor violate its priority ordering (the proof is
given in Section V.B). Based on this finding, a look-ahead
algorithm is designed, which allows orders in the order book to
trade freely in blocking duration as if the blocked multi-leg
order doesn’t exist, if no conflicting condition is detected as
violation of the commitment.

To implement the solution, we classify incoming orders
into different types based on whether allowing their trade will
violate the tradability of the blocked multi-leg order. We also
designed one state machine to keep track of the order’s
transition from one type to another. We use an example to
illustrate the idea.

Fig. 5 shows the order book described in Section II.A. Each
block represents an order, the subscript represents the arriving
sequence, S represents the order is single-leg, M represents the
order is a multi-leg and the length of the block represents the
quantity of this order. Fig. 5(a) shows the order book of an EV
when an incoming single-leg order S9 matches an outstanding
multi-leg order M2, which triggers the multi-leg session and
look-ahead. Readers should observe that it is clear from the
order book that S9 and M2 are the highest priority buy and sell
order, respectively. In Fig. 5(b), S10 arrives and is classified as
a non-conflicting order since it has no match and thus will not
affect M2’s tradability.

Next in Fig. 5(c), S11 arrives and is classified as a
conflicting order, because S11 matches S9 but allowing S11 to
trade with S9 would violate the tradability of M2. So we cannot
allow S11 and S9 to trade and we continue to look ahead. In Fig.
5(d), S12 arrives and is classified as a resolving order because it
provides more buying quantity at the same price as S9 does. As
a result, if we were to allow S11 to trade with S9, M2 would still
have S12 to trade with. So the tradability of M2 is not violated.

In Fig. 5(e), S11 transitions to non-conflicting orders. In Fig.
5(f), S11 trades with S9 and both disappear from the order book;
S12 transitions to a non-conflicting order. Next in Fig. 5(g), S13
arrives and is classified as a non-conflicting order because S12
has enough buying quantity to satisfy both M2 and S13.
Therefore, S13 is allowed to trade with S12, leaving enough
quantity for M2, as shown in Fig. 5(h). Finally, in Fig. 5(i), S14
arrives and is classified as non-conflicting because S14 can
trade with S1, S4, and S5 without violating the tradability of M2.

The look-ahead process continues until either the consensus
session has ended, or a blocking order is encountered. A
blocking order is a tradable multi-leg order that is on the
opposite side of the current blocking multi-leg order.
Simultaneous look-ahead with two blocking multi-leg orders
on the opposite side of the order book will make the quantity
on both sides unpredictable. Therefore, an EV stops the look-
ahead and goes to the state of blocking when a blocking order
is encountered.

The benefit of look-ahead is illustrated in Fig. 6. For readers
interested in more details of our solution, we present the order
type state transition and EV state transition diagrams in Fig. 7

and 8. We also present the look-ahead algorithm pseudo code
in Fig. 9.

 (a) Initial State (b) Non-Conflicting Order S10

(c) Conflicting Order S11 (d) Resolving Order S1

 (e) Order Type Transition (f) After S9 trade with S11

 (g) Non-Conflicting Order S13 (h) After S12 trade with S13

(i) Non-Conflicting Order S14

Figure 5. Running Example to Illustrate Look-ahead

18

Figure 6. Performance benefits of Look-ahead

Figure 7. Order type state transition

Figure 8. EV state transition in processing orders

Parameters: new_order, blocked_order
1. WHILE (new_order=recv() AND STATE==LOOKAHEAD) {
2. new_order.type=get_order_type(new_order);
3. SWITCH (new_order.type) {
4. CASE NON_CONFLICTING:
5. trade with matchable non-conflicting orders based on priority;
6. IF new_order.remaining_quantities>0
7. insert new_order into book;
8 END
9. BREAK;
10. CASE BLOCKING:
11. block();
12. STATE=NORMAL;
13 BREAK;
14. CASE CONFLICTING:
15. insert new_order into the book;
16. BREAK;
17. CASE RESOLVING:
18. update the type of resolvable conflicting orders to non-conflicting;
19. trade tradable non-conflicting orders based on priority rule;
20. new_order.type=NON_CONFLICTING;
21. trade with matchable non-conflicting orders based on priority rule;
22. IF new_order.remaining_quantities IS NOT NULL
23. insert new_order into book;
24. END
25. update the type of non-conflicting orders and take actions;
26. BREAK; }
27. IF final-reply received

28. STATE=NORMAL
29. IF final-reply is negative
30. rematching blocked_order’s current matching orders in book;
31. ELSE
32. trade blocked_order with its current matching order;
33. END
34. END }

Figure 9. Lookahead Algorithm Framework

B. Correctness and Fairness Proof
The concept of “being traded” for a multi-leg order’s leg

can be extended to “being guaranteed to have a match”. Thus
the Multi-Multi constraint from one EV’s local view of point
can be extended to “a higher priority multi-leg order is always
guaranteed to have a match before a lower priority multi-leg
order is guaranteed to have a match”. The Single-Multi
constraint can be extended in the same way. Such extension of
fairness constraints will not degrade fairness: for a blocked leg,
it is not as important when a multi-leg order can conclude a
trade as when the multi-leg order’s match is guaranteed,
because in either case its tradability is decided by other legs’
tradability which can not be affected by the priority ordering in
local EV. The extended fairness constraint is the basis of our
look-ahead optimization.

Look-ahead algorithm guarantees that no conflicting orders
are traded during a blocking duration, because as shown in Fig.
7, trades concluded in the blocking duration can only happen
between two non-conflicting orders. Therefore, the time a
blocked order guaranteed for a match is always before the time
any order gets traded in the blocking duration.

The Single-Single constraint defined in Section III.C is
maintained for the duration of the look-ahead algorithm. That
is because blocked multi-leg orders will not lock single-leg
orders matched at the opposite side (Our definition guarantees
that a blocking order, which will stop the look-ahead, is only
possible on the opposite side of the blocked orders; all blocked
orders are on the same side), and single-leg orders can always
trade freely if the trade is allowed by the priority rule and if
there are enough lower priority single-leg orders satisfying all
blocked multi-leg orders. Therefore, no single-leg orders will
be compromised by any lower-priority single-leg orders.

The Multi-Multi fairness constraint is maintained for the
duration of the look-ahead state. First, the algorithm guarantees
that a higher priority multi-leg order MUST be triggered for a
multi-leg session earlier than a lower priority multi-leg order.
Secondly, although lower priority multi-leg orders might get
traded before the blocked multi-leg order during look-ahead
when multiple multi-leg orders are blocked, it will not
compromise the blocked multi-leg order’s fairness due to the
extended fairness constraints and a lower priority multi-leg
order is only allowed to get traded if the EV guarantees that
after it is traded, there is still enough quantity for the blocked
multi-leg order to find a match in the book. Otherwise, the
lower priority order is not allowed to get traded until this
conflicting condition is resolved.

Particularly, if the all-top-priority rule is implemented, the
Single-Multi constraint is maintained because no lower-
priority multi-leg orders can jump the queue and trade before

19

higher priority single-leg orders due to the semantics of the all-
top-priority rule, and on the other side, single-leg orders will
not be locked by any blocked multi-leg orders.

V. PERFORMANCE EVALUATION AND ANALYSIS

A. Environment Setup
We have implemented both the base-line prototype

described in Section III and an optimized prototype based on
the look-ahead algorithm described in Section IV on an IBM
z-series z10 eServer mainframe[7], which is a NUMA system
having 64 4.4GHz CPU cores and 1.5TB memories. We
virtualized 8 LPARs (LPAR refers to virtualized partition via
hypervisor[5]) running z/OS on the mainframe with each
LPAR holding 8 CPU cores. Each GW and EV node runs in a
separate LPAR. All three HR nodes run in one LPAR for
performance reasons. All cross-LPAR communication is via
UDP/IP over hypersocket[8], which is a network stack
implemented upon shared memory instead of Network
Interface Cards, as shown in Fig. 10.

Figure 10. Experimental Environment

Each EV can handle multiple symbols with each symbol
representing a type of stock. But in this paper’s experiments,
we made each EV only process one symbol to test the
maximum per-symbol throughput which is one of the most
important performance metrics for stock trading. We deployed
load generators on one GW node which generates and
dispatches requests to each EV as fast as possible.

We measured the following metrics: i) Throughput: the
maximal number of requests (including single-leg orders and
multi-leg orders) one system can process per second; ii)
Gateway-to-gateway latency: the time elapsed from the point
when the GW receives a message from the client (load
generator) to the point when the request completes processing
and an ACK message is sent back to the client by the GW; iii)
Blocking time: the average blocking time per multi-leg
session measured on one EV in one minute. Blocking time is
defined in Section III.E; iv) Trading ratio: the ratio of traded
multi-leg sessions (i.e. multi-leg sessions ending with a
“trade” final reply generated by the coordinator) to the total
number of multi-leg sessions. Each test run lasted at least a
minute, and all above metrics were computed as an average of
ten measurements.

B. Evaluation of Different Performance Factors
The parameters we can control in the test are illustrated in

Table 2. Each of them represents a factor impacting the

performance of multi-leg trading. Understanding how those
factors influence performance and tradability is important to
help stock exchanges to make the right trade-offs in designing
their systems. In all tests, buy and sell orders were balanced
with about the same number of each.

Table 2. Controlling parameters
Parameters Description
multi-leg order percentage the ratio of multi-leg requests in input requests
number of legs the number of legs of a multi-leg request
fairness of priority rule all-top-priority or single-top-priority
price/quantity variance the price and quantity of multi-leg orders are

uniformly distributed over a range; we varied
these ranges

Multi-leg Order Percentage and Number of Legs.
Fig.11-13 measure throughput, latency and blocking time for
the base-line prototype and the optimized prototype with look-
ahead. Single-top priority is used as the priority rule, and the
price and quantity are uniformly distributed over the ranges
[100, 105] and [1,100].

Fig. 11 and Fig 12 illustrate that the average per-symbol
throughput and latency decrease significantly when the
percentage of multi-leg orders increases. This is because the
number of multi-leg sessions triggered also increases and
causes the total blocking time to increase (This is indicated in
Fig. 14(a) and Fig. 15(a) which show the average number of
multi-leg sessions triggered from processing 50,000 requests).
We also observe from Fig. 11 and Fig. 12 that the
performance of 3-leg trading is significantly worse than 2-leg
trading. There are two reasons: i) 3-leg multi-leg orders will
involve more messages in a multi-leg session on average,
causing longer blocking time per multi-leg session as shown
in Fig. 13; ii) there will be more multi-leg sessions triggered
for the 3-leg case than the 2-leg case (Fig. 14(a)), that is
mainly because at a given time point, the probability of at
least one EV triggering a multi-leg session in the 3-leg case is
larger than in the 2-leg case. In Fig. 11, at the point of 0%
multi-leg orders, the disk I/O is the performance bottleneck.
The 3-leg case performs worse than the 2-leg case at this point,
because the 3-leg case will read and write more data to the
disk per transaction.

As shown in Fig. 11 and Fig. 12, we observed up to 58%
throughput gain with up to 30% reduction in latency. The
figures also show that when the multi-leg order percentage is
smaller than 20%, the performance gain after applying look-
ahead will increase when the multi-leg order percentage
increases. This is because more multi-leg sessions can be
optimized by look-ahead. But when the percentage is larger
than 20%, the performance gain will decrease when the multi-
leg order percentage increases. This is because of the
increasing percentage of blocking orders and decreasing
interval between two blocking orders, both of which prevent
the EV from staying in the look-ahead state. Fig. 13(a)
measures the average of average blocking time measured in
each EV, and Fig. 13(b) illustrates the aggregate of average
blocking time measured in each EV. Both of them illustrates
the significant reduction in average blocking time per multi-

20

leg session after applying the look-ahead optimization, which
shows how look-ahead optimizes performance.

As shown in Fig. 14(b) and Fig. 15(b), the trading ratio will
decrease when the multi-leg order percentage increases. This
is because when the multi-leg order percentage increases, the
single-leg order percentage will decrease preventing multi-leg
orders from finding a single-leg order match. As shown in Fig.
14(b), the tradability for the 3-leg case is significantly lower
than for the 2-leg case because the probability that all EVs can
trade a multi-leg order at the same time for the 3-leg case is
significantly lower than for the 2-leg case.

Throughput Performance Comparison

4000

8000

12000

16000

0% 5% 10% 15% 20% 25% 30% 35%
Percentage of Mutlileg Order

Th
ro

ug
hp

ut

2-leg w/o Lookahead 2-leg w/ Lookahead
3-leg w/o Lookahead 3-leg w/ Lookahead

Figure 11. Throughput with Different Multi-leg Order Percentage

Latency comparison for with and without look-ahead

600

1200

1800

0% 5% 10% 15% 20% 25% 30% 35%
Multi-leg Order Percentage

La
te

nc
y

(M
ic

ro
-s

ec
on

ds
)

W/o Lookahead (2-leg) W/o Lookahead (3-leg)
W/ Lookahead (2-leg) W/ Lookahead (3-leg)

Figure 12. Latency with Different Multi-leg Order Percentage

Comparison of Average Blocking Time per Multi-leg Session

0

200

400

600

2-leg w/o
lookahead

3-leg w/o
lookahead

2-leg w/
lookahead

3-leg w/
lookahead

A
ve

ra
ge

 B
lo

ck
in

g
Ti

m
e

pe
r M

ul
ti-

le
g

Se
ss

io
n

(M
ic

ro
-s

ec
on

ds
)

(a) Comparison of average blocking time of all involved EVs

Comparison of Aggregate Blocking Time per Multi-leg Session

0

500

1000

1500

2-leg w/o
lookahead

3-leg w/o
lookahead

2-leg w/
lookahead

3-leg w/
lookahead

A
ve

ra
ge

 B
lo

ck
in

g
Ti

m
e

pe
r

M
ul

ti-
le

g
Se

ss
io

n
 (M

ic
ro

-s
ec

on
ds

)

EV_MSFT
EV_HPQ
EV_IBM

 (b) Comparison of aggregate blocking time of all involved EVs

Figure 13. Blocking Time Measurements

Priority Rules. Fig. 14 compares the throughput and
trading ratios for different priority rules with varying multi-leg

percentages (i.e. 10%, 20% and 30%) and number of legs. The
price and quantity are randomly distributed over the ranges
[100, 105] and [1,100] respectively. Fig. 14(a) shows that the
all-top-priority rule will trigger more multi-leg sessions than
the single-top-priority rule given the same percentage of
multi-leg orders and same number of legs. This is because the
trading ratio is smaller for the all-top-priority rule than for the
single-top-priority rule (as shown in Fig. 14(b)). The smaller
trading ratio will cause more multi-leg orders to remain in the
order book, which increases the total number of multi-leg
sessions triggered per unit time. As a result of having to
handle more multi-leg sessions, the throughput for the all-top-
priority case becomes worse than that of the single-top-
priority case as shown in Fig. 14(c).

Fig. 14(c) also illustrates that look-ahead can improve
throughput for both priority rules but provides more improvement for the all-top-priority rule. This is because more

multi-leg sessions can be optimized by look-ahead for the all-
top-priority rule.

(a) Average number of multi-leg sessions triggered and traded per 50,000

requests

Comparison of Trading Ratio for Different Priority Rules

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

Single-Top
Prioriry (2-leg)

All-Top Prioriry
(2-leg)

Single-Top
Prioriry (3-leg)

All-Top Prioriry
(3-leg)

Tr
ad

in
g

R
at

io

Multi-leg Order Percentage=10%
Multi-leg Order Percentage=20%
Multi-leg Order Percentage=30%

(b) Trading ratio comparison with different priority rules

 (c) Throughput comparison with different priority rules

Figure 14. Impact of Different Fairness Rules

Price/Quantity Variance. Price and quantity are uniformly
distributed over a range. As described in Table 2, we also did
experiments varying the ranges over which price and quantity

21

are distributed. Fig. 15 compares the throughput and trading
ratio for different variances in price and quantity with varying
multi-leg percentage (i.e. 10%, 20% and 30%). Single-top-
priority is used which is demonstrated to have better
performance and tradability. Fig. 15(a) and Fig. 15(b)
compare the number of multi-leg sessions triggered and
trading ratio with different multi-leg order percentages for
varying price and quantity ranges. It shows that the trading
ratio increases significantly when the variance decreases.

Fig.15(c) compares the throughput while varying multi-leg
order percentages and the price and quantity ranges. It shows
that decreasing variance significantly degrades throughput.
This is because lower price/quantity variance will increase the
probability of a multi-leg order finding a match in a book,
causing more multi-leg sessions to be triggered as shown in
Fig. 15(a). Fig 15(c) also illustrates that look-ahead can
benefit performance for different variances in price and
quantity except for the rightmost case with constant price and
quantity and 30% of multi-leg orders. That is because the
number of multi-leg sessions for this case increases
significantly as shown in Fig. 15(a). That will cause the ratio
of blocking orders to significantly increase and the time spent
in the state of look-ahead minimized.

Since quantity often has larger variance than price, we
further studied how throughput varies with the size of the
quantity range as shown in Fig. 15(d). It shows that when the
multi-leg order percentage is 20%, the throughput gain
brought by look-ahead will first decrease when the variance
increases, which is due to the number of multi-leg session has
been reduced causing less opportunity for look-ahead
optimization. Then when the size of quantity range increase to
larger than 8, the throughput gain will increase when the
variances increase, because the number of blocking orders will
be reduced as to the reduction in the probability that a n multi-
leg order can find a match in its respective EV. This trend is
also valid for other percentages of multi-leg orders.

 (a) Average number of multi-leg sessions triggered and traded per 50,000

requests

Trading Ratio for Different Price/Quantity Variances

0.00%
4.00%
8.00%

12.00%
16.00%
20.00%
24.00%

Price [100,105]
Quantity [1,100]

Price [100,105]
Quantity 1

Price 100
Quantity [1,100]

Price 100
Quantity 1

Tr
ad

in
g

R
at

io

Multi-leg Order Percentage=10%
Multi-leg Order Percentage=20%
Multi-leg Order Percentage=30%

(b) Trading ratio comparison with varying price/quantity ranges

(c) Throughput comparison with varying price/quantity ranges

(d) Throughput comparison with varying size of quantity range

Figure 15. Impact of Quantity Variance

C. Summary of Results
Table 3 provides a summary of the results we obtained:

look-ahead gain represents the throughput improvement after
using look-ahead optimization; for fairness of priority rules,
the all-top-priority rule has higher fairness while the single-
top-priority rule has lower fairness; “+” indicates that the two
connected factors are directly related, “-” indicates that they
are inversely related, “+-” indicates the two factors are directly
related first and inversely related later, and “-+” indicates the
two factors are inversely related first and directly related later.
Important observations include the following:

 Increasing the number of legs decreases performance and
tradability, but increases the throughput gain from the
look-ahead optimization;

 Increasing the percentage of multi-leg orders will decrease
performance and tradability, but will not always decrease
the throughput gain from look-ahead optimization;

 Using priority ordering rule with better fairness will
decrease performance and tradability, but will increase
throughput gain from look-ahead optimization;

 Variance in price and quantity will decrease tradability,
but increase performance, however, not always increase
the throughput gain from the look-ahead optimization.

 Table 3. Summary of Observations
 number of

multi-leg
sessions

trading
ratio

through
-put

look-
ahead
gain

number of legs + - - +
percentage of multi-leg order + - - +-
fairness of priority rules + - - +
price/quantity variance - - + -+

22

VI. RELATED WORK

A. Similar Applications with Multi-leg Trading
Existing electronic stock and commodity exchanges do

not support multi-leg trades in an automated fashion [10]. Many
exchanges and investment banks support a similar idea known
as ETF[21] and basket swap[22] which treat a basket of stocks as
one stock. Thus, trading the basket of stocks is just like
trading a single stock. However, it is actually a fixed type of
multi-leg trading, and the number of stocks and quantity to
trade are strictly constrained. Bundle trading[11~13] , proposed
in the early 1990s, is a similar concept. However, existing
research focuses on how to model the matching problem to
maximize the market surplus by using mathematical
optimization approaches assuming a centralized book. These
references do not address the problem of applying bundled
trading to distributed stock exchange architectures, which
have significant synchronization overhead for multi-leg
trading. Although no existing exchanges support automatic
multi-leg trading, stock brokers, option brokers or technology
vendors often develop automatic tools to poll exchange data at
the client side to trade a basket of stocks, in program trading[10,

32]. Our work is different from program trading in that our
solution is deployed at the exchange side and guarantees
atomicity. In addition, program trading is considered to be
harmful because its high frequency and automaticity can cause
sudden fluctuations in prices; its usage is quite in debate and
limited by current security trading rules[33].

Combinatorial auctions[14~16] study mechanisms for
combinatorial bidding by enabling the agents to express their
preferences for bundles of items rather than individual items.
However, they are focused on how to match supply to demand
so that the market surplus can be optimized, while our work is
based on existing stock exchange trading rules and how to
minimize the blocking time introduced by trading multi-leg
orders in a distributed architecture.

B. Coordination Transaction Processing
Distributed Consensus. In traditional transaction processing

[18] and distributed database systems[1], there are 2-phase
commit protocols[1,2,19], 3-phase commit protocols[1,2,19,27] and
Paxos[3], which are designed for distributed sites to achieve
consensus in a cooperative way. ExchangeGuard[25] proposes a
consensus protocol with high reliability and fairness for
distributed exchanges. Such protocols are focused on
reliability and failure recovery. By contrast, our work is
mainly focused on maximizing parallelism within ordering
constraints enforced by stock trading rules. We use a look-
ahead approach to continually process later transactions before
earlier transactions without compromising fairness constraints.
Our work can be combined with those existing distributed
consensus protocols to provide better parallelism and
performance for similar systems.

Parallelism and Concurrency Control in Distributed
Database. Concurrency control tries to exploit the parallelism
of concurrent transactions while keeping data integrity. A

number of existing works[17,23,24,28,29] study the concurrency
constraints enforced by lock synchronization for accessing
shared data. In OPT[23], which is a variant of 2PC, transactions
are permitted to “borrow” dirty data while a transaction is in
the prepared phase. Jones and Abadi[17] proposed a similar
speculative approach. In those works, if the speculation is
incorrect, all following transactions processed in the blocking
time have to roll back. Reddy and Kitsuregawa[24] proposed
speculative locking, where a transaction processes both the
“before” and “after” version for modified data items. At
commit, the correct execution is selected and applied by
tracking data dependencies between transactions. By contrast,
our look-ahead approach is not based on speculation and need
not roll back or keep track of the data dependencies, which is
one important advantage. Another difference is that existing
concurrency optimization schemes are not aware of the
fairness constraints of multi-leg trading. However, when the
state of multi-leg trading system transitions from look-ahead
to blocking, speculations can also be applied as a further
optimization.

Some works[30~31] explore concurrency control strategies by
rebuilding the transaction ordering, e.g. commit ordering[31].
However, those works are focused on coordination with pre-
defined global ordering, which is not applicable to our
problem, because, in multi-leg trading systems, the global
ordering depends on the consensus of each multi-leg session
and is not pre-defined.

VII. CONCLUSIONS
Multi-leg stock trading requires coordinating transactions

across multiple stock symbols. When the stock symbols are on
different nodes, coordinating the transactions across the nodes
can incur significant overhead. Existing concurrency control
approaches such as optimistic locking[29] or speculative
locking[17, 23, 24] are not sufficient to achieve good performance,
because those algorithms are not aware of the fairness
constraints enforced by stock trading rules. Although such
fairness constraints limit concurrency significantly, they also
provide flexibility for allowing out-of-order processing in
certain situations. This paper identifies those situations and
proposes a new look-ahead approach to alleviate the
coordination overhead of multi-leg trading by a fine-grained
state machine which allows transactions to be processed on a
node before a previous transaction has finished. The state
machine is designed so that the fairness constraints enforced
by stock trading rules are always maintained.

We have implemented two stock trading systems. The first
is a base-line prototype based on 2PC[1,2,19] and efficient
session management. The second uses our look-ahead
algorithm to reduce the overhead of coordinating multi-leg
transactions on multiple nodes. Our results show that, the
proposed look-ahead solution can achieve up to 58%
throughput gain and up to 30% latency reduction.

We also quantitatively evaluated how a number of factors
(e.g. percentage of multi-leg orders, number of legs,
price/quantity variance, different priority ordering rules) affect

23

performance and tradability. We found that increasing the
number of legs decreases performance and tradability.
Increasing the percentage of multi-leg orders will also decrease
performance and tradability, but will not always decrease the
throughput gain from the look-ahead optimization. Using
priority ordering rules requiring more legs to be at the front of
the priority queue before a multi-leg order can trade will
decrease performance and tradability, but will increase
throughput gain from the look-ahead optimization. Variance in
price and quantity will decrease tradability, but increase
performance, however, not always increase the throughput gain
from the look-ahead optimization.

These observations can facilitate the design and
deployment of multi-leg trading systems. Our work can also
benefit a broad class of coordinated transaction processing
systems with ordering constraints such as on-line auction [14~16,

20] and stream computing with priority constraints[26] .
There are a number of ways in which we are continuing

this work. These include enhancing our system to handle multi-
leg orders with more symbols, optimizing tradability based on
our look-ahead algorithm, and generalizing our look-ahead
algorithm to integrate it with existing concurrency control
algorithms.

ACKNOWLEDGEMENT
We would like to thank Francis Parr and Paul Dantzig for

helping us understand key aspects of multi-leg stock trading.
We would also like to thank Yanqi Wang for her support of
this work.

REFERENCES
[1] M. Tamer Ozsu. 2007. Principles of Distributed Database Systems (3rd

ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.
[2] Michael J. Fischer. 1983. The Consensus Problem in Unreliable

Distributed Systems (A Brief Survey). In Proceedings of the 1983
International FCT-Conference on Fundamentals of Computation
Theory, Marek Karpinski (Ed.). Springer-Verlag, London, UK, 127-140.

[3] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007.
Paxos made live: an engineering perspective. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of distributed
computing (PODC '07). ACM, New York, NY, USA, 398-407.

[4] WebSphere MQ Low Latency Messaging,
http://www.ibm.com/software/integration/wmq/llm

[5] Hypervisor, http://en.wikipedia.org/wiki/Hypervisor
[6] Gong. Su, and Arun. Iyengar, A Highly Available Transaction

Processing System with Non-Disruptive Failure Handling, IBM
Research Report. December 2009.

[7] IBM Redbook, IBM System z10 Enterprise Class Technical Guide,
http://www.redbooks.ibm.com/abstracts/sg247516.html

[8] IBM Redbook, HiperSockets Implementation Guide, March 2007.
[9] Torsten. Layda, An Order Matcher for an Electronic Stock Exchange,

OOPSLA DesignFest’97.
[10] Fidelity, Trading Multi-leg Options

https://scs.fidelity.com/webxpress/help/topics/learn_trading_multileg_o
ptions.shtml

[11] Ming Fan, Jan Stallaert, and Andrew B. Whinston. 1999. The design and
development of a financial cybermarket with a bundle trading
mechanism. Int. J. Electron. Commerce 4, 1 (September 1999), 5-22.

[12] Ming Fan, Jan Stallaert, and Andrew B. Whinston. 1999. A Web-Based
Financial Trading System. Computer 32, 4 (April 1999), 64-70.

[13] J Jawad Abrache, Teodor Gabriel Crainic, Michel Gendreau, Models for
bundle trading in financial markets, European Journal of Operational
Research, Volume 160, Issue 1, Applications of Mathematical
Programming Models, 1 January 2005, Pages 88-105

[14] Sven de Vries and Rakesh V. Vohra. 2003. Combinatorial Auctions: A
Survey. INFORMS J. on Computing 15, 3 (July 2003), 284-309..

[15] Aleksandar Pekec and Michael H. Rothkopf. 2003. Combinatorial
Auction Design. Manage. Sci. 49, 11 (November 2003), 1485-1503.

[16] Kalagnanam, J., Parkes, D.: Auctions, Bidding and Exchange Design. In:
Simchi-Levi, Wu, Shen: Supply Chain Analysis in the eBusiness Area,
Kluwer Academic Publishers, 2003.

[17] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low
overhead concurrency control for partitioned main memory databases. In
Proceedings of the 2010 international conference on Management of
data (SIGMOD '10). ACM, New York, NY, USA, 603-614.

[18] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts
and Techniques (1st ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[19] Dale Skeen and Michael Stonebraker. 1987. A formal model of crash
recovery in a distributed system. In Concurrency control and reliability
in distributed systems, Van Nostrand Reinhold Co., New York, NY,
USA 295-317.

[20] eBay, http://www.ebay.com
[21] ETF, http://en.wikipedia.org/wiki/Exchange-traded_fund
[22] Basket Swap, http://www.equityderivatives.com/what-the-experts-

say/glossary/basket-swap/
[23] Ramesh Gupta, Jayant Haritsa, and Krithi Ramamritham. 1997.

Revisiting commit processing in distributed database systems. In
Proceedings of the 1997 ACM SIGMOD international conference on
Management of data (SIGMOD '97), ACM, New York, NY, USA, 486-
497.

[24] P. Krishna Reddy and Masaru Kitsuregawa. 2004. Speculative Locking
Protocols to Improve Performance for Distributed Database Systems.
IEEE Trans. on Knowl. and Data Eng. 16, 2 (February 2004), 154-169.

[25] Mudhakar Srivatsa, Li Xiong, and Ling Liu. 2005. ExchangeGuard: A
Distributed Protocol for Electronic Fair-Exchange. In Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'05) - Papers - Volume 01 (IPDPS '05), Vol. 1. IEEE
Computer Society, Washington, DC, USA.

[26] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, and
Patrick Valduriez. 2010. StreamCloud: A Large Scale Data Streaming
System. In Proceedings of the 2010 IEEE 30th International Conference
on Distributed Computing Systems (ICDCS '10). IEEE Computer
Society, Washington, DC, USA, 126-137.

[27] Dale Skeen. 1981. Nonblocking commit protocols. In Proceedings of the
1981 ACM SIGMOD international conference on Management of data
(SIGMOD '81). ACM, New York, NY, USA, 133-142.

[28] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the
minimal synchronism needed for distributed consensus. J. ACM 34, 1
(January 1987), 77-97.

[29] Michael J. Carey and Miron Livny. 1989. Parallelism and concurrency
control performance in distributed database machines. In Proceedings of
the 1989 ACM SIGMOD international conference on Management of
data (SIGMOD '89). ACM, New York, NY, USA, 122-133.

[30] Ahmed K. Elmagarmid and Weimin Du. 1990. A Paradigm for
Concurrency Control in Heterogeneous Distributed Database Systems.
In Proceedings of the Sixth International Conference on Data
Engineering. IEEE Computer Society, Washington, DC, USA, 37-46.

[31] Yoav Raz. 1992. The Principle of Commitment Ordering, or
Guaranteeing Serializability in a Heterogeneous Environment of
Multiple Autonomous Resource Mangers Using Atomic Commitment.
In Proceedings of the 18th International Conference on Very Large Data
Bases (VLDB '92), San Francisco, CA, USA, 292-312.

[32] Program Trading, http://en.wikipedia.org/wiki/Program_trading
[33] Tom Lauricella, “How a Trading Algorithm Went Awry”, The Wall

Street Journal (October. 2, 2010), http://online.wsj.com.

24

