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Abstract—Large-scale storage systems are crucial components
in data-intensive applications such as search engine clusters,
video-on-demand servers, sensor networks and grid computing.
A storage server typically consists of a set of storage devices. In
such systems, data layouts may need to be reconfigured over time
for load balancing or in the event of system failure/upgrades. It
is critical to migrate data to their target locations as quickly as
possible to obtain the best performance. Most of the previous
results on data migration assume that each storage node can
perform only one data transfer at a time. A storage node, how-
ever, can typically handle multiple transfers simultaneously and
this can reduce the total migration time significantly. Moreover,
storage devices tend to have heterogeneous capabilities as devices
may be added over time due to storage demand increase.

In this paper, we consider the heterogeneous data migration
problem, where we assume that each storage node v has different
transfer constraint cv , which represents how many simultaneous
transfers v can handle. We develop algorithms to minimize the
data migration time. We show that it is possible to find an optimal
migration schedule when all cvs are even. Furthermore, though
the problem is NP-hard in general, we give an efficient algorithm
that offers a rigorous (1 + o(1))-approximation guarantee.

I. INTRODUCTION

Large-scale storage systems are crucial components for
today’s data-intensive applications such as search engine
clusters, video-on-demand servers, sensor networks, and grid
computing. A storage cluster can consist of several hundreds
to thousands of storage devices, which are typically connected
using a dedicated high-speed network. In such systems, data
locations may have to be changed over time for load balancing
or in the event of disk addition and removal. It is critical to mi-
grate data to their target disks as quickly as possible to obtain
the best performance of the system since the storage system
will perform sub-optimally until migrations are finished.

For example, in a system consisting of parallel disks, data
layouts are computed based on many factors such as user
demands and disk space constraints to balance the load. Data
layouts need to be changed over time according to changes of
user demand patterns. In these cases, data need to be quickly
moved to their target disks to obtain a new data layout as soon
as possible.

Another example of data migration is when we add or
remove disks in a storage system. In a large-scale storage
system, disk removals, additions and replacements can occur
frequently. For example, in a search engine cluster with

Fig. 1. An example of data transfer instance

hundreds of storage devices, such system upgrades and re-
placements are required as often as every few days [1]. In the
event of disk additions and removals, it is necessary to quickly
redistribute or recover data so that the system can run in the
best performance under the new configuration.

The data migration problem can be informally defined as
follows. We have a set of disks v1, v2, . . . , vn and a set of
data items i1, i2, . . . , im. Initially, each disk stores a subset of
items. Over time, data items may be moved to another disk for
load balancing or for system reconfiguration. We can construct
a transfer graph G = (V,E) where each node represents a
disk and an edge e = (u, v) represents a data item to be
moved from disk u to v. Note that the transfer graph can be
a multi-graph (i.e., there can be multiple edges between two
nodes) when multiple data items are to be moved from one
disk to another (for example see Figure 1).

Most of the previous results on data migration assume
that each disk can perform only one transfer at a time.
A disk, however, may be able to handle multiple transfers
simultaneously and this can reduce the total migration time
significantly. For example consider Figure 2, suppose that we
have three disks in the system and for each pair of nodes we
have M items to be moved and it takes one time unit to send
one data item from one disk to another. Assuming that each
node can participate in only one transfer, it will take 3M time
units. However, if a disk can perform two transfers at a time
by using half of its bandwidth for each transfer, the migration
can be done is 2M time units. (It requires M rounds but each
round takes 2 time units as the bandwidth is split.)

Previous research has focused mainly on homogeneous
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Fig. 2. An example of data migration when each node can handle two
transfers simultaneously

storage systems, in which it is assumed that disks in a system
all have the same capabilities [2], [3], [4], [5], [6], [7]. In
large-scale storage systems, however, storage devices tend to
have heterogeneous capabilities as devices are added over time
as storage capacity demand increases. Moreover, available
bandwidth of each disk can be different depending on current
user traffic on different disks. That is, we may not want a
disk to be involved in too many migrations if the disk is
currently serving many clients. In case each disk has a different
bandwidth available for migration, assuming that each node
participates in only one transfer will significantly degrade the
finish time of the data migration schedule as a slow node can
be a bottleneck in the schedule.

here
In this paper, we consider the heterogeneous data migration

problem where we will assume that each disk has different
transfer constraints cv , representing how many transfers the
disk can handle simultaneously and develop algorithms to
minimize the data migration time. Coffman et al. [8] con-
sidered the problem and developed optimal algorithms for
several special cases such as cycles, trees, and bipartite graphs.
Saia [9] presented a simple 1.5-approximation algorithm for
arbitrary cv . The algorithm finds a solution by creating cv
copies of each node and distributing the edges incident to the
node evenly. The maximum degree of the node now becomes
ddv/cve where dv is the degree of a node v. Shannon’s
theorem [10] then gives an edge coloring algorithm with at
most 1.5ddv/cve colors.

We show that it is possible to find an optimal migration
schedule when all cv’s are even. This can be done by de-
composing the transfer graph into maxvddv/cve components
where in each component at most cv edges are incident to v.
For arbitrary cv , we go on to show that there is an algorithm
that uses at most OPT +

√
OPT colors. This is a (1 + o(1))-

algorithm and the approximation factor is close to 1 when

OPT increases.
The remainder of this paper is organized as follows. We

first describe the related work in Section II. In Section III, we
formally define the problem, along with two lower bounds on
the optimal solution. In Section IV, we present a polynomial
time algorithm that finds an optimal migration schedule when
cv’s are even. Finally, in Section V we give a (1 + o(1))-
approximation algorithm for the general case.

II. RELATED WORK

Several approximation algorithms have been developed for
data migration in local area networks [5], [11], [7], [12],
[13], [14]. In their ground-breaking work, Hall et al. [4]
studied the problem of scheduling migrations given a set of
disks, with each storing a subset of items and a specified set
of migrations. A crucial constraint in their problem is that
each disk can participate in only one migration at a time. If
both disks and data items are identical, this is exactly the
problem of edge-coloring a multi-graph. That is, we can create
a transfer graph G(V,E) that has a node corresponding to each
disk, and a directed edge corresponding to each migration
that is specified. Algorithms for edge-coloring multigraphs
can now be applied to produce a migration schedule since
each color class represents a matching in the graph that
can be scheduled simultaneously. Computing a solution with
the minimum number of colors is NP-hard [15], but several
approximation algorithms are available for edge coloring [16],
[17], [18], [19], [20]. With space constraints on disks, the
problem becomes more challenging. Hall et al. [4] showed
that with the assumption that each disk has one spare unit
of space, very good constant factor approximations can be
obtained. The algorithms use at most 4d∆/4e colors with at
most n/3 bypass nodes,1 or at most 6d∆/4e colors without
bypass nodes where ∆ is the maximum degree of the transfer
graph and n is the number of disks.

For multi-graph edge coloring, a simple generalization of
Vizing’s theorem gives a solution using at most ∆ + µ colors
where ∆ is the maximum degree of a node and µ is the
multiplicity. When µ > ∆/2, a solution using 3∆/2 can be
obtained [10]. The best approximation ratio for the problem
have long been 1.1OPT + 0.7 [17], [19]. Recently, Sanders
and Steurer obtained 1 + o(1)-approximate solution. We show
that when each color can be used cv times for each node
and cv are even for all v, then there is a polynomial time
algorithm to find an optimal solution. We obtain the matching
approximation ratio for the general cases where each node has
arbitrary cv .

Coffman et al. [8] and Sanders et al. [21] studied the
problem of data migration with forwarding (data exchanged
between disk i and disk j is not necessarily delivered directly
from i to j but can be forwarded over other disks). Whitehead
[22] shows that when forwarding is needed because some
of the edges in the transfer graph are not present in the

1A bypass node is a node that is not the target of a migration, but used as
an intermediate holding point for a data item.
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interconnection network, then the problem is NP-complete. In
this paper, we assume that transfers between disks can be done
through a very fast network connection dedicated to support a
storage system and any two disks can send data to each other
directly.

In the data migration problem with cloning, each data item
may have several copies in different disks [6], [3], [13], [11].
To handle high demand for popular items or for fault-tolerance,
multiple copies may have to be created and stored on different
disks [23], [24]. In the problem, each data item i initially
belongs to a subset of source disks Si and needs to be moved
to another subset of destination disks Di. It is also assumed
that each data transfer takes the same amount of time and
each disk can participate in only one transfer — either send
or receive. The objective is to minimize the time taken to
complete the migration. It is shown that this problem is NP-
hard by a reduction from edge coloring and a polynomial-time
algorithm with approximation factor of 9.5 is developed [6],
which was further improved to 6.5 + o(1) recently [11].

Another interesting objective function in data migration
is to minimize the total completion time. Minimizing the
sum of weighted job completion times is one of the most
common measures in the scheduling literature since it can
reflect the priorities of jobs. Kim [14] developed a LP-based
approximation algorithm with approximation ratio of 9, which
was later improved to a 5.06-approximation by Gandhi et al.
[25]. On the other hand, in a system where storage devices
can be free to do other tasks as soon as their own migrations
are complete, minimizing the sum of completion times over
all storage devices is interesting since the performance of a
device is degraded while it is involved in the migration. For
the objective, Kim [14] developed 10-approximation algorithm
and Gandhi et al. improved the ratio to 7.682 [26].

III. PROBLEM DEFINITION

In the HETEROGENEOUS DATA MIGRATION problem, we
are given a transfer graph G = (V,E). Each node in V
represents a disk in the system and each edge e = (i, j) in
E represents a data item that need to be transferred from i to
j. We assume that each data item has the same length, and
therefore it takes the same amount of time for each data to
migrate. Note that the resulting graph is a multi-graph as there
may be several data items to be sent from disk i to disk j.

We assume that each disk v can handle multiple transfers
at a time. Transfer constraint cv represents how many parallel
data transfers the disk v can perform simultaneously.

Our objective is to minimize the number of rounds to finish
all data migrations. As noted above, we assume disks send
data to each other directly.

A. Lower Bounds

We have the following two lower bounds on the optimal
solution.

LB1 = ∆′ = max
v
ddv/cve (1)

LB2 = Γ′ = max
S⊆V

|E(S)|

b
∑

v∈S
cv

2 c
(2)

where E(S) = {(u, v) ∈ E s.t. u, v ∈ S} is the set of edges
both of which endpoints are in S.
LB1 follows from the fact that for a node v, at most cv

data items can be migrated in a round. When ∀v ∈ V, cv
is even, LB1 ≤ LB2 and, in fact, we show that there is a
migration schedule that can be completed in LB1 rounds. The
following lemma proves that LB2 is a lower bound on the
optimal solution.

Lemma 3.1: LB2 is a lower bound on the optimal solution.
Proof: An optimal migration is a decomposition of edges

in E into E1, E2, . . . , Ek such that for each Ei and a vertex
v, there are at most cv edges incident to v in Ei. For a subset
S ⊆ V , let di(v, S) be the number of edges in Ei(S) incident
to v. Then 2|Ei(S)| =

∑
v∈S di(v, S). As di(v, S) ≤ cv , we

have |Ei(S)| ≤ b
∑

v∈S
cv

2 c. As Ei’s cover all edges in E(S),
the lemma follows.

IV. THE CASES FOR EVEN TRANSFER CONSTRAINTS

In this section, we describe a polynomial time algorithm to
find an optimal migration schedule when each node v has even
transfer constraint cv . We show that it is possible to obtain a
migration schedule using ∆′ rounds.

A. Outline of Algorithm

We first present the outline of our algorithm when cv is
even for any v. The details of each step is given in Section
IV-B.

(1) Construct G′ so that every node has degree exactly cv∆′

by adding dummy edges.
(2) Find a Euler cycle (EC) on G′.
(3) Construct a bipartite graph H by considering the direc-

tions of edges obtained in EC. That is, for each node
v in G′, create two copies vin and vout. For an edge
e = (u, v) in G′, if the edge is visited from u to v in
EC, then create an edge from uout to vin in H .

(4) We now decompose H into ∆′ components by repeat-
edly finding a cv/2-matching in H .

(5) Let M1,M2, . . . ,M∆′ be the matching obtained in Step
(4). Then schedule one matching in each round.

B. Detailed Description and Analysis

We now describe the details and show that the algorithm
gives an optimal migration schedule.
Step (1)-(3): The first three steps are a generalization of
Peterson’s theorem. G′ can be constructed as follows. For any
node v with degree less than cv∆

′, we add self-loops until
degree of the node becomes at least cv∆′ − 1. Note that after
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Fig. 3. Flow Network for Step (4)

the modification, the number of nodes with degree cv∆′ − 1
is even as cv’s are even. Pair the nodes and add edges so that
every node has degree cv∆′.

Note that each node in G′ has even degree as all cv’s are
even. Therefore, we can find a Euler cycle EC on G′. Note
that for each node v, there are cv∆′/2 incoming edges and
cv∆

′/2 outgoing edges in EC .
We construct a bipartite graph H by considering the direc-

tions of edges obtained in EC. For each node v in G′, create
two copies vin and vout. For an edge e = (u, v) in G′, if the
edge is visited from u to v in EC, then create an edge from
uout to vin in H . As each node v in G′ has cv∆′/2 incoming
edges and cv∆′/2 outgoing edges in EC, the degrees of vin
and vout in H is also cv∆′/2.
Step (4): We now find a cv/2-matching in H where exactly
cv/2 edges are matched for each vin and vout. We show the
following lemma.

Lemma 4.1: There exists a cv/2-matching in H and it can
be found in polynomial time.

Proof: We construct a flow network as shown in Figure 3.
Create a source s and sink t. There are edges from s to all
nodes vout and also from all nodes vin to t. The capacities of
edges are cv/2. The capacities of edges from vin and vout are
bounded above by 1 and bounded below by 0.

We show that there is a fractional flow from s to t with
total flow

∑
v cv/2. Then by the integrality theorem, we can

find an integral flow with the same total flow using, e.g., the
Ford-Fulkerson algorithm.

Consider a fractional flow sending 1/∆′ flow through each
edge from vout to vin. As each node vin has cv∆′/2 incoming
edges, we may send cv/2 flow to vin; this satisfies the capacity
constraints for edges from s. We can show that the capacity
constraints for edges to t are also satisfied in the same way.

Since we send cv/2 for each edge from s to vin, the total
is
∑
v cv/2. The lemma follows.

Lemma 4.2: We can decompose H into M1,M2, . . . ,M∆′

so that each Mi is a cv/2-matching in H .
Proof: Once we find a cv/2-matching in H , we remove

the matched edges from H . Let M1 denote the removed
matched edges. Note that in the modified H , each node
has the degree exactly cv(∆

′ − 1)/2. Then we can show

that there is a fractional matching by sending 1/(∆′ − 1)
flow through each edge from vout to vin. In general, after
removing M1,M2, . . . ,Mi from H , each node has the degree
cv(∆

′ − i)/2 and sending 1/(∆′ − i) flow through each edge
from vout to vin gives a cv/2-fractional matching. Therefore,
we can find a cv/2 matching in each iteration. As each node
has degree of cv∆′/2, we can repeat this ∆′ times and obtain
M1,M2, . . . ,M∆′ .

Step (5): Each component Mi can be scheduled in one round
and therefore, we have an optimal migration schedule for even
capacities.

Lemma 4.3: Each component Mi can be scheduled in one
round.

Proof: Each node v in G′ has two copies in H — vin
and vout. As vin and vout both have cv/2 edges incident to
them in Mi, the total number of edges that are matched in Mi

and incident to v in G′ is cv . Therefore, each component Mi

can be scheduled in one round.
Theorem 4.1: We can find an optimal migration schedule

when each node has even cv .

V. GENERAL CASES

In this section, we consider the case that each node v has
an arbitrary cv . The problem is NP-hard as it is NP-hard even
when cv = 1 for all nodes. We develop an algorithm that
colors edges of the given graph so that the transfer constraints
cv of the nodes are satisfied. The coloring defines a data
migration schedule. As the number of colors used determines
the number of rounds in our schedule, we would like our
coloring algorithm to minimize the number of colors needed.
We obtain an algorithm that uses at most OPT +

√
OPT

A. Outline of the Algorithm

We first give an overview of the coloring algorithm. Our
algorithm generalizes recent work for multi-graph edge col-
oring by Sanders and Steurer [20]. Our algorithm uses three
particular subgraph structures, balancing orbits, color orbits
and edge orbits defined in section V-B. The latter two struc-
tures — color orbits and edge orbits — are generalizations of
the structures used by Sanders and Steurer [20].

The algorithm starts with a naive partial coloring of G =
(V,E) and proceeds in two phases. In the first phase, we use
three structures and color edges until we produce a simple
uncolored subgraph G0 (Section V-C1) consisting of small
connected components (Section V-C2); in the second phase
we color G0 and show that O(

√
dv(G0)/min cv) new colors

are enough to obtain a proper coloring in G0 (Section V-C3).

B. Preliminaries

We first introduce some definitions. Let |Ei(v)| be the
number of edges of color i adjacent to a vertex v.

Definition 5.1 (Strongly/lightly missing color): Color c is
saturated at vertex v if |Ec(v)| = cv . The color c is missing at
vertex v if |Ec(v)| is less than cv; in this case we distinguish
two possibilities:
• c is strongly missing if |Ec(v)| < cv − 1.
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Fig. 4. u strongly missing a and path P ends at v, we can color e with a

• c is lightly missing if |Ec(v)| = cv − 1.
Definition 5.2 (alternating path): An ab-path between ver-

tices u and v where a and b are colors, is a path connecting
u and v and has the following properties:
• Edges in the path have alternating colors a and b.
• Let e1 = (u,w1) be the first edge on the path and suppose
e1 is colored a; then u must be missing b and not missing
a.

• If v is reached, for the first time, by an edge colored b
then v must be missing a but not missing b; similarly, if
v is reached, for the first time, by an edge colored a then
v must be missing b and not missing a.

A flipping of an ab-path is a recoloring of the edges on the
path such that edges previously with color a will be recolored
with color b and vice versa.

Note that unlike the case when cv = 1, an alternating path
may not be a simple path in our problem as there can be
multiple edges with the same color incident to a node.

1) Balancing Orbits: We first define balancing orbits as
follows.

Definition 5.3 (balancing orbit): A balancing orbit O is a
node induced subgraph such that all nodes V (O) are connected
by uncolored edges and the following property holds
• A vertex v ∈ V (O) is strongly missing a color.

The following lemma shows that if we have a balancing
orbit, we can color an uncolored edge and eventually remove
any balancing orbits.

Lemma 5.1: If there is a balancing orbit in G, then we can
color a previously uncolored edge.

Proof: Let O be the balancing orbit. That is, a node u ∈
V (O) is strongly missing some color. Suppose u is strongly
missing color a and let e = (u, v) be the uncolored edge
adjacent to u. There are three cases
• v is missing color a: in this case we can simply color e

with a.
• v is missing color b and not missing color a: let P be the
ab-path starting at u. P ends at a node u′ 6= v: flipping
P will make b missing at u and thus we can color e with
b.

• P ends at v: flipping P will make a missing at v and
since a was strongly missing at u, u is still missing a,
so color e with a (see Figure 4).

2) Color Orbits and Edge Orbits: In this section, we define
two subgraph structures: a color orbit and an edge orbit.

Definition 5.4 (Color orbit): A color orbit O is a node
induced subgraph such that all nodes V (O) are connected by
uncolored edges and the following property holds
• There are at least two nodes u, v ∈ V (O) lightly missing

the same color.
Lemma 5.2: [20] If there exists a color orbit in G then we

can color a previously uncolored edge.
By Lemma 5.1 and 5.2, whenever we find a balancing orbit

or color orbit, we can color a previously uncolored edge and
make progress. If neither of properties in Definition 5.3 and
5.4 hold, we call O a tight color orbit.

Our goal at the end of Phase 1 of the algorithm is to get
a simple uncolored graph G0 consisting of small connected
components. That is, in G0 there cannot be more than one
uncolored edges between two nodes. In order to eliminate
parallel uncolored edges the following subgraph structure is
used.

Definition 5.5 (Lean and bad edges): If an edge e is col-
ored and all its parallel edges are colored then e is a lean
edge. If e is uncolored and has a parallel uncolored edge then
e is a bad edge.

Definition 5.6: An edge orbit is a subgraph consisting of
two uncolored parallel edges (called the seed of the edge orbit)
and then is inductively defined as follows: Let e = (x, y) be
an edge in the edge orbit O, let a and b be missing colors at
x and y respectively and let P be the alternating path starting
at x then O ∪ P is an edge orbit if
• no edge of color a or b is contained in O.
• ∃v ∈ P that was not in the vertex set of O.

If edge orbit O has a lean edge then O is called a weak edge
orbit otherwise O is a tight edge orbit. A color c is free for
an edge orbit O if O does not contain an edge with color c.

The following lemma from [20] states that if in some
coloring of G, there exists a weak edge orbit then we make
progress toward our goal of obtaining G0 by either coloring a
previously uncolored edge or by uncoloring a lean edge and
coloring a bad edge.

Lemma 5.3: If a coloring of G contains a weak edge orbit
then we can either color a previously uncolored edge or we
can uncolor a lean edge and color a bad edge.

A tight edge orbit does not have lean edges so its vertex set
is connected by uncolored edges and thus a tight edge orbit
is one of the following — a balancing orbit, color orbit or
a tight color orbit. When it is a tight color orbit, we cannot
make progress toward G0 and we call it a hard orbit. Note
that no vertex in a hard orbit is strongly missing a color, no
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two nodes are lightly missing the same color, and no edge in
a hard orbit is lean.

3) Growing Orbits: A color c is full in a hard orbit
O if c is saturated on all vertices of V (O) but at most
one vertex in V (O) is lightly missing c or equivalently if

|Ec(v)∩E(V (O))| ≥ b
∑

v∈V (O)
cv

2 c. So if color c is full in a
hard orbit O it cannot be used to color uncolored edges whose
endpoints are in O.

Definition 5.7 (Lower bound witnesses): A hard orbit is a
∆′-witness if all missing colors at some node are non-free. It
is a Γ′-witness if all free colors of the orbit are full.
The intuition behind the witnesses is the following. Suppose
very few colors are used in hard orbit O, in the case of
Γ′-witness almost all color classes are full in O and in the
case of a ∆′-witness almost all available colors are strong
on some node v ∈ V (O). So a witness in some coloring
using q colors indicates that it is almost impossible to color
an additional uncolored edge using the available q colors and
thus the number of available colors needs to be increased.

Lemma 5.4: [20] Given a hard orbit in some coloring we
can either find a witness or compute a larger edge orbit.

C. Algorithm
The algorithm proceeds in two phases. The outcome of the

first phase would be G0, a simple uncolored graph with no
large components. The following procedure for the first phase
eliminates all the bad edges in G (Section V-C1) and reduces
the size of connected components (Section V-C2), which gives
G0 with the desired properties. In the second phase (Section
V-C3), we color the remaining subgraph G0.

1) Eliminating bad edges: Given a partial coloring using q
colors, we iterate over a list of bad edges and we execute the
following steps.Given an edge orbit O

(1) If nodes of O form a balancing or color orbit, apply
Lemma 5.1 or 5.2.

(2) If O is weak, apply Lemma 5.3.
(3) If O is a hard orbit, apply Lemma 5.4.

a) If Lemma 5.4 gives a larger edge orbit O ∪ P ,
repeat with O = O ∪ P .

b) If Lemma 5.4 gives a witness then increase q by
one color and color the bad edges in the seed with
the additional color.

The output of this procedure is a simple subgraph G′ of G
induced by uncolored edges. In Lemma 5.5 and Lemma 5.6,
we show an upper bound on the number of used colors if there
is a ∆′ or Γ′-witness. The next procedure reduces the size of
the connected components of G′ whenever G′ has balancing
or color orbits.

2) Reducing size of connected components: For every con-
nected component U of G′,

1) If U contains a vertex that is strongly missing a color
then use Lemma 5.1 to color an uncolored edge.

2) If U contains two or more vertices that are lightly
missing the same color use Lemma 5.2 to color an
uncolored edge.

So at the end of the first phase we have the simple subgraph
G0 where for every connected component U of G0, no vertex
is strongly missing a color and no two vertices of U miss the
same color. In Lemma 5.7, we show that the size of G0 is no
more than q+2

q−∆′+2 .
3) Coloring G0: Phase 2 colors G0. We use only

maxvddv(G0)
cv
e+ 1 colors. The procedure goes as follows:

1) Create cv copies of each vertex v and distribute the edges
over the copies so that each vertex is adjacent to at most
ddv(G0)

cv
e edges where dv(G0) represents the degree of

v in G0.
2) Use Vizing’s algorithm to properly color each compo-

nent. We need at most maxvddv(G0)
cv
e + 1 colors.

3) Contract the copies back to v getting a coloring where
for any node v there is no more than cv edges of the
same color.

D. Analysis

In the following q denotes the total number of colors
available for the algorithm. We show that the algorithm colors
all the edges of G using at most q = OPT + Θ(

√
OPT )

colors. We first bound the number of used colors when there
is a ∆′ or Γ′-witness.

Lemma 5.5: Let O be a hard orbit. If O is a ∆′-witness
then q ≤ ∆′ + 2|V (O)|−4

c− where c− = minv∈V (O) cv .
Proof: For a trivial edge orbit all q colors are free. Other

edge orbits are constructed by adding an alternating path with
new colors to another edge orbit. Every path adds at least a
new node to the edge orbit and reduces the number of free
colors by at most 2. So the total number of free colors for an
edge orbit is at least q − 2(|V (O)| − 2).

If O is a ∆′-witness then some node u ∈ V (O) misses no
free color. Since u is not strongly missing any color and is
incident to at least two uncolored edges, the number of missing
colors for u is at least cuq − du + 2. As the number of free
colors and missing colors of u are disjoint then

q − 2|V (O)|+ 4 + cuq − du + 2 ≤ q

cuq ≤ du + 2|V (O)| − 6

q ≤ ∆′ +
2|V (O)| − 4

c−

Lemma 5.6: Let O be a hard orbit. If O is a Γ′-witness
then q ≤ Γ′ + 2|V (O)| − 4− 2

c+ .
Proof: If O is a Γ′-witness then all free colors of O are

full. Since O is a hard orbit there is at most |E(V (O))−V (O)|
colored edges between vertices in V (O). So the number of full
colors is at most

|E(V (O))− V (O)|

b
∑

v∈V (O)
cv

2 c
≤ Γ′ − V (O)

b
∑

v∈V (O)
cv

2 c
.

Let c+ = maxv∈V (O) cv . Then the number of full colors is
at most Γ′ − 2/c+. As the total number of free colors for an
edge orbit is at least q − 2(|V (O)| − 2), the lemma follows.
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We now bound the size of G0.
Lemma 5.7: Let O be a tight color orbit. Then |V (O)| ≤
q+2

q−∆′+2 .
Proof: Since no two nodes in V (O) share a missing color,

the number of missing colors at the nodes of O is less than
q. Every node u in V (O) misses at least cuq − du(≥ q −
∆′) colors as no node in V (O) is strongly missing a color.
The uncolored edge adjacent to a node u ∈ V (O) implies
an additional color is missing at u. As there are |V (O)| − 1
uncolored edges in O there are at least 2(|V (O)|−1) additional
colors missing at nodes in V (O). Thus we have

|V (O)|(q −∆′) + 2(|V (O)| − 1) ≤ q ,
q|V (O)| −∆′|V (O)|+ 2(|V (O)| − 1) ≤ q , and thus

|V (O)| ≤ q + 2

q −∆′ + 2
.

Corollary 5.1: If q = b(1 + ε)∆′c − 1, the size of a hard
orbit O is at most 1 + 1

ε .
Proof: A hard orbit is also a tight color orbit and thus

|V (O)| ≤ q + 2

q −∆′ + 2
≤ 1 +

∆′

bε∆′c+ 1
≤ 1 +

1

ε
.

The following corollary follows from Lemma 5.5, 5.6, and
Corollary 5.1,

Corollary 5.2: If q = b(1+ε)∆′c−1 and there is a witness
then q ≤ OPT + 2

ε − 2
The following lemma provides a bound on the number of
required colors for G0.

Lemma 5.8: Suppose that the size of the largest component
of G0 is bounded by C. Then coloring G0 requires at most
dC−1
c− e+ 1 colors.

Proof: By Vizing’s theorem for simple graphs, at most
maxddv(G0)

cv
e + 1 new colors will be used in Phase 2 as

described in Section V-C3. This procedure colors G0 using
at most dC−1

c− e+ 1 as dv(G0) ≤ C − 1.

Theorem 5.1: Given a transfer graph G, we can compute
a coloring of the edges using at most OPT + O

(√
OPT

)
colors.

Proof: We start our coloring algorithm with b(1+ε)∆′c−
1 colors. At the end of Phase 1, all edges that remain uncolored
create a simple subgraph G0 (a collection of hard orbits).
Furthermore, the number of colors has increased only if there
was a witness. By Corollary 5.2, the number of colors used
is at most OPT + 2

ε − 2. Thus at the end of phase 1, at most
max(b(1+ε)∆′c−1, OPT + 2

ε −2) colors have been used. In
Phase 2, the algorithm colors the connected components of G0

which are hard orbits. By Corollary 5.1 their size is at most
1 + 1/ε. G0 is a simple graph and has degree no more than
1/ε thus the algorithm in Section V-C3 yields a coloring of G0

using at most 1 + 1/(ε · c−) additional colors by Lemma 5.8.
So the total number of colors used in the coloring algorithm is
at most the maximum of b(1+ε)∆′c+ 1

εc− , OPT+ 2
ε−

1
εc−−1).

Choosing ε =
√

2√
OPT

gives the theorem.

We start with ∆′ +
√

∆′ colors and proceed as described
in Section V-C. The overall running time of the algorithm is
O(|E|

√
∆′(∆ + |V |)) by lemma 5.9

Corollary 5.3: The coloring algorithm uses at most OPT+
O(
√
OPT ) colors, which implies an approximation factor of

1 + o(1) as OPT increases.
Lemma 5.9: Let C be such that no connected component

of G0 has size exceeding C, then the runtime of the algorithm
is

O(|E|C(∆ + |V |))

Proof: As the size of connected components of G0 is
less than C, the missing colors at each node of G0 can be
determined in O(C∆). Flipping a path can be done in time
proportional to the number of vertices on that path, so at most
V . This is iterated at most C times in G0. So the total time for
Lemmas 5.1, 5.2 and 5.3 is O(C(|V |+ ∆)). Thus the first 2
steps of procedure V-C1 and procedure V-C2 are O(C(|V |+
∆)). Step 3(b) of procedure V-C1 is done in constant time
and in step 3(a) O(∆ + |V |) steps are needed to grow a hard
orbit (Lemma 5.4). As we iterate over all bad edges the overall
runtime of the algorithm is O(|E|C(∆ + |V |))

Note that the running time of the algorithm described
above is polynomial in |E|, |V | and ∆. The authors in [20]
develop a solution exploiting that a graph with even edge
multiplicities can be colored by coloring a graph with halved
edge multiplicities and then using each color twice. The same
transformation applies to the above algorithm to make it
polynomial in |V | and in the number of bits needed to encode
edge multiplicities.

VI. Conclusion

In this paper, we consider the data migration problem
where each storage node has different transfer constraint cv ,
representing how many transfers the node can simultaneously
handle. Our objective is to minimize the data migration time.
We show that it is possible to find an optimal migration
schedule when cv is even for all v. For the general case,
we formulate the problem as a variant of multi-edge coloring
problem in which each color can be used cv times at node v.
Furthermore, though the problem is NP-hard, we give an effi-
cient algorithm that offers a rigorous (1+o(1))-approximation
guarantee.
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