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Abstract: We present the design, optimization and analysis of a 
highly flexible and efficient multi-leg stock trading system. 
Automated electronic multi-leg trading allows atomic processing 
of consolidated orders such as “Buy 200 shares of IBM and sell 
100 shares of HPQ”. While the expressive power of multi-leg 
trading brings significant value to investors, it also poses major 
challenges to stock exchange architecture design, due to 
additional complexities introduced in performance, tradability, 
and fairness. Performance can be significantly worse due to the 
need to coordinate transactions among multiple stocks at once.  
This paper studies the performance of multi-leg trading under 
different fairness constraints and variability in order price and 
order quantity. We identify the major performance bottlenecks 
when using traditional atomic commitment protocols such as 2-
Phase Commit (2PC), and propose a new look-ahead algorithm 
to maximize transaction concurrency and minimize performance 
degradation. We have implemented a base-line 2PC prototype 
and a look-ahead optimized prototype on IBM z10 zSeries 
eServer mainframes. Our experimental results show that the 
look-ahead optimization can improve throughput by 58% and 
reduce latency by 30%. 

Keywords- computer-driven trading, distributed coordination, 
multi-leg trading, transaction processing, two-phase commit. 

I. INTRODUCTION 
Electronic stock and commodity trading has revolutionized 

financial markets. Major stock exchanges such as the NYSE 
and NASDAQ handle large volumes of requests electronically. 
These exchanges must handle high request rates, serve requests 
with low latencies, and be highly available. Because of the 
need for high performance, the systems are designed for 
requests involving single stocks and not requiring coordination 
among multiple stocks which can add considerable overhead. 

There is considerable interest in multi-leg stock trading in 
which multiple stocks are traded atomically in the same 
transaction. To illustrate the problem, consider the following 
multi-leg order: “buy 200 shares of IBM at price ≤ $130, sell 
100 shares of HPQ at price ≥ $30, and buy 300 shares of 
MSFT at price ≤ $20.” This multi-leg order will not trade 
unless stock prices for IBM, HPQ, and MSFT allow each order 
on an individual stock, known as a leg, to execute. If the multi-
leg order is tradable, then all legs are executed atomically. The 
key issue is that in order to determine if the entire multi-leg 
order is tradable and to execute it atomically, trading on all 
three stocks has to be suspended for a period of time. This 
reduces performance considerably. 

Currently, stock exchanges do not support automated multi-
leg trading of this type due to the overhead and complexity. A 

transaction of this type would have to be executed by a human. 
Stock exchanges and investment banks are aware of the fact 
that true automatic multi-leg trading would bring significant 
business value if it could be efficiently implemented. Among 
other things, it will enable investors to submit and trade only 
one order rather than multiple related orders with significantly 
lower transaction cost and enhance existing financial products 
like ETF[21] or basket swap[22] by offering investors more 
flexibility. 

This paper examines the complexities and performance 
problems associated with multi-leg trading, and presents a new 
algorithm called look-ahead for alleviating the high 
coordination overhead. Our look-ahead algorithm could be a 
key component of distributed systems which need to 
atomically coordinate buying and selling of stocks and other 
commodities. The optimizations that we present in this paper 
minimize the time during which trading on a stock comprising 
a multi-leg order is suspended. 

In order to achieve scalability, stock exchanges use 
multiple nodes for trading in which different stocks might trade 
on different nodes. Therefore, processing a multi-leg order will 
often incur communication overhead for coordinating two or 
more nodes. Thus, multi-leg trading is typically significantly 
slower than single-leg trading. One way to solve the problem is 
to only allow the stock exchange to specify the stock and 
trading quantity of each leg and disallow mixed-trading 
between single-leg and multi-leg orders. That way, multi-leg 
orders could be processed independently from single-leg orders 
which would avoid slowing down single-leg orders. However, 
this would severely limit the flexibility and value of multi-leg 
trading. Given that mixed-trading between single-leg and 
multi-leg order is needed, performance of single-leg trading 
will also be slowed down by multi-leg trading. 

Another issue is that different fairness of trading rules and 
variance of prices and quantities of requests will affect 
performance and tradability. Because tradability, fairness and 
performance are all important, trade-offs must be made among 
them in many aspects, e.g. trading rule design, financial 
product design, capacity planning, and overload control. It is 
thus important to understand their quantitative relationships. 

We have implemented two stock trading systems. The first 
is a base-line prototype based on 2PC[1,2,19] and efficient 
session management. The second uses our look-ahead 
algorithm to reduce the overhead of coordinating multi-leg 
transactions. The main idea is that even if stock trading on a 
symbol is suspended due to processing a multi-leg order, some 
single-leg orders can continue to execute if certain identified 
conditions can be satisfied. In this way, the look-ahead 
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algorithm uses fine-grained state machines to schedule requests 
for maximum concurrency while maintaining fairness 
constraints. Our results show that, the proposed look-ahead 
solution can achieve up to 58% throughput gain and up to 
30% latency reduction.  

We also quantitatively evaluated a number of performance 
factors like percentage of multi-leg orders, number of legs, 
price/quantity variance and different priority ordering rules. 
We found that increasing the number of legs decreases 
performance and tradability. Increasing the percentage of 
multi-leg orders will decrease performance and tradability, but 
will not always decrease the throughput gain from the look-
ahead optimization. Using priority ordering rules requiring 
more legs to be at the front of the priority queue before a multi-
leg order can trade will decrease performance and tradability, 
but will increase throughput gain from the look-ahead 
optimization. Variance in price and quantity will decrease 
tradability, but increase performance, however, not always 
increase the throughput gain from the look-ahead optimization. 

The key contributions of this paper include: i) Design and 
implementation of a highly flexible and efficient prototype 
multi-leg trading system; ii) A look-ahead algorithm which can 
speedup multi-leg trading significantly and is useful for a broad 
class of coordinated transaction systems with ordering 
constraints; iii) A detailed performance evaluation quantifying 
a number of performance factors, with useful insights for 
making the right trade-off in many aspects of multi-leg trading. 

The organization of this paper is as follows. Section II 
introduces a common stock exchange architecture and defines 
the multi-leg trading problem. Section III presents the design 
and implementation of our base-line multi-leg trading system. 
Section IV describes the novel look-ahead optimization 
scheme. Section V provides a detailed performance evaluation 
and analysis. Section VI describes related work. Section VII 
concludes the paper and future works. 

II. BACKGROUND 

A. Single-leg Trading and Stock Exchange Architecture 
It is beneficial to understand general stock exchange 

architecture and how orders are handled for single-leg trading. 
As shown in Fig. 1(a), the architecture is typically multi-tiered 
and consists of multiple gateway nodes (GW) running order 
dispatchers, multiple execution venue nodes (EV) matching 
orders for one or more specified stock symbols, and multiple 
history recorder (HR) nodes writing trading results into 
persistent storage. EVs are the most critical components of the 
stock exchange where all trades are executed. 

A single-leg order is a buy or sell order involving only one 
stock symbol. GW nodes are responsible for dispatching 
received orders to corresponding EVs. The order matching 
process carried out by EVs should be strictly consistent with 
the following price-time priority rules[9]: i). price-priority 
rule: for buy orders, higher price has higher priority; but for 
sell orders, lower price has higher priority; ii). time-priority 
rule: if multiple orders offer the same price, the order arriving 
earlier has a higher priority.  

For example, when a GW node receives a single-leg order 
saying “Sell 100 shares of HPQ stock at $30.1”, it will dispatch 

the order to the EV corresponding to HPQ for processing. 
When the EV receives the order, it matches the order against 
its order book, which is an in-memory list of all outstanding 
orders (those orders that didn’t have a match since they were 
received). If a match is found, for example there is an order 
buying 300 shares of HPQ stock at $30.1, a trade of 100 shares 
of HPQ stock at $30.1 occurs. Otherwise, the order is entered 
into the order book. The fact of whether a trade happens or not 
is sent to the HR to write to persistent storage. The GW sends 
an acknowledgment to the client at the end of each transaction. 
Fig. 1(b) shows a typical order book of an EV. It has two sides: 
buy and sell. Orders on each side are first ordered by their price, 
and then ordered by their arrival time, according to the price-
time rule. Readers should pay particular attention to the fact 
that the order book immediately gives the highest-to-lowest 
priority ordering for both sides: [S1, S6, S7] for the buy side and 
[S4, S2, S3, S0] for the sell side (S5 is not in the book because it 
was traded). 

 
       (a) Distributed Stock Exchange      (b) Book Structure for Open Orders 

Figure 1. Common Architecture for Single-leg Trading 

B. Multi-leg Trading Problem Definition 
Multi-leg (also known as bundled) stock trading allows the 

investors to submit multiple stock trading orders (legs) in a 
consolidated order, which will be executed atomically as a 
single transaction.[10] The consolidated order could be traded if 
and only if all legs can be traded. There are two large 
categories of multi-leg orders: fixed and arbitrary. 

The fixed type only allows the stock exchange to specify 
the stock and trading quantity of each leg, comprising a basket 
of specified stocks with the amount of each stock in the basket 
also fixed. Investors can submit buy or sell orders to trade 
those baskets. Fixed multi-leg trading, i.e. ETF[21] or basket 
swap[22], is automated in many stock exchanges by treating the 
basket as a new stock. Baskets are only allowed to be traded 
among themselves and not with single-leg orders, which 
severely constrains market liquidity and trading flexibility. 

The arbitrary type allows investors to specify the stock 
symbol, price limit and trading quantity for each leg, as 
illustrated in Table 1.  

Table 1. A multi-leg order with three limit order legs 
Leg no. Sequence no. Symbol Action Price Amount 
1 0000-0002 IBM Buy $120.00 200
2 0000-0002 HPQ Sell $30.00 100
3 0000-0002 MSFT Buy $40.00 300
Arbitrary multi-leg trading has not yet been automated in 

electronic stock exchanges due to the high coordination 
overhead. This is the problem we attempt to solve in this 
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paper. The challenges are from three aspects of trading 
requirements: tradability, fairness, and performance. 

i) Tradability. Tradability relates to how frequently orders 
are traded. It is one important metric because stock exchanges 
should guarantee that, at most times, there is enough supply 
and demand to allow prices to be determined consistently to 
attract buyers and sellers. In arbitrary multi-leg trading, the 
content of each leg is unknown a priori, so if multi-leg orders 
are only allowed to trade among themselves as practiced for 
the fixed type, the tradability will be low[11]. Therefore, it is 
necessary to support mixed trading of multi-leg orders with 
single-leg orders. In addition, smaller variance in price and 
quantity typically will also bring better tradability. 

ii) Fairness. There is no existing priority ordering rule 
directly applicable to the situation where a multi-leg order can 
trade with a single-leg order, which is also a challenge this 
work is facing. But one intuitive principle is that the price-time 
priority rule should be maintained among all single-leg orders. 
In addition, fairness rules between a single-leg order and a 
multi-leg order, and those between two multi-leg orders are 
needed. 

iii) Performance. A typical performance requirement for 
single-leg trading is to handle orders within 10 milliseconds, 
from the time a GW receives an order to the time it notifies the 
client that the order has completed. An EV should be able to 
handle thousands of orders per second. In addition, single-leg 
order performance should not be significantly compromised by 
introducing multi-leg orders. This is difficult to achieve 
because multi-leg trading can require blocking multiple EVs 
concurrently in order to determine if an order can be executed 
atomically.  

Tradability, fairness, and performance also impact each 
other. For example, enforcing stricter fairness results in fewer 
orders being traded and more outstanding multi-leg orders, thus 
worse tradability and performance. Our goal is to understand 
the trade-offs among these factors and provide an efficient 
design and implementation of a multi-leg trading system for 
distributed stock exchanges. 

III. BASE-LINE PROTOTYPE 

A. Trading Rule Design 
Although it is straightforward to determine the trading 

priority ordering of single-leg orders, it becomes tricky to 
define the trading priority ordering of multi-leg orders. We 
propose a flexible priority rule for multi-leg orders that can be 
adjusted with a parameter to obtain desired degree of fairness. 
We call this the K-top-priority rule: 

 
A multi-leg order with n total legs can be traded if and only 
if at least K legs (1 ≤ K ≤ n) have the highest priority and a 
tradable match in their respective order books. 
 

In practice, two special cases are of particular interest. When 
K=n, a multi-leg order can be traded if and only if all the legs 
have the highest priority and a tradable match in their 
respective order books. This is called all-top-priority rule. 
When K=1, a multi-leg order can be traded if and only if at 

least one leg has the highest priority and a tradable match in its 
order. This is called the single-top-priority rule.  

Intuitively, as K increases, the degree of fairness increases 
but the tradability decreases. For example, the all-top-priority 
rule is strictly consistent with the price-time priority rule in all 
EVs (fairness is guaranteed between all combinations of 
single-leg orders and multi-leg orders) and thus offers the best 
fairness. However, the tradability of this rule is also the worst 
because the probability of a multi-leg order getting traded is 
the lowest. Both the all-top-priority rule and single-top-priority 
rule are supported in our prototype and are compared in 
Section V. 

B. Processing Flow  
The stock symbol attached in each leg in arbitrary multi-leg 

orders can only be determined at run-time. The GW dispatches 
an incoming multi-leg order to all the legs’ corresponding EVs. 
Use the example order in Table 1, the first leg will be 
dispatched to the EV handling IBM stock, the second leg will 
be dispatched to the EV handling HPQ stock, and so on, as 
shown in Fig. 2. 

 
Figure 2. Dispatching of Multi-leg orders 

EVs process all incoming legs of multi-leg orders and 
single-leg orders in the order in which they are received. Each 
time, the EV will fetch one order from the queue for processing. 
The order will be matched against the order book as shown in 
Fig. 1(b) according to the price-time priority rule. If the order 
does not have a match, it will be inserted into the order book as 
an outstanding order and remain there until being triggered by 
later incoming orders. 

Otherwise, if the order has a match, there could be the 
following possibilities: i) Single vs. Single: an incoming 
single-leg order matches an outstanding single-leg order; ii) 
Single vs. Multi: an incoming single-leg order matches an 
outstanding leg of a multi-leg order; iii) Multi vs. Single: an 
incoming leg of a multi-leg order matches an outstanding 
single-leg order; and iv) Multi vs. Multi: an incoming leg of a 
multi-leg order matches an outstanding leg of a multi-leg order 
in order book. 

In the Single vs. Single case, the order and its match will be 
traded as described in Section II.A. In the Single vs. Multi and 
Multi vs. Single cases, one multi-leg order is involved. To 
maintain atomicity and ensure that a multi-leg order is traded 
only if all legs can be traded, the EV should coordinate with 
other EVs corresponding to other legs of the multi-leg order 
(also called partner EVs) to achieve a consensus on whether 
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the trade should go through. During the time of coordination, 
in our base-line design, all involved EVs are locked and are not 
allowed to fetch and process new incoming orders from the 
receiving queue. This is to avoid violating the time-priority and 
price-priority rules. Locking all EVs for coordination is a 
simple but safe design for the base-line prototype. If the 
consensus is “trade”, the multi-leg order will be traded and 
removed from the order book; otherwise, the multi-leg order 
will be inserted into the order book to wait to be triggered by 
later incoming orders. The “trade” or “not trade” information 
will be sent to an HR node to write to persistent storage. The 
Multi vs. Multi case can result in extremely complex 
coordination scenario due to the possibility of cascading of 
matches. Therefore, it is disallowed by the matching function. 

C. Distributed Coordination Protocol Design 
Once a leg of a multi-leg order becomes the top priority 

order in its EV, a match with an incoming single-leg order 
triggers a multi-leg session to coordinate with other legs’ EVs 
to determine whether this multi-leg order could trade or not. 
Given a specified priority rule, coordination logic should 
define message flows to determine whether this multi-leg order 
can trade with other single-leg orders based on the status of 
each leg. This is very similar with the distributed consensus 
problem, which exists in systems like distributed database/file 
system, multicasting, streaming and so on. 2PC is a widely 
used distributed consensus protocol that decides on a series of 
Boolean values (“commit” or “abort”). In 2PC, the coordinator 
node communicates the state of a transaction to peer nodes. 
When the transaction state transitions to “prepare” at a peer 
node, the peer responds with a “yes” or “no” vote. The 
coordinator counts these responses; if all peers respond “yes” 
then the transaction commits. Otherwise it aborts. In our base-
line prototype, we utilize 2PC for multi-leg coordination and 
the basic message flows are shown in Fig. 3(a) and Fig. 3(b). 

 

 
(a) The message flow if EVIBM (coordinator) initiates the session 

 

 
(b) The message flow if EVHPQ (non-coordinator) initiates the session 

Figure 3. Message Flows for Distributed Coordination 

Fig. 3(a) is the case when a coordinator EV initiates a 
multi-leg session. The message flow is essentially the same as 
a traditional 2PC. Fig. 3(b) is the case when a non-coordinator 
EVHPQ initiates a multi-leg session, which is different from a 
traditional 2PC where a session is always initiated by the 
coordinator. As shown in the figure, there are actually fewer 
messages involved in this case. Since the query from the non-
coordinator EVHPQ immediately tells the coordinator EVIBM 
that its leg of the multi-leg order is tradable. Therefore, there is 
no need for EVIBM to send a query to EVHPQ. 

3PC[2,19,27] and Paxos[3] are similar consensus protocols but 
can handle more failure situations and are more adaptive to 
unreliable massive distributed systems. After coordination, if 
all involved EVs agree to “trade”, all legs will be removed 
from their respective books and traded; otherwise, all legs will 
remain in their respective order books. The reasons we 
introduce the coordinator into multi-leg sessions include: i) 
without a coordinator, many message transmissions will be 
redundant and incur unnecessary communication overhead; ii) 
without a coordinator, it will be more difficult to mark the 
global end of a distributed coordination session. 

D. Architectural Design Considerations 
Now we discuss various architectural design decisions and 

optimizations for implementing an efficient multi-threaded EV 
system supporting highly flexible and efficient multi-leg 
trading, as shown in Fig. 4. 

 

 
Figure 4. Layered design in EV 

1. Messaging and Threading. We use Websphere MQ 
Low Latency Messaging (LLM)[4], an IBM product, for 
messaging services among GW, EV, and HR nodes. LLM 
provides high performance unicast and multicast messaging 
services with reliable and ordered delivery of messages. It uses 
a publish-subscribe model in which a topic corresponds to a 
stream of messages. We implement a multi-threading model 
with a scheduler dispatching messages of different topics 
(Requests, Queries or Replies/Final replies) to different threads 
respectively. The states of order books and on-going multi-leg 
sessions are stored in shared memory and could be accessed by 
different types of threads concurrently.  

2. Session Management. To support fine-grained 
processing and maximum parallelism, we need an efficient 
mechanism to store the states of all the multi-leg sessions in 
each EV and make sure that all EVs have consistent session 
data for each multi-leg order. We designed an EV-specific 
hash-table for this purpose. The hashing index is computed on 
the global unique sequence number of multi-leg orders. Each 
hash bucket contains a list of cells holding a structure 
representing a multi-leg session. Each cell structure contains a 
mutex object for synchronization and a log facility for 
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deadlock debugging. The session management is consistent 
with the 2PC coordination protocol. 

In addition, the session management uses various 
optimizations to minimize message communication overhead. 
For example, if the coordinator finds a queried leg can not 
trade, it will send a negative final reply to the initiator of the 
query and terminate the session, instead of sending queries to 
all other EVs, because according to the “all or nothing” 
atomicity of multi-leg order definition, if one leg can not trade, 
the entire multi-leg order can not trade. A similar optimization 
is that if the coordinator receives a negative reply, it will send 
final replies immediately instead of waiting for all replies. 
Another type of optimization is based on inferring the content 
of replies from received queries. For example, EVA is waiting 
for EVB’s decision about a multi-leg order M1, while EVB is 
waiting for EVA for the same multi-leg order. However, 
because EVA will send queries to EVB if and only if EVA can 
trade M1, EVB can infer that the trading result of M1 at EVA 
must be positive. Similarly, EVA can infer the trading result of 
M1 at EVB to be positive. Thus, both EVA and EVB can stop 
waiting and continue processing, reducing unnecessary waiting. 

3. Deadlock Avoidance and Lock Granularity Tuning. 
As with all distributed systems, care must be taken to avoid 
deadlocks. There are two types of deadlock in our base-line 
prototype using 2PC. One is cross-EV deadlocks, e.g. EVA 
sends a query to EVB and waits for EVB’s reply, EVB sends a 
query to EVC and waits for EVC’s reply, and EVC sends a query 
to EVA and waits for EVA’s reply. This will form a deadlock 
loop if each EV has a single thread to handle all message types. 
As mentioned in messaging and threading, our prototype uses a 
separate thread and topic for each message type, and thus 
avoids this deadlock.  

The other type of deadlock situation is caused by fine-
grained locking inside an EV. We designed fine-grained locks 
for optimal performance, e.g. locks on order books, session 
tables, and other shared state, etc. In addition, we also have 
locks on individual hash table buckets instead of the whole 
hash table. Deadlock due to two threads have different locking 
sequences is well-known and is avoided by enforcing 
consistent locking sequences by all threads. 

4. Primary-Primary High Availability. High availability 
is also an important requirement for stock exchanges. In our 
prototype, we achieve continuous availability by using the 
primary-primary architecture described in Su and Iyengar[6]. 
The basic idea is to maintain a mirror of each EV through the 
use of a reliable shared memory called Coupling Facility[7] and 
an efficient total ordering algorithm. The mirror allows non-
disruptive failover of any single EV failure. Interested readers 
are referred to the primary-primary paper[6] for more details. 

E. Analysis of Fairness and Performance 
Fairness Analysis. From each EV’s local point of view, the 

base-line design of the multi-leg trading prototype satisfies the 
following fairness properties: 

i) Single-Single constraint. A higher priority single-leg 
order always trades before a lower priority single-leg order. 
This is based on the observation that on the arrival of a single-
leg order, one of the following happens: 

• It has the highest priority, and it may or may not 
match the highest priority order on the opposite side 

• It does not have the highest priority, and it is not 
allowed to trade 

It is clear that when a trade does occur, it is always between 
the two highest priority orders on the opposite sides. 

ii) Multi-Multi constraint. A higher priority multi-leg 
order always trades before a lower priority multi-leg order. 
This is not difficult to see because each multi-leg order is 
traded logically the same way as a single-leg order by blocking 
all EVs involved. Thus, the argument for the single-single 
constraint above applies here equally. 

iii) Single-Multi constraint. If the all-top-priority rule is 
adopted, then a higher priority single-leg order always trades 
before a lower priority multi-leg order. The all-top-priority rule 
dictates that all legs of a multi-leg order must have the highest 
priority for it to be tradable. Therefore, by definition, all higher 
priority single-leg orders must have been traded before the 
multi-leg order becomes tradable. 

Performance Analysis. Compared with single-leg trading, 
the major overhead incurred by multi-leg trading is in 
coordinating a consensus, during which all involved EVs are 
blocked as described in Section III.B. In each multi-leg session, 
there are three different EV roles: initiator which is the first 
EV sending out a query and initiating the multi-leg session; 
coordinator which is specified by the GW for the multi-leg 
order; and participants which represent all other EVs 
corresponding to other legs of the multi-leg order. The 
blocking time for the initiator is defined as the elapsed time 
from the time it sends out a query until the time it receives a 
final reply. The latency for the coordinator is defined as the 
elapsed time from the time it sends out queries on behalf of the 
initiator until it sends out the final replies. The blocking time 
for a participant is defined as the elapsed time from the time it 
receives a query sent by the coordinator until the time it 
receives a final reply. Although the session-level optimizations 
described in Section III.D optimize the blocking time for the 
base-line prototype, the performance degrades significantly due 
to the blocking time introduced by multi-leg trading, as shown 
in Fig. 11-13 in Section VI. Therefore, more sophisticated 
solutions are required to further reduce the blocking time. 

IV. LOOK-AHEAD OPTIMIZATION 

A. Main Idea of Look-ahead Algorithm 
In Section III, we identified that a major performance 

overhead of the base-line prototype is in coordinating a 
consensus: trade or not trade, for a Multi vs. Single or Single 
vs. Multi trade. A solution is to allow incoming orders to 
continue being processed before the coordinator sends final 
replies, which we called look-ahead. However it is not easy to 
determine which orders should be allowed to trade or not in the 
blocking duration. That’s because the final tradability of the 
multi-leg order is unknown until the end of the multi-leg 
session and the priority ordering constraint must be enforced. 

To preserve consensus atomicity, the commitment that “the 
blocked multi-leg order can trade in EVHPQ” should not be 
compromised in the blocking duration before it receives its 
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final reply (for non-coordinators) or before it sends out the 
final reply (for the coordinator). We find that as long as the 
above commitment could be kept (which means at least one 
single-leg order remaining in the order book could be traded 
with the blocked order), allowing more orders to be traded in 
the blocking duration will neither affect the tradability of the 
multi-leg order nor violate its priority ordering (the proof is 
given in Section V.B). Based on this finding, a look-ahead 
algorithm is designed, which allows orders in the order book to 
trade freely in blocking duration as if the blocked multi-leg 
order doesn’t exist, if no conflicting condition is detected as 
violation of the commitment. 

To implement the solution, we classify incoming orders 
into different types based on whether allowing their trade will 
violate the tradability of the blocked multi-leg order. We also 
designed one state machine to keep track of the order’s 
transition from one type to another. We use an example to 
illustrate the idea. 

Fig. 5 shows the order book described in Section II.A. Each 
block represents an order, the subscript represents the arriving 
sequence, S represents the order is single-leg, M represents the 
order is a multi-leg and the length of the block represents the 
quantity of this order. Fig. 5(a) shows the order book of an EV 
when an incoming single-leg order S9 matches an outstanding 
multi-leg order M2, which triggers the multi-leg session and 
look-ahead. Readers should observe that it is clear from the 
order book that S9 and M2 are the highest priority buy and sell 
order, respectively. In Fig. 5(b), S10 arrives and is classified as 
a non-conflicting order since it has no match and thus will not 
affect M2’s tradability. 

Next in Fig. 5(c), S11 arrives and is classified as a 
conflicting order, because S11 matches S9 but allowing S11 to 
trade with S9 would violate the tradability of M2. So we cannot 
allow S11 and S9 to trade and we continue to look ahead. In Fig. 
5(d), S12 arrives and is classified as a resolving order because it 
provides more buying quantity at the same price as S9 does. As 
a result, if we were to allow S11 to trade with S9, M2 would still 
have S12 to trade with. So the tradability of M2 is not violated. 

In Fig. 5(e), S11 transitions to non-conflicting orders. In Fig. 
5(f), S11 trades with S9 and both disappear from the order book; 
S12 transitions to a non-conflicting order. Next in Fig. 5(g), S13 
arrives and is classified as a non-conflicting order because S12 
has enough buying quantity to satisfy both M2 and S13. 
Therefore, S13 is allowed to trade with S12, leaving enough 
quantity for M2, as shown in Fig. 5(h). Finally, in Fig. 5(i), S14 
arrives and is classified as non-conflicting because S14 can 
trade with S1, S4, and S5 without violating the tradability of M2. 

The look-ahead process continues until either the consensus 
session has ended, or a blocking order is encountered. A 
blocking order is a tradable multi-leg order that is on the 
opposite side of the current blocking multi-leg order. 
Simultaneous look-ahead with two blocking multi-leg orders 
on the opposite side of the order book will make the quantity 
on both sides unpredictable. Therefore, an EV stops the look-
ahead and goes to the state of blocking when a blocking order 
is encountered. 

The benefit of look-ahead is illustrated in Fig. 6. For readers 
interested in more details of our solution, we present the order 
type state transition and EV state transition diagrams in Fig. 7 

and 8. We also present the look-ahead algorithm pseudo code 
in Fig. 9. 

       
 (a) Initial State                           (b) Non-Conflicting Order S10 

 
(c) Conflicting Order S11                   (d) Resolving Order S1 

 
 (e) Order Type Transition                (f) After S9 trade with S11 

    
 (g) Non-Conflicting Order S13             (h) After S12  trade with S13 

 

(i) Non-Conflicting Order S14 

Figure 5. Running Example to Illustrate Look-ahead 
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Figure 6. Performance benefits of Look-ahead 

 
Figure 7. Order type state transition  

 
Figure 8. EV state transition in processing orders 

Parameters:  new_order, blocked_order 
1. WHILE (new_order=recv() AND STATE==LOOKAHEAD) { 
2.     new_order.type=get_order_type(new_order); 
3.     SWITCH (new_order.type) { 
4.         CASE NON_CONFLICTING: 
5.             trade with matchable non-conflicting orders based on priority;  
6.             IF  new_order.remaining_quantities>0  
7.                    insert new_order into book;  
8              END 
9.           BREAK; 
10.       CASE BLOCKING: 
11.           block(); 
12.           STATE=NORMAL; 
13            BREAK; 
14.       CASE CONFLICTING: 
15.            insert new_order into the book; 
16.            BREAK; 
17.       CASE RESOLVING: 
18.            update the type of resolvable conflicting orders to non-conflicting; 
19.            trade tradable non-conflicting orders based on priority rule; 
20.             new_order.type=NON_CONFLICTING; 
21.             trade with matchable non-conflicting orders based on priority rule; 
22.             IF new_order.remaining_quantities IS NOT NULL 
23.                    insert new_order into book; 
24.             END 
25.             update the type of non-conflicting orders and take actions; 
26.             BREAK; } 
27.     IF final-reply received 

28.             STATE=NORMAL 
29.             IF final-reply is negative 
30.                     rematching blocked_order’s current matching orders in book; 
31.            ELSE 
32.                    trade blocked_order with its current matching order; 
33.            END 
34.      END } 

Figure 9. Lookahead Algorithm Framework 

B. Correctness and Fairness Proof 
The concept of “being traded” for a multi-leg order’s leg 

can be extended to “being guaranteed to have a match”. Thus 
the Multi-Multi constraint from one EV’s local view of point 
can be extended to “a higher priority multi-leg order is always 
guaranteed to have a match before a lower priority multi-leg 
order is guaranteed to have a match”. The Single-Multi 
constraint can be extended in the same way. Such extension of 
fairness constraints will not degrade fairness: for a blocked leg, 
it is not as important when a multi-leg order can conclude a 
trade as when the multi-leg order’s match is guaranteed, 
because in either case its tradability is decided by other legs’ 
tradability which can not be affected by the priority ordering in 
local EV. The extended fairness constraint is the basis of our 
look-ahead optimization. 

Look-ahead algorithm guarantees that no conflicting orders 
are traded during a blocking duration, because as shown in Fig. 
7, trades concluded in the blocking duration can only happen 
between two non-conflicting orders. Therefore, the time a 
blocked order guaranteed for a match is always before the time 
any order gets traded in the blocking duration. 

The Single-Single constraint defined in Section III.C is 
maintained for the duration of the look-ahead algorithm. That 
is because blocked multi-leg orders will not lock single-leg 
orders matched at the opposite side (Our definition guarantees 
that a blocking order, which will stop the look-ahead, is only 
possible on the opposite side of the blocked orders; all blocked 
orders are on the same side), and single-leg orders can always 
trade freely if the trade is allowed by the priority rule and if 
there are enough lower priority single-leg orders satisfying all 
blocked multi-leg orders. Therefore, no single-leg orders will 
be compromised by any lower-priority single-leg orders. 

The Multi-Multi fairness constraint is maintained for the 
duration of the look-ahead state. First, the algorithm guarantees 
that a higher priority multi-leg order MUST be triggered for a 
multi-leg session earlier than a lower priority multi-leg order. 
Secondly, although lower priority multi-leg orders might get 
traded before the blocked multi-leg order during look-ahead 
when multiple multi-leg orders are blocked, it will not 
compromise the blocked multi-leg order’s fairness due to the 
extended fairness constraints and a lower priority multi-leg 
order is only allowed to get traded if the EV guarantees that 
after it is traded, there is still enough quantity for the blocked 
multi-leg order to find a match in the book. Otherwise, the 
lower priority order is not allowed to get traded until this 
conflicting condition is resolved. 

Particularly, if the all-top-priority rule is implemented, the 
Single-Multi constraint is maintained because no lower-
priority multi-leg orders can jump the queue and trade before 
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higher priority single-leg orders due to the semantics of the all-
top-priority rule, and on the other side, single-leg orders will 
not be locked by any blocked multi-leg orders. 

V. PERFORMANCE EVALUATION AND ANALYSIS 

A. Environment Setup 
We have implemented both the base-line prototype 

described in Section III and an optimized prototype based on 
the look-ahead algorithm described in Section IV on an IBM 
z-series z10 eServer mainframe[7], which is a NUMA system 
having 64 4.4GHz CPU cores and 1.5TB memories. We 
virtualized 8 LPARs (LPAR refers to virtualized partition via 
hypervisor[5]) running z/OS on the mainframe with each 
LPAR holding 8 CPU cores. Each GW and EV node runs in a 
separate LPAR. All three HR nodes run in one LPAR for 
performance reasons. All cross-LPAR communication is via 
UDP/IP over hypersocket[8], which is a network stack 
implemented upon shared memory instead of Network 
Interface Cards, as shown in Fig. 10. 

 
Figure 10. Experimental Environment 

Each EV can handle multiple symbols with each symbol 
representing a type of stock. But in this paper’s experiments, 
we made each EV only process one symbol to test the 
maximum per-symbol throughput which is one of the most 
important performance metrics for stock trading. We deployed 
load generators on one GW node which generates and 
dispatches requests to each EV as fast as possible. 

We measured the following metrics: i) Throughput: the  
maximal number of requests (including single-leg orders and 
multi-leg orders) one system can process per second; ii) 
Gateway-to-gateway latency: the time elapsed from the point 
when the GW receives a message from the client (load 
generator) to the point when the request completes processing 
and an ACK message is sent back to the client by the GW; iii) 
Blocking time: the average blocking time per multi-leg 
session measured on one EV in one minute. Blocking time is 
defined in Section III.E; iv) Trading ratio: the ratio of traded 
multi-leg sessions (i.e. multi-leg sessions ending with a 
“trade” final reply generated by the coordinator) to the total 
number of multi-leg sessions. Each test run lasted at least a 
minute, and all above metrics were computed as an average of 
ten measurements. 

B. Evaluation of Different Performance Factors 
The parameters we can control in the test are illustrated in 

Table 2. Each of them represents a factor impacting the 

performance of multi-leg trading. Understanding how those 
factors influence performance and tradability is important to 
help stock exchanges to make the right trade-offs in designing 
their systems. In all tests, buy and sell orders were balanced 
with about the same number of each. 

Table 2. Controlling parameters 
Parameters Description 
multi-leg order percentage the ratio of multi-leg requests in input requests 
number of legs the number of legs of a multi-leg request 
fairness of priority rule all-top-priority or single-top-priority 
price/quantity variance the price and quantity of multi-leg orders are 

uniformly distributed over a range; we varied 
these ranges 

Multi-leg Order Percentage and Number of Legs. 
Fig.11-13 measure throughput, latency and blocking time for 
the base-line prototype and the optimized prototype with look-
ahead. Single-top priority is used as the priority rule, and the 
price and quantity are uniformly distributed over the ranges 
[100, 105] and [1,100].  

Fig. 11 and Fig 12 illustrate that the average per-symbol 
throughput and latency decrease significantly when the 
percentage of multi-leg orders increases. This is because the 
number of multi-leg sessions triggered also increases and 
causes the total blocking time to increase (This is indicated in 
Fig. 14(a) and Fig. 15(a) which show the average number of 
multi-leg sessions triggered from processing 50,000 requests). 
We also observe from Fig. 11 and Fig. 12 that the 
performance of 3-leg trading is significantly worse than 2-leg 
trading. There are two reasons: i) 3-leg multi-leg orders will 
involve more messages in a multi-leg session on average, 
causing longer blocking time per multi-leg session as shown 
in Fig. 13; ii) there will be more multi-leg sessions triggered 
for the 3-leg case than the 2-leg case (Fig. 14(a)), that is 
mainly because at a given time point, the probability of at 
least one EV triggering a multi-leg session in the 3-leg case is 
larger than in the 2-leg case. In Fig. 11, at the point of 0% 
multi-leg orders, the disk I/O is the performance bottleneck. 
The 3-leg case performs worse than the 2-leg case at this point, 
because the 3-leg case will read and write more data to the 
disk per transaction. 

As shown in Fig. 11 and Fig. 12, we observed up to 58% 
throughput gain with up to 30% reduction in latency. The 
figures also show that when the multi-leg order percentage is 
smaller than 20%, the performance gain after applying look-
ahead will increase when the multi-leg order percentage 
increases. This is because more multi-leg sessions can be 
optimized by look-ahead. But when the percentage is larger 
than 20%, the performance gain will decrease when the multi-
leg order percentage increases. This is because of the 
increasing percentage of blocking orders and decreasing 
interval between two blocking orders, both of which prevent 
the EV from staying in the look-ahead state. Fig. 13(a) 
measures the average of average blocking time measured in 
each EV, and Fig. 13(b) illustrates the aggregate of average 
blocking time measured in each EV. Both of them illustrates 
the significant reduction in average blocking time per multi-
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leg session after applying the look-ahead optimization, which 
shows how look-ahead optimizes performance.  

As shown in Fig. 14(b) and Fig. 15(b), the trading ratio will 
decrease when the multi-leg order percentage increases. This 
is because when the multi-leg order percentage increases, the 
single-leg order percentage will decrease preventing multi-leg 
orders from finding a single-leg order match. As shown in Fig. 
14(b), the tradability for the 3-leg case is significantly lower 
than for the 2-leg case because the probability that all EVs can 
trade a multi-leg order at the same time for the 3-leg case is 
significantly lower than for the 2-leg case.  
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Figure 11. Throughput with Different Multi-leg Order Percentage 

 

Latency comparison for with and without look-ahead
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Figure 12. Latency with Different Multi-leg Order Percentage 
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(a) Comparison of average blocking time of all involved EVs 

Comparison of Aggregate Blocking Time  per Multi-leg Session
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 (b) Comparison of aggregate blocking time of all involved EVs 

Figure 13. Blocking Time Measurements 

Priority Rules. Fig. 14 compares the throughput and 
trading ratios for different priority rules with varying multi-leg 

percentages (i.e. 10%, 20% and 30%) and number of legs. The 
price and quantity are randomly distributed over the ranges 
[100, 105] and [1,100] respectively. Fig. 14(a) shows that the 
all-top-priority rule will trigger more multi-leg sessions than 
the single-top-priority rule given the same percentage of 
multi-leg orders and same number of legs. This is because the 
trading ratio is smaller for the all-top-priority rule than for the 
single-top-priority rule (as shown in Fig. 14(b)). The smaller 
trading ratio will cause more multi-leg orders to remain in the 
order book, which increases the total number of multi-leg 
sessions triggered per unit time. As a result of having to 
handle more multi-leg sessions, the throughput for the all-top-
priority case becomes worse than that of the single-top-
priority case as shown in Fig. 14(c). 

Fig. 14(c) also illustrates that look-ahead can improve 
throughput for both priority rules but provides more improvement for the all-top-priority rule. This is because more 

multi-leg sessions can be optimized by look-ahead for the all-
top-priority rule. 

 
(a) Average number of multi-leg sessions triggered and traded per 50,000 

requests 
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(b) Trading ratio comparison with different priority rules 

 
 (c) Throughput comparison with different priority rules 

Figure 14. Impact of Different Fairness Rules 

Price/Quantity Variance. Price and quantity are uniformly 
distributed over a range. As described in Table 2, we also did 
experiments varying the ranges over which price and quantity 
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are distributed. Fig. 15 compares the throughput and trading 
ratio for different variances in price and quantity with varying 
multi-leg percentage (i.e. 10%, 20% and 30%). Single-top-
priority is used which is demonstrated to have better 
performance and tradability. Fig. 15(a) and Fig. 15(b) 
compare the number of multi-leg sessions triggered and 
trading ratio with different multi-leg order percentages for 
varying price and quantity ranges. It shows that the trading 
ratio increases significantly when the variance decreases.  

Fig.15(c) compares the throughput while varying multi-leg 
order percentages and the price and quantity ranges. It shows 
that decreasing variance significantly degrades throughput. 
This is because lower price/quantity variance will increase the 
probability of a multi-leg order finding a match in a book, 
causing more multi-leg sessions to be triggered as shown in 
Fig. 15(a). Fig 15(c) also illustrates that look-ahead can 
benefit performance for different variances in price and 
quantity except for the rightmost case with constant price and 
quantity and 30% of multi-leg orders. That is because the 
number of multi-leg sessions for this case increases 
significantly as shown in Fig. 15(a). That will cause the ratio 
of blocking orders to significantly increase and the time spent 
in the state of look-ahead minimized.  

Since quantity often has larger variance than price, we 
further studied how throughput varies with the size of the 
quantity range as shown in Fig. 15(d). It shows that when the 
multi-leg order percentage is 20%, the throughput gain 
brought by look-ahead will first decrease when the variance 
increases, which is due to the number of multi-leg session has 
been reduced causing less opportunity for look-ahead 
optimization. Then when the size of quantity range increase to 
larger than 8, the throughput gain will increase when the 
variances increase, because the number of blocking orders will 
be reduced as to the reduction in the probability that a n multi-
leg order can find a match in its respective EV. This trend is 
also valid for other percentages of multi-leg orders. 

 
 (a) Average number of multi-leg sessions triggered and traded per 50,000 

requests 
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(b) Trading ratio comparison with varying price/quantity ranges 

 
(c) Throughput comparison with varying price/quantity ranges 

 

 
(d) Throughput comparison with varying size of quantity range 

Figure 15. Impact of Quantity Variance 

C. Summary of Results 
Table 3 provides a summary of the results we obtained: 

look-ahead gain represents the throughput improvement after 
using look-ahead optimization; for fairness of priority rules, 
the all-top-priority rule has higher fairness while the single-
top-priority rule has lower fairness; “+” indicates that the two 
connected factors are directly related, “-” indicates that they 
are inversely related, “+-” indicates the two factors are directly 
related first and inversely related later, and “-+” indicates the 
two factors are inversely related first and directly related later. 
Important observations include the following: 

 Increasing the number of legs decreases performance and 
tradability, but increases the throughput gain from the 
look-ahead optimization; 

 Increasing the percentage of multi-leg orders will decrease 
performance and tradability, but will not always decrease 
the throughput gain from look-ahead optimization; 

 Using priority ordering rule with better fairness will 
decrease performance and tradability, but will increase 
throughput gain from look-ahead optimization; 

 Variance in price and quantity will decrease tradability, 
but increase performance, however, not always increase 
the throughput gain from the look-ahead optimization. 

 Table 3. Summary of Observations 
 number of 

multi-leg 
sessions 

trading 
ratio 

through
-put 

look-
ahead 
gain 

number of legs + - - +
percentage of multi-leg order + - - +- 
fairness of priority rules + - - +
price/quantity variance - - + -+
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VI. RELATED WORK 

A. Similar Applications with  Multi-leg Trading 
Existing electronic stock and commodity exchanges do 

not support multi-leg trades in an automated fashion [10]. Many 
exchanges and investment banks support a similar idea known 
as ETF[21] and basket swap[22] which treat a basket of stocks as 
one stock. Thus, trading the basket of stocks is just like 
trading a single stock. However, it is actually a fixed type of 
multi-leg trading, and the number of stocks and quantity to 
trade are strictly constrained. Bundle trading[11~13] , proposed 
in the early 1990s, is a similar concept. However, existing 
research focuses on how to model the matching problem to 
maximize the market surplus by using mathematical 
optimization approaches assuming a centralized book. These 
references do not address the problem of applying bundled 
trading to distributed stock exchange architectures, which 
have significant synchronization overhead for multi-leg 
trading. Although no existing exchanges support automatic 
multi-leg trading, stock brokers, option brokers or technology 
vendors often develop automatic tools to poll exchange data at 
the client side to trade a basket of stocks, in program trading[10, 

32]. Our work is different from program trading in that our 
solution is deployed at the exchange side and guarantees 
atomicity. In addition, program trading is considered to be 
harmful because its high frequency and automaticity can cause 
sudden fluctuations in prices; its usage is quite in debate and 
limited by current security trading rules[33]. 

Combinatorial auctions[14~16] study mechanisms for 
combinatorial bidding by enabling the agents to express their 
preferences for bundles of items rather than individual items. 
However, they are focused on how to match supply to demand 
so that the market surplus can be optimized, while our work is 
based on existing stock exchange trading rules and how to 
minimize the blocking time introduced by trading multi-leg 
orders in a distributed architecture. 

B. Coordination Transaction Processing 
Distributed Consensus. In traditional transaction processing 

[18] and distributed database systems[1], there are 2-phase 
commit protocols[1,2,19], 3-phase commit protocols[1,2,19,27] and 
Paxos[3], which are designed for distributed sites to achieve 
consensus in a cooperative way. ExchangeGuard[25] proposes a 
consensus protocol with high reliability and fairness for 
distributed exchanges. Such protocols are focused on 
reliability and failure recovery. By contrast, our work is 
mainly focused on maximizing parallelism within ordering 
constraints enforced by stock trading rules. We use a look-
ahead approach to continually process later transactions before 
earlier transactions without compromising fairness constraints. 
Our work can be combined with those existing distributed 
consensus protocols to provide better parallelism and 
performance for similar systems. 

Parallelism and Concurrency Control in Distributed 
Database. Concurrency control tries to exploit the parallelism 
of concurrent transactions while keeping data integrity. A 

number of existing works[17,23,24,28,29] study the concurrency 
constraints enforced by lock synchronization for accessing 
shared data. In OPT[23], which is a variant of 2PC, transactions 
are permitted to “borrow” dirty data while a transaction is in 
the prepared phase. Jones and Abadi[17] proposed a similar 
speculative approach. In those works, if the speculation is 
incorrect, all following transactions processed in the blocking 
time have to roll back. Reddy and Kitsuregawa[24] proposed 
speculative locking, where a transaction processes both the 
“before” and “after” version for modified data items. At 
commit, the correct execution is selected and applied by 
tracking data dependencies between transactions. By contrast, 
our look-ahead approach is not based on speculation and need 
not roll back or keep track of the data dependencies, which is 
one important advantage. Another difference is that existing 
concurrency optimization schemes are not aware of the 
fairness constraints of multi-leg trading. However, when the 
state of multi-leg trading system transitions from look-ahead 
to blocking, speculations can also be applied as a further 
optimization.  

Some works[30~31] explore concurrency control strategies by 
rebuilding the transaction ordering, e.g. commit ordering[31]. 
However, those works are focused on coordination with pre-
defined global ordering, which is not applicable to our 
problem, because, in multi-leg trading systems, the global 
ordering depends on the consensus of each multi-leg session 
and is not pre-defined. 

VII. CONCLUSIONS 
Multi-leg stock trading requires coordinating transactions 

across multiple stock symbols. When the stock symbols are on 
different nodes, coordinating the transactions across the nodes 
can incur significant overhead. Existing concurrency control 
approaches such as optimistic locking[29] or speculative 
locking[17, 23, 24] are not sufficient to achieve good performance, 
because those algorithms are not aware of the fairness 
constraints enforced by stock trading rules. Although such 
fairness constraints limit concurrency significantly, they also 
provide flexibility for allowing out-of-order processing in 
certain situations. This paper identifies those situations and 
proposes a new look-ahead approach to alleviate the 
coordination overhead of multi-leg trading by a fine-grained 
state machine which allows transactions to be processed on a 
node before a previous transaction has finished. The state 
machine is designed so that the fairness constraints enforced 
by stock trading rules are always maintained. 

We have implemented two stock trading systems. The first 
is a base-line prototype based on 2PC[1,2,19] and efficient 
session management. The second uses our look-ahead 
algorithm to reduce the overhead of coordinating multi-leg 
transactions on multiple nodes. Our results show that, the 
proposed look-ahead solution can achieve up to 58% 
throughput gain and up to 30% latency reduction. 

We also quantitatively evaluated how a number of factors 
(e.g. percentage of multi-leg orders, number of legs, 
price/quantity variance, different priority ordering rules) affect 
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performance and tradability. We found that increasing the 
number of legs decreases performance and tradability. 
Increasing the percentage of multi-leg orders will also decrease 
performance and tradability, but will not always decrease the 
throughput gain from the look-ahead optimization. Using 
priority ordering rules requiring more legs to be at the front of 
the priority queue before a multi-leg order can trade will 
decrease performance and tradability, but will increase 
throughput gain from the look-ahead optimization. Variance in 
price and quantity will decrease tradability, but increase 
performance, however, not always increase the throughput gain 
from the look-ahead optimization.  

These observations can facilitate the design and 
deployment of multi-leg trading systems. Our work can also 
benefit a broad class of coordinated transaction processing 
systems with ordering constraints such as on-line auction [14~16, 

20] and stream computing with priority constraints[26] . 
There are a number of ways in which we are continuing 

this work. These include enhancing our system to handle multi-
leg orders with more symbols, optimizing tradability based on 
our look-ahead algorithm, and generalizing our look-ahead 
algorithm to integrate it with existing concurrency control 
algorithms. 
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