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Abstract—Database clusters based on share-nothing replica-
tion techniques are currently widely accepted as a practical
solution to scalability and availability of the data tier. A key
issue when planning such systems is the ability to meet service
level agreements when load spikes occur or cluster nodes
fail. This translates into the ability to provision and deploy
additional nodes.

Many current research efforts focus on designing autonomic
controllers to perform such reconfiguration, tuned to quickly
react to system changes and spawn new replicas based on
resource usage and performance measurements. In contrast,
we are concerned about the inherent impact of deploying an
additional node to an online cluster, considering both the time
required to finish such an action as well as the impact on
resource usage and performance of the cluster as a whole.
If noticeable, such impact hinders the practicability of self-
management techniques, since it adds an additional dimension
that has to be accounted for.

Our approach is to systematically benchmark a number of
different reconfiguration scenarios to assess the cost of bringing
a new replica online. We consider factors such as: workload
characteristics, incremental and parallel recovery, flow control
and outdatedness of the recovering replica. As a result, we
show that research should be refocused from optimizing the
capture and transmition of changes to applying them, which in
a realistic setting dominates the cost of the recovery operation.

Keywords-Databases; Replication; Group Communication;
Performance and QoS; Testing

I. INTRODUCTION

Share-nothing database replication in a cluster of ma-

chines has been widely adopted as a solution to increase

system throughput and cope with failures. The system

involves a set of replicas each locally storing a physical

copy of the database. Performance can be increased by

appropriately distributing the workload among the replicas

and fault tolerance achieved by automatically replacing any

failed replica without incurring service outages.

To meet service requirements a reconfiguration of the

cluster is often required in order to face load spikes or restore

the resilience of the system. Many current research efforts

focus on the dynamics of the cluster designing autonomic
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controllers based on a feedback loop that monitor and react

in order to perform such reconfiguration. These systems are

usually tuned to quickly react to system changes and spawn

new replicas based on resource usage and performance mea-

surements. In contrast, in this paper we are concerned about

the inherent impact of deploying an additional database

replica to an online cluster. Bringing a database replica

online requires updating it to the most current database state

while, at the same time, keeping the whole system online.

The efficiency of the recovering protocol takes into account

both the time required to finish the action as well as the

impact on resource usage and performance of the cluster as

a whole. If noticeable, such impact hinders the practicability

of self-management techniques, since it adds an additional

dimension that has to be accounted for.

Recently, a large body of research has been dedicated to

the online recovery of replicas in database clusters [13], [2],

[9], [10], [23], [16]. These works are all based on a reliable

group communication substrate and have in common the use

of consistent database replication protocols. Each of these

works presents refined techniques to improve the recovery

performance aiming at reducing the system’s downtime

during recovery, the impact on the system’s throughput and

the time to update a replica and bring it online.

However, it is unfortunate that none of these works

provides a detailed evaluation of their techniques under rep-

resentative workload scenarios. In this paper, our goal is to

combine most of the proposed techniques into a streamlined

recovery algorithm and systematically benchmark a number

of different reconfiguration scenarios to assess the cost of

bringing a replica online. This can require the transference

of the whole database or just a partial update of a previously

failed replica. As a result, we are able to assess their impact

in balancing the performance of the recovery process and the

overhead imposed to the clustered database service as well

as to determine fundamental limits to cluster reconfiguration,

discuss the relative merits of different approaches and point

out key issues that have to be addressed when implementing

such systems.

The paper is organized as follows: Section II describes

the replicated database cluster. Section III presents the
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database recovery protocol based on group communication

and Section IV its evaluation using different combinations

of the protocol’s adaptive parameters under two different

workloads, TPC-C and TPC-W benchmarks. Section V

discusses related work and Section VI concludes the paper.

II. REPLICATED DATABASE

We consider a fully connected cluster consisting of a set of

database replicas hosted by dedicated computers. A database

replica may fail by crashing and can afterwards recover. If

it recovers it does so with a consistent, possibly outdated,

state.

The database replicas interact directly with the clients and

coordinate with each other through a replication protocol.

The replication protocol depends heavily on a reliable group

communication service (GCS) for handling and masking

faults (management of the set of active replicas and reliable

communication) as well as totally ordering messages within

the group. The GCS provides each replica a totally ordered

sequence of views, each view reflecting the current group of

active replicas. Changes in the composition of the group are

delivered to the replication protocol through a view change

event. A new view differs in the composition of the group

in exactly one replica. We assume that GCS ensures view

synchrony [5]: two replicas installing two consecutive views

deliver the same set of messages between them. Relevant

for the correctness of the replication protocol used (with

impact on the figures obtained during its evaluation) is

the uniformity of all the used communication primitives: a

multicast message delivered by a replica (faulty or not) in

view v is ensured to be delivered by all non faulty replicas

in v.

We are interested in consistent replication protocols.

These should provide one-copy equivalence of the central-

ized consistency criterion at the boundaries of transactions.

For the purposes of this study the characteristics of the

replication algorithm are not determinant. We opted to use an

algorithm with optimistic concurrency control, also known

as a certification based algorithm [21], [11]. In contrast to

conservative algorithms [20], [1], certification based algo-

rithms allow to extend the centralized consistency criterion

(i.e., first committer wins [3]) without strengthening it. To

keep the replication protocol overhead as low as possible

we consider Generalized Snapshot Isolation [6] as the cluster

consistency criterion.

We used the Database State Machine [21] protocol with

a relaxed certification procedure [6]. The protocol runs as

follows. The set of database replicas form a communication

group. Each replica holds a full copy of the database and

persistently stores the current version of it. Any replica is

capable of handling client requests. Clients will execute

transactions determined by a load generator that simulates

the transaction traffic of a TPC-W [25] and a TPC-C [24].

Both standard workloads represent a good point to compare

between intensive memory and disk usage, respectively.

Finally, in the case of a replica failure its associated clients

are uniformly distributed among the rest of available replicas

during the failure period; however, those transactions that

were already sent by clients to the failed replica would be

aborted.

Once a replica receives a transaction t it executes t
without prior coordination with the group. If the transaction

successfully reaches the commit phase, then commit is held

and t is totally ordered within the group to obtain its commit

turn (read-only transactions are directly committed without

any interaction with the rest of replicas). The transaction’s

write set and the database version vt on which t was

executed are multicast. Each replica, once it has processed

all transactions ordered before t, certifies t by checking

its write set against all the items wrote by the sequence

of committed transactions applied over vt. If no conflicts

are found t’s updates are applied to the local database and

committed, otherwise t is aborted.

Together, the agreement on the set of messages delivered

to each active replica and the total order provided by the

underlying GCS along with a deterministic certification

procedure ensure that the whole system acts like a replicated

state machine keeping the state of the replicas consistent

at the boundaries of transactions. It is worth noting that

the updates of a transaction executed remotely are applied

in the context of a special remote transaction. To ensure

the determinism of the whole certification process, remote

transactions have high priority and commit despite conflicts

with local transactions being executed [17], [18].

III. RECOVERY PROTOCOL

The recovery of a replica takes place upon the delivery of

a new view from the underlying GCS containing an addi-

tional replica. The goal of the online recovery protocol is to

integrate the replica in the group as quickly as possible while

minimizing the impact of the recovery into the database

service.

Our online recovery protocol is based on the algorithm

presented in [13]. We further enhanced it by adding two

other previously proposed techniques meant to improve

performance. Namely, the ability to do parallel recovery [10]

by having more than one replica contributing with its state

and the introduction of convergence phases [2], [23]. Our

complete algorithm still comprehends basic optimizations

such as purging redundant data changes and the compression

of the transmitted data.

To help on the recovery of a new replica, each member of

the cluster logs every committed write set. This log has the

form of 〈version,writeset〉, where the first element refers

to the current database version and the second to the write set

itself. The log is maintained in main memory and to limit the

size of the log and the volume of the transmitted data, the log

is asynchronously purged from redundant entries (updates to
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the same tuples of the database). In the worst case, the log

can grow to the size of the database itself. The decision to

discard part of the log below a given database version, and

the copy of the whole database if necessary, can be defined

for a given size of the log and number of outdated replicas.

An important configuration parameter of the system is the

maximum size of the log up to which the recovery protocol

outperforms the full copy of a database dump [13], [2], [16].
The recovery protocol runs as follows. Upon the view

change introducing a new replica all replicas refrain from

sending replication messages. The recovering replica mul-

ticast its current version of the database asking for state

donors. When this message is delivered, a set of donors

is chosen to proceed with the state transfer of the updates

missed by the recovering replica according to its announced

version. The maximum number of donors is predefined and

their selection deterministic (in our current implementation,

the donors are the replicas with the lowest id in the group).

When using multiple donors the synchronization of the

purging of the log may be required. This happens when the

donors split the log to transfer in terms of size, e.g. each

is responsible for donating 10MB of a 30MB subset of the

log. This allows for an even distribution of the load and was

the solution we used.

Time
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Round 1
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Figure 1. Phases of the recovery protocol

The data transfer is done with a unicast channel and using

convergence phases. It has been shown in [23] that recovery

time can be substantially reduced if split in convergence

phases. During the whole recovery process, the recovering

replica does not handle any user requests nor it participates

in the replication protocol. On the other hand, once the new

view is installed and the state transfer starts all up-to-date

replicas resume the database service.
The first convergence phase corresponds to the transfer-

ence of the log at the time of the view change. Depending

on the outdatedness of the recovering replica, this first

phase may take a considerable amount of time. Therefore,

during this phase, because the system is online the log

keeps growing. The log created during the first convergence

phase is to be transfered on the second phase. As shown in

Fig. 1 this process can be generalized to n phases. This has

been shown [23] to outperform the alternative of having the

recovering replica buffering the delivered write sets until the

missing log is applied. This buffer would then go through

the certification process and, when due, the updates applied.

These different convergence phases serve to coordinate the

recovery and the replication protocol. The recovery process

is said to be about to end when the write set log is below

a given threshold or a maximum number of convergence

phases is reached. This establishes the synchronization point

for the last phase of the recovery process and each donor

multicasts a totally ordered “end recovery” message. Upon

the reception of the first of such messages, the recovering

replica starts buffering write sets coming from the replication

protocol. These write sets are certified and, possibly, applied

after the last convergence phase has been applied. From then

on, switching to the replication protocol is straightforward.

For the evaluation of the recovery protocol we will therefore

take into account different values for the number of state

donors and the number of convergence phases as well as

the workload during recovery as it directly impacts on the

buffering required by the recovering replica after the first

convergence phase.

With regard to failures, if the joining replica fails during

its recovery then the process is aborted. If it is a donor that

fails, the recovering replica restarts the process from the

latest database version it knows to be locally consistent.

IV. EVALUATION

A. Experimental Setting

Our testing configuration consisted of four computers in a

switched Gigabit local area network. This was the minimal

setting allowing us to test all the relevant variations of the

recovery protocol. We used machines with Intel Core 2

Duo processors running at 2.13GHz, 1GB of RAM and a

dedicated SATA hard disk. All machines ran Linux (with

kernel version 2.6.22-14-smp). This hardware configuration

corresponds to commodity servers and was chosen to be on

par with the systems used in recent related work [17], [22],

[18], [23], [16].

Each database replica ran an instance of PostgreSQL-G

(PostgreSQL 8.1 compliant with the GORDA replication

API [4]) and a Java Virtual Machine (1.5.0) running the Es-

cada Replication Server [8]. The Escada Replication Server

is split in four components: the capture component that com-

municates with PostgreSQL-G, the distribution component
that implements the replication protocol described in Sec-

tion II, the recovery component that implements the recovery

protocol described in Section 3, and the apply component
responsible for applying remote transaction updates to each

replica. For the group communication substrate the APPIA

Group Communication Toolkit [7] has been used.

For our evaluation of the recovery protocol we used our

own implementations of the TPC-C [24] and the TPC-

W [25] benchmarks. TPC-C is the industry standard on-

line transaction processing benchmark. It mimics a whole-

sale supplier with a number of geographically distributed

sales districts and associated warehouses. The warehouses

are hotspots of the system and the benchmark defines 10
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client per warehouse. The traffic is a mixture of 8% read-

only and 92% update transactions and therefore is used as a

write intensive benchmark. On the contrary, TPC-W is read-

intensive. It models an Internet commerce environment that

resembles real world, business oriented, transactional web

applications. It specifies a workload that simulates the ac-

tivities of an online bookstore with three different consumer

patterns that vary the ratio of read-only transactions vs.

update transactions: Browsing Mix presents the 95% of read-

only transaction as opposed to the 5% of update transactions;

Shopping Mix specifies 80% vs. 20%; and Ordering Mix
50% vs. 50%, respectively. TPC-W tends to be processing

intensive shifting major resource consumption from storage

to CPU. For both TPC-C and TPC-W the size of the database

is a function of the desired number of clients. We have

run our experiments with a load generator that simulates

the workload. As TPC-W benchmark defines a complete

3-tiered architecture, with clients, application server and

database servers, that is quite complex to setup and run, our

TPC-W load generator rather than mimicking the complete

specification replays transaction from a previous generated

database execution trace of a full TPC-W benchmark spec-

ification. For each experiment, the TPC-W execution trace

consisted of 400000 consecutive transactions. Therefore, no

client processing overhead is accounted for in the measures

that follow; i.e. this process is pretty similar to the one

described in [22].

For all tests we chose a workload able to keep all replicas

close to their nominal capacity, that is, as busy as possible

without saturation of any of resource, as shown in Figure 2

where TPM measures system throughput in transactions per

minute. In practice, the TPC-C database has been populated

with 15 warehouses which corresponds to a maximum of

150 clients and resulted in a database of 2.2GB in size and,

for TPC-W, we chose the Shopping Mix configuration with a

database populated for 400 clients and 10000 items resulting

in a database of 2.4GB. For a higher number of clients the

throughput of both benchmarks decreases as the machine’s

resources get saturated.

Throughout the experiments, no failures occurred during

the recovery process and, at anytime, at most one replica

was recovering. Each result depicted in Figures 3 and 4 is

the average of three independent samples and their standard

deviation is negligible.

The workflow control was done by limiting the number of

clients served by each replica. This was done in the capture
component of the Escada Replication Server that is notified

of all local incoming transactions.

B. Benchmark’s Clients

Clients of both load generators ran in dedicated machines

of the same network and connected using the JDBC driver.

Both benchmark implementations use a simple ad-hoc load

balancer that evenly distribute clients per replica. Trans-
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Figure 2. Nominal Load

actions being handled by a replica that failed are evenly

distributed among the live replicas during the failure period

but transactions that were already sent by the clients to the

failed replica are aborted.

C. Experiments

In our experiments we looked at three sets of results.

First we wanted to measure the impact of three configu-

ration parameters of the recovery protocol: the number of

convergence phases, the number of donor replicas and the

Table I
OUTDATEDNESS OF A FAILED REPLICA (MEASURED IN MEGABYTES,
MB) AS A FUNCTION OF ITS DOWNTIME (MEASURED IN MINUTES, M)

Outdatedness (MB)
Downtime (m) TPC-C TPC-W

5 3 0.25
10 10 0.50
15 21 0.73
20 32 0.97
25 40 1.22
30 48 1.44
35 57 1.68
40 62 1.94
45 66 2.17
50 72 2.39
55 77 2.42
60 86 2.44
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Figure 3. Results for TPC-C (left) and TPC-W (right)

flow control of incoming transactions. Then we wanted to

measure the overhead of the recovery process as perceived

by the users and on the amount of data being handled by

the replicas. Finally, we show the time of tasks of replicas.

Each experiment ran as follows. The system was started

with all replicas running and then one of the replicas was

forced to crash, i.e., by way of killing the PostgreSQL-G and

Escada Replication Server processes. The crashed replica

was kept offline until the desired outdatedness was reached.

The outdatedness of a failed replica is a function of the time

the replica is offline and is also dependent on the benchmark

as each one has its specific update transactions ratio and

write set size, as depicted in Table I. This was given by

the size of the write sets of the replication protocol while

the replica was down. At that time, the recovery protocol

was started. The recovery time, system throughput and log

sizes at the different replicas were measured for each of the

selected configurations.
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1) Recovery Time: The first set of tests relates the re-

covery time of a replica with its outdatedness measured in

MB.

Varying the number of convergence phases: In

this set of runs we evaluate the impact of using several

convergence phases. We present the results of configuring

recovery with 1, 2 and 5 convergence phases and using

a single replica as state donor. For TPC-C, Figure 3(a)

shows that with TPC-C the number of convergence phases

is not relevant except when using 1 converge phase. In this

scenario, for outdatedness larger than 50 MB, the recovery

time has a high increase mainly due to the write intensive

workload that makes harder to catch up the rest of available

replicas. On the contrary, Figure 3(b) shows that with TPC-

W the number of convergence phases is not relevant (notice

the different scales of Figures 3(a) and 3(b)).

Varying the number of state donors: The use of

parallel recovery using several replicas as state donors has

been proposed in [13], [10], [2] as a way to speed up

recovery and reduce the overhead at each donor.

For these experiments we have varied the number of state

donors from one to three. The recovery protocol has been

configured with two convergence phases. The results are

depicted in Figures 3(c) and 3(d). For TPC-C, I/O at the

recovering replica is the limiting factor. While for small

values of outdatedness using a single donor outperforms the

added complexity imposed by the synchronization of mul-

tiple state donors, for larger values the apparent advantage

of multiple donors is diluted by the I/O saturation at the

recovering replica. It is worth noting that when recovering,

similarly to the replication protocol in use, the application

of updates to the replicas is done sequentially. This means

that the recovery protocol would not take full advantage of

the parallel reception of updates because the bottleneck in

the state transference is at the recovering replica.

With TPC-W the differences are again negligible as the

amount of updates does not impose any major overhead on

the donors at the second convergence phase and, for the

three configurations, it is the I/O bandwidth of the recovering

replica that dictates the recovery time.

Flow control of incoming transactions: Recovery

time may depend heavily on the processing flow during

the recovery process. Ultimately, such a throughput could

be so large that no replica could ever catch up. In practice

however, with full and consistent replication, throughput is

determined by the slowest live replica. As such, as long as

replicas do not differ enormously in their processing and

I/O capacities, ensuring the timely recovery of a replica is

perfectly reasonable. With the next experiment we intended

to see what was the impact of controlling the systems

throughput during recovery on the recovery time of a replica.

We configured the recovery protocol with 2 phases and 3

state donors. Then we imposed a control of 5, 10, 20 and

50% to the flow of incoming transactions with the TPC-

C workload to see the impact in the recovery time. We

considered also the limit cases: no flow control (as in all

previous tests) and an offline system. Figure 3(e) shows the

results obtained. It can be seen that reducing, at least, up to

50% of the workload the differences are minimal and mostly

due to variance.

With TPC-W, Figure 3(f), the impact is also negligible

and again diluted by variance.

2) Impact of Recovery on the System’s Throughput:
We now show the impact of the recovery of a replica on

the system’s throughput. We analyze the system throughput

(measured in Transactions Per Minute, TPM) under all the

previous recovery scenarios with a downtime of 60 minutes.

Figures 4(a) and 4(b) depict the results for TPC-C and TPC-

W, respectively. For each configuration (1d-2p-0%fc stands

for a configuration with 1 state donor, 2 convergence phases

and no flow control) we present the system’s throughput

before and during the recovery process.

In general, we conclude that throughput is reduced by

approximately 15% for the TPC-C workload during the

recovery process, and approximately 10% for the TPC-W

workload. This impact on system’s throughput is not only

related to the overhead of the recovery process imposed to

donors but also to the cost of GCS view change. It is also

interesting that despite the large differences seen so far when

comparing the different recovery scenarios, the impact of

recovery on the system’s throughput is comparable for the

two workloads.

3) Evolution of Log Sizes During Recovery: In this

section we analyze the amount of data being handled by

the replication and the recovery protocols. The results are

depicted in Figure 5 for both TPC-C and TPC-W. The

database log size was sampled every second during the pe-

riod of the experiment. We measured the log size in different

replicas: in an active replica before recovery started (Before);

in a state donor after the start of the recovery (After);

and, in the recovering replica (Recovering). Additionally, we

measure the size of transferred data from a state donor to

the recovering replica (Transferred); in the case of multiple

donors, one of them was chosen to show these values since

they are almost identical and the graphics overlap.

The interesting information conveyed by these figures is

the fast transfer between the donor(s) and the recovering

replica regarding the log existing before the recovery starts

and then the much slower convergence for the the set of

pending transactions, i.e. those transactions that need to be

certified and applied (catch-up process).

It is also clear that processing of user transactions contin-

ues independently of the recovery process; nevertheless, it

can be seen that the performance is affected by the increasing

slope of the log size during the recovery process.

4) Discussion: Taken as a whole, our results show that

there is no clear impact of the different optimizations that

have been the focus of recent research efforts. The reason
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Figure 4. Throughput of user transactions before and during the recovery process
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Figure 5. Data Log size for TPC-C and TPC-W

for this is that the time for the state donor to read the log

and send updates to the network is a mere 15% of the

time that the recovering replica needs to read the updates

from the network and apply them. In detail, for TPC-C with

a downtime of 60 minutes, 2 convergence phases, and 1

state donor, the donor needs 168 seconds to complete its

task while the recovering replica needs 1145 seconds. From

these, more than 93% (1073 seconds) correspond to the
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apply process.

Since the major bottleneck is in applying updates, the

recovery time is mainly dictated by the I/O bandwidth of

the recovering replica. Therefore, most research has been

targeted at optimizing the operations that aren’t, by a large

margin, limiting factors in overall performance.

V. RELATED WORK

Most of the replication protocols proposed in the literature

overlook and do not discuss at all the recovery of failed

sites or the addition of new ones (e.g. [6], [12], [14],

[17]). On the other hand, those that do cover it either

do so by simply presenting the algorithms and informally

describing them [2], [9], [10], [13] or are evaluated with

ad-hoc workloads [16], [23].

In this section, we compare our work with the recovery

solutions proposed in [2], [9], [10], [13], [16], [23]

Like ours, these proposals depart from the work in [13]

where several recovery techniques are proposed. The main

adopted technique is the lazy data transfer where missed

updates are transferred in several phases. Implicitly, it

considers these features: first of all, the existence of a

threshold that determines whether it is better to perform

the full database transfer or only the missed write sets;

and, transferring only the latest data item version instead

of transferring several times the same data item. These are

the ideas that we have included in the implementation of the

current recovery protocol and is basically a compilation of

what has been described in [10], [2], [9].

An interesting non-blocking recovery protocol is pre-

sented in [10] where transaction patterns are known in

advance (e.g. stored procedures) and define conflict classes.

The recovery process is done per conflict class and, hence,

an unaltered partition remains unaffected. The end of the

recovery process is performed in two phases. Our recovery

protocol does not follow this conflict class philosophy be-

cause it is highly application dependent and force transac-

tions to use a pattern that restricts the kind of statements

to be executed. On the other hand, our protocol allows

transactions to continue their execution even while recovery

takes place and permits more degrees of freedom over the

number of donors or phases. To the best of our knowledge,

the performance of the recovery protocol proposed in [10]

has never been evaluated.

The recovery techniques presented in [9] are based on

exploiting the ideas of [13] to 1-copy-serializable replicated

database systems based on total-order multicast while [2]

ports [13] to replicated databases with snapshot isolation

replicas. The protocol presented in [2] has been implemented

and evaluated in [16], [23]. In [23] a cluster of 4 replicas

where only one replica may fail was considered and the

evaluation carried out using an ad-hoc benchmark that uses

a single table database schema with several combinations of

outdatedness and workload. In [16], the same algorithm has

been evaluated using 2 replicas that execute the browsing
mix (80% of read-only transactions) of the OSDL-DBT-1

benchmark [19]. In this work we have used two well-known

and widely used standard benchmarks (TPC-C and TPC-W)

to evaluate the performance of the recovery protocol with 4

replicas.

VI. CONCLUSIONS

With this work we aimed at assessing the impact on

performance of bringing a database up-to-date when adding

a new replica to a strongly consistent replicated database.

Preparing a new replica and bringing it online without

stopping the replicated database is not a straightforward task.

The joining node needs to become part of the coordinated

computation, to be updated to the most current state of the

system and start to handle user requests with minimal impact

on the performance of the system.

As part of our database replication framework [8] we

implemented a database recovery protocol that combines

several techniques proposed in the literature [13], [2], [9],

[10] aimed at speeding up the process. These techniques had

not been evaluated in a practical setting under representative

workloads and it was our intention to discover to what

extend their use would allow a system administrator to find

the desired balance between the shortest recovery period and

the impact on the system’s performance.

We used a cluster of commodity servers reflecting a

common balance between processor, memory, storage and

network resources as the typical target system for small

to medium size clustered databases. Much to our surprise,

the results of all of our tests did not reveal any relevant

effect of the techniques incorporated by our protocol in the

recovery time of the replicas or impact on the overall cluster

performance. The reason for this was that, in our setting, the

capacity of the recovering replica to apply the received state

turns out to be the salient limiting factor. Since most of

the recovery protocol enhancements under evaluation aim at

quickly feed the recovering replica (while minimizing the

impact of the overall system response) its inability to timely

process the updates defeats their purpose.

To streamline the whole recovery process and quickly

bring a new replica online the strong optimization of the

apply process is essential. This cannot be simply regarded

as a matter of increasing storage bandwidth through the

use of striping techniques or the addition of faster hard

disks. While such an improvement could definitively help

mitigating the problem in our testbed it would not keep up

with a compatible investment on processing capabilities. A

major improvement could be achieved by keeping a binary

log for recovery that could be efficiently injected into the

recovery replica without going through all the transaction

processing pipeline. However, the direct cost of such an

approach would be the need to work inside the database

engine and to compromise the heterogeneity of the system.
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It seems clear to us that the key solution for the problem

in hand is two-fold: the parallelization of the apply process

inside the replication protocol and the use of on-demand

state transfer [15].
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[10] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-
intrusive, parallel recovery of replicated data. In SRDS, pages
150–159. IEEE Computer Society, 2002.

[11] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication.
In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, editors, VLDB,
pages 134–143. Morgan Kaufmann, 2000.

[12] B. Kemme and G. Alonso. A new approach to developing
and implementing eager database replication protocols. ACM
Trans. Database Syst., 25(3):333–379, 2000.

[13] B. Kemme, A. Bartoli, and Özalp Babaoglu. Online recon-
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