
Distributed Processing of Spatial Alarms: A Safe Region-based Approach

Bhuvan Bamba∗, Ling Liu∗, Arun Iyengar†and Philip S. Yu‡
∗College of Computing, Georgia Institute of Technology

†IBM T.J. Watson Research Center
‡Department of Computer Science, University of Illinois at Chicago

{bhuvan,lingliu}@cc.gatech.edu, aruni@us.ibm.com, psyu@cs.uic.edu

Abstract

Spatial alarms are considered as one of the basic ca-
pabilities in future mobile computing systems for enabling
personalization of location-based services. In this paper,
we propose a distributed architecture and a suite of safe
region techniques for scalable processing of spatial alarms.
We show that safe region-based processing enables resource
optimal distribution of partial alarm processing tasks from
the server to the mobile clients. We propose three different
safe region computation algorithms to explore the impact
of size and shape of the safe region on network bandwidth,
server load and client energy consumption. Concretely, we
show that the maximum weighted perimeter rectangular safe
region approach outperforms previous techniques in terms
of performance and accuracy. We further explore finer gran-
ularity safe regions by introducing grid-based and pyramid-
based representation of rectilinear polygonal shapes using
bitmap encoding. Our experimental evaluation shows that
the distributed safe region-based architecture outperforms
the two most popular server-centric approaches, periodic
and safe period-based, for spatial alarm processing.

1. Introduction
Location is becoming an essential communication ca-

pability for people to get connected and informed in the
wireless and mobile Internet era. Pervasive use of wire-
less devices, such as smart phones, PDAs and continued
price reduction of hardware capable of location sensing
and positioning (e.g., GPS, Bluetooth, WiFi) has led to an
increasing number of wireless and mobile devices equipped
with both positioning capability and communication as well
as computation capacity. According to [1], the market for
GPS devices is growing at around 20% annually with 90%
of the devices being portable navigation devices. By end
of 2012, mobile phones equipped with GPS are expected
to have around 78% of this market. This makes distributed
computing at the edge of the wireless and mobile Internet
an attractive alternative for performance optimization and
energy saving.
Spatial Alarms. Most of us use time-based alarms to
remind us of the arrival of a future reference time point;
spatial alarms extend the concept of time-based alarms by
reminding us of the arrival of a future spatial location of

interest. The service request “alert me when I am within
two miles of the dry clean store near my house” is a typical
example of spatial alarms. A spatial alarm is defined by three
elements: a future location reference known as the alarm
target, an owner who is the publisher of the alarm and the
list of subscribers of the alarm. We categorize spatial alarms
based on two criteria: the publish-subscribe scope of the
alarms and the motion characteristics of alarm targets and
alarm subscribers. According to the publish-subscribe scope
of spatial alarms, we consider three categories of alarms:
private, shared and public. Private alarms are installed and
used exclusively by the publisher. Shared alarms are in-
stalled by the publisher with a list of authorized subscribers
and the publisher is typically one of the subscribers. Public
alarms are usually installed with the purpose of sharing them
with all mobile users who are entering the spatial regions of
the alarms. Mobile users may subscribe to public alarms by
topic categories or keywords, such as “traffic information
on highway 85 North” or “Zagat survey of top-ranked
local restaurants”. Public alarms can be useful means of
informing subscribers about hazardous road situations or
heavy road congestion. Without loss of generality, the rest
of the paper assumes that public alarms are subscribed to
by all mobile users. According to the motion characteristics
of the alarm target and alarm subscriber, we categorize
spatial alarms into three classes: (1) moving subscriber with
static target, (2) static subscriber with moving target, and (3)
moving subscriber with moving target.
Challenges of Spatial Alarm Processing. Spatial alarm
processing requires meeting two demanding objectives: high
accuracy, which ensures zero or very low alarm misses, and
high scalability, which requires highly efficient processing of
spatial alarms. Existing research on spatial alarm processing
has been focused on either client-centric [2] or server-
centric [3] architectures. A client-centric architecture is
limited to supporting only private alarms on static target with
moving subscriber or on moving target with static subscriber.
This is primarily because other types of spatial alarms re-
quire continuous position updates from other mobile clients,
which is typically obtained through server-based coordina-
tion. In contrast, the server-centric architecture can support
all types of spatial alarms and perform alarm processing
optimizations. However, with increasing number of users and
installed spatial alarms in the system, the alarm processing

2009 29th IEEE International Conference on Distributed Computing Systems

1063-6927/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDCS.2009.25

207

server may become a bottleneck.
Paper Scope and Contributions. In this paper, we argue
that client-centric and server-centric architectures are not op-
timal in terms of developing a general framework for scaling
spatial alarms-enabled location services. We propose a safe
region-based distributed architecture for scalable processing
of spatial alarms. We show that our distributed architecture,
powered by safe region techniques, can significantly aid
scalability, by reducing the amount of unnecessary alarm
evaluations required in the server-centric architecture, while
maintaining high accuracy. Our approach offers three unique
features. First, we introduce the concept of safe region in
the context of spatial alarm evaluation. Second, we present
the design of a distributed alarm processing partitioning
scheme for scaling spatial alarm processing. Our approach
optimizes conventional server-centric alarm processing by
advocating mobility and locality aware distribution of alarm
processing through the safe region-based evaluation frame-
work. More concretely, we compute a safe region for each
mobile subscriber or moving alarm target at the server.
We further utilize our distributed partitioning scheme to
encourage controlled participation of mobile subscribers in
safe region monitoring. By distributing the processing of
spatial alarms in a controlled fashion between the server
and mobile clients, our safe region-based distributed ar-
chitecture significantly reduces the number of unnecessary
alarm evaluations, increasing the throughput and scalability
of the system. Last but not the least, we develop a suite of
safe region computation techniques to analyze the impact
of the size and shape of safe region on the client-server
communication cost, server load and client energy consump-
tion. Concretely, we describe three safe region computation
techniques: (i) Maximum Weighted Perimeter Rectangular
Safe Region, (ii) Grid Bitmap Encoded Safe Region, and
(iii) Pyramid Bitmap Encoded Safe Region. These alternative
methods for safe region computation provide flexible support
for mobile clients with heterogeneous capabilities in terms
of CPU, network bandwidth and energy capacity.

In order to validate the effectiveness of our distributed
architecture and the safe region-based techniques for scaling
spatial alarm processing, we perform experimental compar-
ison of our approach with two popular spatial alarm evalu-
ation approaches: periodic evaluation and safe period-based
alarm evaluation. Periodic evaluation can be performed by
checking whether a mobile subscriber is entering the spatial
region of any of its relevant alarms. High frequency is
essential to ensure that none of the alarms are missed.
Though periodic evaluation is simple, it can be extremely
inefficient due to frequent alarm evaluation and the high rate
of irrelevant evaluations. The safe period-based approach [3]
allows the system to overcome the deficiencies of periodic
evaluation by adaptively computing a safe period for each
mobile subscriber; no alarm processing needs to be per-
formed for the mobile user before its safe period expires.
However, safe period computation heavily relies on future

motion estimation of the mobile user. Our experimental eval-
uation shows that distributed safe region-based processing
outperforms both periodic and safe period-based approaches,
while ensuring 100% accuracy.

2. System Overview
In this section, we describe the concept of safe region

and outline our distributed safe region-based partitioning
scheme. Concrete safe region computation techniques are
described in subsequent sections.
Safe Region. The use of safe region for distributed pro-
cessing of spatial alarms is based on a simple observation:
regardless of the total number of relevant spatial alarms for
a user, only alarms that are set on objects near her current
position have a probability of being triggered. We show that
the safe region approach to spatial alarm processing enables
controlled distribution of alarm processing load between
the server and a selection of mobile users. Such distributed
processing can significantly enhance server scalability with
nominal resource consumption at the client end.

We can formally characterize the concept of safe region
for a given mobile user s, denoted by Ψs, as follows: (i)
As long as the user’s position lies within its safe region, the
probability of the user s entering any of its relevant spatial
alarm regions is zero. (ii) If the user position lies inside
one or more relevant spatial alarm regions, the intersection
of the spatial alarm regions forms the safe region for the
user s. In this case, the probability of any alarms other
than those associated with this safe region being triggered
is zero. In summary, as long as a mobile user s resides
within its computed safe region, no spatial alarm evaluation
is necessary.

The main idea underlying our distributed architecture
design is twofold. First, we want to use the concept of safe
region to reduce the amount of unnecessary alarm moni-
toring and alarm checks as the mobile subscribers travel on
the road. Second, we promote the distribution of safe region-
based alarm monitoring by the mobile clients; each mobile
client determines by itself whether it has moved outside its
safe region without requiring global knowledge of relevant
spatial alarms and the positions of objects of interest. An
immediate advantage of our safe region-based distributed
architecture is significant savings in terms of server load and
communication bandwidth. The main challenge in the design
of our distributed architecture is the development of safe
region computation techniques that can provide a careful
trade-off between server load and client energy consumption
by taking into account: (i) the bandwidth required to com-
municate the safe region from the server to its corresponding
mobile client, and (ii) the computation cost at a mobile client
for monitoring its position with respect to the safe region.

In summary, safe region computation must satisfy the
following constraints: lightweight construction, compact rep-
resentation, fast containment check and supporting device
heterogeneity. These requirements motivate us to design

208

l
s
(t)

Ф

r(Ф)

R

l
s
(t’)

(a) Steady Motion Assumption

-pi -pi/2 0 pi/2 pi
0.05

0.1

0.15

0.2

0.25
z = 2

z = 4

z = 8

(b) Motion Probability Density

Figure 1: Preliminaries for Safe Region

three alternative safe region techniques and study the impact
of size and shape of safe region on server load, network
bandwidth and client energy consumption.
Grid Overlay for Safe Region Computation. The goal of
introducing safe region-based alarm evaluation is to enable
the system to focus the processing on alarms that are in the
vicinity of the mobile subscribers’ current locations. In order
to effectively support this objective, we use a grid structure
overlaid on top of the Universe of Discourse considered by
the system. Figure 3(a) shows the current grid cell of mobile
user s.

3. Maximum Weighted Perimeter Rectangular
Safe Region

The safe region approach aims to reduce the number of
alarm evaluations performed by the server. A rectangular
shape has many properties required of the safe region as
mentioned before. In this section, we discuss the maximum
weighted perimeter rectangular safe region computation
approach and present a safe region computation algorithm
based on the concept of dynamic skylines [4].

Figure 1(a) displays a mobile user s at position ls(t);
assume that ls(t′) is the previously recorded position of the
client. The probability density function (pdf) for the client
motion inside the safe region, denoted by p(φ), is given by:

p(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 +
y

z

⌈π/2 − |φ|
y/z · π

⌉

2π
, if − π/2 ≤ φ ≤ π/2

1 − y

z

⌈ |φ| − π/2
y/z · π

⌉

2π
, otherwise

In the above pdf formula, y, z are parameters of steadi-
ness such that y/z < 1. Figure 1(b) displays the pdf for
y = 1 and for different values of z. The value of y/z
determines the weight to be assigned to the probability of
the client moving in the direction of its current motion. z
determines the granularity of change in φ for which the
probability value decreases. As shown in Figure 1(b), the
probability of the client moving in a direction such that 0 ≤
φ ≤ π/z is the same; for values of φ > π/z, this probability
decreases. Assuming random direction of motion would lead
to a probability of 1/2π for all values of φ.

We now present an algorithm to compute the maximum

weighted perimeter safe region for a user. Our algorithm
applies the concept of dominating point and appropriate
heuristics to find the four skyline points [5] which form the
corner points of the rectangular safe region. The algorithm
accepts the current position vector �ls for a user s and the
current grid cell G(�ls) in which the user s resides as inputs.
The set of relevant alarms intersecting the grid cell G(�ls) are
considered for safe region computation. In case there are
no relevant alarm regions intersecting the grid cell G(�ls),
the entire cell is returned as the safe region. Otherwise,
the algorithm proceeds in the following four steps outlined
below. We refer readers to [6] for a complete description of
the algorithm.
Step 1: Determine Candidate Point Set. The algorithm
partitions the cell G(�ls) into four quadrants with current
subscriber position {ls.x, ls.y} as the origin. We define a
set of candidate points (C) and a set of tension points (T)
for each quadrant. The candidate point set is the set of points
which can potentially form a corner point of the safe region.

Concretely, the set of candidate points is determined as
follows. First, the spatial region corner for each relevant
alarm is selected as a candidate point in its appropriate
quadrant. The algorithm trims the set of candidate points
in the next step. We remove points which fully dominate1

any other point in C. Finally, the points are sorted according
to increasing distance of their x-coordinate from the origin.
Step 2: Determine Tension Point Set. Tension points
are selected from the set of candidate points. In this step,
we process the set of candidate points in the following
manner to obtain the set of tension points. Each tension
point TQi, where Q ∈ {1, 2, 3, 4} represents the quadrant
the point belongs to, is assigned the same x-coordinate as
the corresponding candidate point CQi. TQi is assigned the
same y-coordinate as that of CQi−1, or TQi−1 if TQi and
TQi−1 have the same x-coordinate.
Step 3: Determine Component Rectangles. The set of
tension points form the opposite corner (opposite to the
origin) of the set of candidate component rectangles in
each quadrant. The final safe region is composed of the
intersection of the component rectangles from each quadrant.
Step 4: Determine Safe Region from Component Rectan-
gles. Computation of the maximum weighted perimeter safe
region can be involved and can lead to expensive computa-
tions. As opposed to an optimal solution which enumerates
every possible combination of component rectangles and
computes the weighted perimeter for each combination thus
taking quartic time, our approach performs greedy decisions.
We first select the quadrant in which the pdf value of the
expected motion of the object is maximum. The component
rectangle with the largest weighted perimeter in this quadrant
is selected. Quadrants are further selected dependent on
the distribution of motion pdf values in the quadrant. At
each step, the component rectangle which forms the safe

1. P1 is said to fully dominate P2, if P1.x > P2.x and P1.y > P2.y.

209

s

III

III IV

C
11

C
12

C
21

C
22

C
33

C
44

C
13

C
14

C
42

C
41

C
43

C
31

C
32

C
34

C
23

(a) Candidate Point Set

s

III

III IV

T
11

T
21T

22

T
33T32

T
42

T
12

T
41

T
43

T
31

(b) Tension Point Set

s

III

III IV

T
22

T
33

T
12

T
41

T
43

T
31

θ

(c) Component Rectangles

III

III IV

s

T
22

T
33

T
12

T
43

θ

(d) Final Safe Region

Figure 2: Maximum Weighted Perimeter Safe Region Computation

region with the largest weighted perimeter is selected. The
algorithm continues until all four quadrants are processed
using this greedy heuristic.

Figure 2 shows an example of our safe region compu-
tation approach. The candidate point set (black dots) for
the given scenario is as shown in Figure 2(a). Figure 2(b)
displays the set of tension points obtained from the candidate
point set as explained in Step 2. Figure 2(c) displays the
component rectangles formed by selecting a few of the
tension points. The shaded region, as shown in Figure 2(d),
forms the final safe region.

4. Bitmap Encoded Safe Region Computation

Compact representation of rectangular safe regions leads
to low server-to-client communication cost and fast contain-
ment detection at the client end. However, the rectangular
shape restriction is not optimal in terms of maximizing the
safe region area. For mobile clients with high computational
capacity, we can provide safe regions of finer granularity,
more precisely, safe regions of larger size and more complex
in shape.

In this section, we relax the rectangular shape restriction
and consider rectilinear polygonal representations for safe
region. We introduce bitmap encoded safe region (BSR)
techniques for quickly and efficiently representing rectilinear
polygons using bitmaps. This approach provides flexibility
in safe region computation by providing larger, complex
safe regions for powerful clients, thus personalizing the
safe region for each client according to its computational
capacity. Recall Figure 3(a), which displays the grid cell for
subscriber s with four relevant intersecting alarm regions.
One approach is to use the grid cell (minus spatial alarm
regions) as the safe region for the client and communicate it
to the client. This approach forces the server to communicate
the current grid cell and all relevant alarms overlapping with
the grid cell to the mobile client. Each alarm region may be
represented by the bottom-left and top-right corner points.
This approach can be considered optimal since it maximizes
the size of the safe region by communicating to the client the
complete knowledge of all alarms in its vicinity. However,
this approach may be cost prohibitive in terms of server-to-
client communication cost and computation cost incurred at
the client in presence of large number of relevant alarms. For
example, for areas with high alarm density the server may

push a large number of alarms onto the client which would
lead to heavy load for weak clients. To counter this problem,
we develop the concept of bitmap encoded safe regions,
which provides an estimation of the actual safe region using
a bitmap, allowing for trade-off between the size of the
bitmap and the accuracy of safe region representation.

Definition 1: A bitmap encoded safe region represents a
safe region Ψs for subscriber s using a bitmap B. A bit
value of 1 indicates that a predefined region (cell) belongs
to the safe region; whereas a 0 bit indicates the negation.

We first describe a Grid Bitmap Encoded Safe Region
(GBSR) computation technique and exhibit its inability to
accurately and efficiently represent safe regions. An exten-
sion to this approach using the pyramid data structure [7],
referred to as the Pyramid Bitmap Encoded Safe Region
(PBSR) approach, allows us to represent safe regions ac-
curately as well as efficiently. BSR techniques exhibit the
following advantages: (i) for low alarm density regions, it al-
lows for further reduction of alarm evaluations compared to
the rectangular safe region approaches, (ii) it supports vary-
ing granularity of safe region computations thus supporting
heterogeneity among client capabilities, and (iii) clients can
determine their position with respect to the safe region using
a predefined worst-case number of computations.
Grid Bitmap Encoded Safe Region. The safe region for a
subscriber s can be represented by the set of grid cells as
shown in Figure 3(b).

Proposition 2: We use a grid bitmap scheme to represent
the safe region within the grid cell shown in Figure 3(a).
The α × β cell Ci,j is represented by a single bit B(Ci,j).
If Ci,j

⋂
Σm

k=1R(s,Ak) = ∅, we set B(Ci,j) = 1 denoting
that the entire cell Ci,j belongs to the safe region Ψs, else
we set B(Ci,j) = 0 and split Ci,j into U × V smaller equi-
sized cells. The same encoding procedure is used for each
smaller cell.

Figure 3(b) shows the safe region representation for the
safe region of Figure 3(a) using a bitmap encoding scheme.
No alarm regions intersect the three shaded cells which
are represented by 1’s; other cells intersecting with alarm
regions are represented by 0’s. The safe region is represented
using a simple bitmap B = 0000011010 which represents
the cell bit values in a raster scan fashion. The first zero bit
corresponds to the entire cell, indicating that the cell does not
belong to the safe region and has intersecting alarm regions.

210

s

R(S,A
4
)

R(S,A
2
)

R(S,A
1
)

R(S,A
3
)

(a) Grid Cell

P

0 0 0

0 1 1

0 1 0

BITMAP CODING 0 000011010

s

(b) Grid Bitmap Encoding (3×3)

P

BITMAP CODING 0111110001…

s

1 1 1 1 1 0 0 0 1

0 0 1 1 1 0 0 0 1

0 0 1 1 1 0 0 0 1

0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0

1 0 0 1 1 1 1 1 0

(c) Grid Bitmap Encoding (9×9)

0 0 0

0 1 1

0 1 0

BITMAP CODING 0000011010

1 1 1

0 0 1

0 0 1

1 1 0

1 1 0

1 1 0

0 0 1

0 0 1

0 0 1

0 0 1

1 1 1

1 1 1

1 1 1

1 0 0

1 0 0

1 1 1

1 1 0

1 1 0

111001001

s

(d) Pyramid Bitmap Encoding

Figure 3: Bitmap Encoded Safe Region Computation

As visible from Figure 3(b), this bitmap encoding is able to
represent only a small portion of the grid cell thus providing
a poor estimate of the actual safe region. Figure 3(c) presents
a 9×9 split of the cell at a finer resolution which allows for
more accurate representation of the safe region. However,
this approach is inefficient for the following two reasons:
(i) it unnecessarily uses a much larger bitmap than required
to represent the safe region, and (ii) different regions have
different alarm densities thus making it difficult to select a
uniform grid cell size. The PBSR approach overcomes these
deficiencies by allowing for more accurate representations of
the safe region while providing a smaller bitmap size.
Pyramid Bitmap Representation. The pyramid representa-
tion splits cells in the base grid (level L=0) with B(CL

i,j) =
0 only into U × V smaller cells, where αU = α/U ,
βV = β/V , where U, V are a system defined parameters.
The process may be further repeated for several iterations
to form smaller cells at each level thus forming a pyramid
data structure of height h. Figure 3(d) shows the safe region
calculation using a pyramid structure with h = 2. By
splitting cells with B(C0

i,j) = 0 into a 3×3 grid we obtain a
much finer granularity and thus more accurate representation
for the safe region. Compared to the grid-based approach
which either does not represent the safe region accurately
(3×3 grid in Figure 3(b)) or computes a much larger bitmap
(9×9 grid in Figure 3(c)), the PBSR approach provides
flexibility in computation of the safe region. For example,
the GBSR approach requires 82 bits, 1 bit for the entire cell
and 81 bits for the 9×9 grid, to represent the safe region
in Figure 3(c). In comparison, the PBSR approach requires
only 64 bits, 1 bit for the entire cell, 9 bits for the cells at
level 1 and 54 bits for the cells at level 2, to represent the
same safe region as shown in Figure 3(d).

We omit the algorithm for safe region estimation using
PBSR due to space constraints and refer interested readers
to our technical report [6]. However, a brief outline of
the procedure is given below. The pyramid representation
of the base cells is constructed for height h by splitting
cells iteratively into U × V cells. This step is performed
offline by the server thus providing a precomputed pyramid
representation for safe region computation. Next, starting
from the base cells (level L = 0) we determine if each cell
intersects any relevant alarms. Cells not intersecting with any
relevant alarm regions are assigned a bit value B(CL

i,j) = 1

indicating that they are a part of the safe region; else a cell
is assigned bit value 0. For cells at each level L−1 (L ≤ h)
which have an assigned bit value 0, we consider the relevant
U × V children cells at Level L and assign a bit value 0 or
1 considering intersection of the cell with relevant alarms at
each level of the pyramid.

Proposition 3: The PBSR approach for safe region com-
putation allows us to represent the safe region Ψs in terms of
a bitmap of size |B|. The height of the pyramid h allows us
to control the accuracy of representation of the safe region
at the cost of computing a larger bitmap for more accurate
representations.

We define Coverage and Bitmap Size which allow us
to control the quality of the safe region representation for
our BSR computation techniques. The coverage of a safe
region representation Ψs, denoted by η(Ψs), is defined
as the ratio of area of the safe region using the PBSR
representation to the area of the grid cell. The bitmap size
for safe region Ψs is defined as the number of bits in the
PBSR representation of the safe region. In practice, we
want to achieve high coverage with as small bitmap size as
possible. Each client may specify the maximum height of
the pyramid used by the PBSR approach for computing its
safe region. In the worst case scenario, the client may need
to determine its position relative to the safe region at each
level of the pyramid data structure. We refer readers to our
technical report [6] for a detailed description of safe region
containment detection algorithm which performs pyramid
bitmap decoding to obtain a geometrical shape of the safe
region.

For the PBSR approach, safe region for a client needs
to be recomputed only when the client moves out of the
base grid cell. Note that a client may move out of its safe
region without triggering any relevant alarms even while it
is inside the grid cell. No safe region recomputation needs
to be performed in such situations for the PBSR approach.
In case the client triggers an alarm on moving outside its
safe region but stays within the base cell corresponding to
the safe region, the safe region can be quickly updated by
considering the triggered alarm to be a part of the safe
region. Additionally, PBSR approach can be optimized by
precomputing the bitmap at each level for public alarms.

211

Cell Size

(sq. km.)

Non –

Weighted

y=1,

z=4

y=1,

z=16

y=1,

z=32

0.4

0.625

1.11

2.5

10

1.752 1.737 1.735 1.733

1.629 1.608 1.607 1.606

1.509 1.488 1.485 1.484

1.418 1.395 1.391 1.39

1.382 1.348 1.343 1.34

(a) Number of Client-to-Server Mes-
sages (in millions)

0.4 0.625 1.11 2.5 10
0

5

10

15

Grid Cell Size (sq. km.)

T
im
e
 (
m
in
u
te
s
)

Alarm Processing

Safe Region Computation

Total Processing

(b) Server Processing Time for
Weighted Perimeter Approach (y=1,
z=32)

Figure 4: Performance of Rectangular Approach

5. Experimental Evaluation

In this section, we evaluate the performance of our safe
region computation techniques using three different sets
of experiments. The first set of experiments performs an
evaluation of the maximum weighted perimeter rectangular
safe region approach. The second experiment evaluates the
bitmap encoded safe region (BSR) approaches, namely grid
bitmap encoded safe region (GBSR) and pyramid bitmap
encoded safe region (PBSR). The final experiment provides
an evaluation of the safe region techniques compared to
periodic processing (PRD), safe period-based (SP) compu-
tation [3] and the optimal (OPT) approach as described
in beginning of Section 4. The optimal approach does
not consider any restrictions on resource availability and
assumes all relevant alarms within the grid cell are pushed
to the client, which implies the client is fully aware of
all relevant alarms in its vicinity. We measure the perfor-
mance of all approaches on different evaluation metrics like
number of client-to-server messages, downstream server-
client bandwidth consumption, client energy consumption
and server processing time. The parameters adopted for
each processing approach ensure 100% of the alarms are
triggered in all scenarios. The sequence of alarms to be
triggered is determined by a very high frequency trace of
the motion pattern of the vehicles.

5.1. Experimental Setup

Our simulator generates a trace of vehicles moving on
a real-world road network using maps available from the
National Mapping Division of the U.S. Geological Survey
(USGS [8]). The simulator simulates the motion of vehicles
on roads with appropriate velocity information. We use a
map of Atlanta and surrounding regions, which covers an
area around 1000 km2 in expanse, to generate the trace.
Our experiments use traces generated by simulating vehicle
movement for a period of one hour, results are averaged over
a number of such traces. Default traffic volume values allow
us to simulate the movement of a set of 10,000 vehicles on
the above road network. Position parameters are evaluated
against installed spatial alarms indexed in a R∗-tree [9].
The default spatial alarm information consists of a set of
10,000 spatial alarms installed on alarm targets distributed

1 2 3 4 5 6 7
0

1

2

3

4

5

6
x 10

7

Pyramid HeightN
u
m
b
e
r
o
f
C
lie
n
t-
to
-S
e
rv
e
r
M
e
s
s
a
g
e
s

1% Public Alarms

10% Publc Alarms

20% Public Alarms

(a) Number of Messages

1 2 3 4 5 6 7
400

600

800

1000

1200

1400

Pyramid Height

C
lie
n
t
E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
m
W
h
)

1% Public Alarms

10% Publc Alarms

20% Public Alarms

(b) Client Energy Consumption

Figure 5: Performance of BSR Approach

uniformly over the entire map region. Default setup assumes
10% of the alarms are public alarms; private and shared
alarms are present in the system in the ratio 2:1.

5.2. Experimental Results

Performance of Maximum Weighted Perimeter Rectan-
gular Approach. This set of experiments is designed to
study the performance of the maximum weighted perimeter
rectangular safe region approach as we vary the parameters
of steadiness y, z. The results for y = 1 and different
values of z in comparison with a non-weighted approach
(no steady motion assumption) are shown in Figure 4.
The non-weighted perimeter approach improves upon the
approach presented in [10] by allowing for overlapping
alarm regions. The approach presented in [10] leads to
alarm misses and erroneous safe regions in such scenarios.
Figure 4(a) shows the number of client-to-server location
messages exchanged with different grid cell sizes. The
weighted perimeter approach consistently performs better
than the non-weighted perimeter approach even though by
a small margin. Considering the fact that more than 60
million location messages are produced for each trace, it
can be observed that less than 3% of messages need to be
communicated to the server using any of the rectangular safe
region approaches. The other observation from this figure is
that with increasing grid cell size the number of client-to-
server messages reduces. This is as expected because with
larger grid cell sizes larger safe regions are computed and
the client stays within the safe region for a longer duration.
Figure 4(b) shows the server processing time as we vary
the size of the grid cell. As grid cell size is increased,
alarm processing costs decrease due to the smaller number of
location messages being processed against the alarm index.
The safe region computation costs increase with increasing
grid cell size due to larger number of intersecting alarms
being considered for safe region computation. The total
server processing time is minimum with a grid cell size of
2.5 km2.
Performance of BSR Approach. This set of experiments is
designed to evaluate the performance of the BSR approach.
We vary the height of the pyramid from h = 1 (for
GBSR) to h = 7 and observe the performance as shown
in Figure 5. Figure 5(a) displays the number of client-to-

212

1 10 20
0

1

2

3

4

5
x 10

6

Percentage of Public AlarmsN
u
m
b
e
r
o
f
C
lie
n
t-
to
-S
e
rv
e
r
M
e
s
s
a
g
e
s

MWPSR

PBSR

SP

OPT

(a) Number of Messages

1 10 20
0

0.2

0.4

0.6

0.8

1

Percentage of Public Alarms

B
a
n
d
w
id
th
 (
M
b
p
s
)

MWPSR

PBSR

OPT

(b) Bandwidth (Mbps)

1 10 20
0

1000

2000

3000

4000

Percentage of Public Alarms

C
lie
n
t
E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
m
W
h
)

MWPSR

PBSR

OPT

(c) Client Energy Consumption

PR MW PB SP OP PR MW PB SP OP
0

50

100

150

Percentage of Public Alarms

T
im
e
 (
m
in
u
te
s
)

1 10

Alarm Processing
Safe Region Computation

(d) Server Processing Time

Figure 6: Safe Region vs. Other Approaches

server messages communicated as we increase the pyramid
height from h = 1 to h = 7. It can be observed that
the GBSR approach is highly inefficient as it limits safe
region computation to a very high granularity. The safe
region computed using this approach provides a very coarse
representation of the actual safe region forcing the clients
to frequently send location messages as a result of which
GBSR approach incurs high communication costs. As we
increase the pyramid height, more accurate safe region
representations can be computed and consequently number
of messages transmitted experiences a sharp drop. Another
observation is that BSR approaches display high sensitivity
to alarm density levels; the performance deteriorates sharply
for higher percentage of installed public alarms. Figure 5(b)
displays the client energy consumption (in milliwatt-hours)
used to determine client position within the safe region. We
omit details related to energy consumption calculations due
to space constraints. For the GBSR approach the clients
need to perform an average of 2-3 safe region containment
detections per second resulting in low energy consumption.
This cost does not experience a significant increase with
pyramid height for low percentage of public alarms. For
higher public alarm percentages, 6-7 safe region containment
detections per second are required for a pyramid of height
h = 7 resulting in higher energy consumption.

Performance Comparison of Safe Region with Other
Approaches. Now we compare the performance of the max-
imum weighted perimeter rectangular safe region approach
(MWPSR) and the pyramid bitmap safe region (PBSR) ap-
proach (h = 5) with periodic evaluation (PRD), safe period-
based processing (SP) and the optimal approach (OPT) as
described at the beginning of Section 4. As can be seen from
Figure 6(a), the safe region approaches transmit few client-

to-server messages. Periodic processing requires clients to
transmit each location update to the server amounting to
60 million messages and is not shown in the figure. The
safe period approach experiences significantly higher com-
munication costs, approximately 2-3 times the cost incurred
by the safe region approaches. This is due to the pessimistic
assumptions required to ensure that the safe period approach
triggers all alarms with a 100% success rate. The optimal ap-
proach would require clients to transmit updates only when
the spatial constraints for one or more relevant alarms are
met and transmits fewest number of messages. Figure 6(b)
displays the downstream bandwidth consumed by the system
to broadcast safe regions to the clients. Safe period approach
would also require that a computed safe period be broadcast
to each client; however, we exclude the bandwidth incurred
for this approach from these results. As expected the safe
region approaches incur much lower bandwidth expense
when compared to an optimal solution. PBSR (h = 5)
performs the best for different percentage of public alarms in
the system. Not surprisingly, client energy consumption for
the optimal approach is significantly higher than the safe
region approaches (Figure 6(c)) as the optimal solution is
based on the assumption that clients have very high capacity.
PBSR and MWPSR approaches lead to lower client energy
consumption especially at higher alarm density levels. The
processing load experienced by each approach is as shown in
Figure 6(d). Periodic approach (PR) has much higher alarm
processing costs as each update needs to be processed by the
client and the server load does not scale. The processing load
does not rise much at higher alarm densities as each update
is processed by this approach for all percentage of public
alarms. The MWPSR and PBSR approaches (MW and PB
in the figure) experience lower server load due to much lower
alarm processing load. With increasing percentage of public
alarms, the safe region computation as well as the alarm
processing load rises; however, the total load incurred by
the system is much lower than the periodic approach for
all configurations. The PBSR approach again shows similar
trends as the MWPSR approach; however, the CPU load
incurred by this approach at higher alarm density levels
is higher than MWPSR approach. The safe period (SP)
approach experiences higher CPU load compared to the
safe region approaches. This is a direct result of the larger
number of updates that need to be processed by the safe
period approach. Results for the optimal approach (OP) are
plotted to show that the safe region approaches do not incur
much higher CPU load except for the highest percentage of
public alarms.

6. Related Work
In the realm of information monitoring, event-based sys-

tems have been developed to deliver relevant information
to users on demand [11], [12]. In addition to monitoring
continuously changing user information needs, spatial alarm
processing systems also need to deal with the complexity

213

of monitoring user location data in order to trigger relevant
alerts in a non-intrusive manner.

Periodic reevaluation is commonly used for continuous
monitoring of moving objects [13], [14], [15], [16]. Some
work exists on monitoring continuous queries which applies
the concept of safe region directly [17], [10], [15] or indi-
rectly [18], [19]. Spatial alarms differ from this work as they
do not demand periodic evaluation like continuous queries;
instead they require one shot evaluation which should result
in a trigger when the alarm conditions are satisfied. Our
work is focused on determining the opportune moment for
evaluating spatial alarms relevant to a client by seeking
cooperation at the client end.

None of the previous work, except [10], presents clear
algorithms for safe region computation. The maximum
weighted perimeter rectangular safe region approach out-
performs the approach presented in [10]. Further, unlike
our approach, the algorithm presented in [10] cannot handle
overlapping alarm regions or alarm regions intersecting the
axes of the coordinate system. Most importantly, previous
work fails to consider an environment supporting hetero-
geneous clients. Our PBSR technique provides an elegant
solution for exploiting client heterogeneity further easing the
computational load on the server.

7. Conclusion
In this paper, we have presented a distributed safe

region-based architecture for scaling spatial alarms-enabled
services. The paper makes three important contributions.
First, we introduce the concept of safe region-based alarm
processing to enhance system scalability. Second, we de-
velop alternative techniques for safe region computation:
maximum weighted perimeter rectangular safe region and
the grid and pyramid-based bitmap encoded safe region
approaches. Third, we consider trade-offs between differ-
ent safe region computation techniques and explore their
impact on the client-to-server communication cost, server
load, downstream bandwidth consumption and client energy
consumption. Our experimental evaluation demonstrated the
advantages of our distributed safe region-based approach in
comparison with server-centric alarm processing techniques
such as periodic evaluation and safe period-based evaluation.

Acknowledgment
This work is partially supported by grants from NSF

CISE CyberTrust, SGER, IBM faculty award, IBM SUR
program, and an Intel University Research Grant.

References
[1] “GPS-Enabled Mobile Devices Market Research

Report,” http://www.abiresearch.com/products/market
research/GPS Enabled Mobile %Devices.

[2] A. Murugappan and L. Liu, “Energy-Efficient Process-
ing of Spatial Alarms on Mobile Clients,” in SEDE,
2008.

[3] B. Bamba, L. Liu, P. S. Yu, G. Zhang, and M. Doo,
“Scalable Processing of Spatial Alarms,” in IEEE
HiPC, 2008.

[4] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal
and Progressive Algorithm for Skyline Queries,” in
SIGMOD, 2003.

[5] K. Tan, P. Eng, and B. Ooi, “Efficient Progressive
Skyline Computation,” in VLDB, 2001.

[6] B. Bamba, L. Liu, A. Iyengar, and P. S. Yu, “Safe
Region Techniques for Fast Spatial Alarm Evaluation,”
Georgia Institute of Technology, Tech. Rep., 2008.

[7] H. Samet, The Design and Analysis of Spatial Data
Structures. Addison-Wesley Reading, Mass, 1990.

[8] “U.S. Geological Survey,” http://www.usgs.gov.
[9] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger,

“The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles,” in SIGMOD, 1990.

[10] H. Hu, J. Xu, and D. Lee, “A Generic Framework for
Monitoring Continuous Spatial Queries over Moving
Objects,” in ACM SIGMOD, 2005.

[11] V. Bazinette, N. Cohen, M. Ebling, G. Hunt, H. Lei,
A. Purakayastha, G. Stewart, L. Wong, and D. Yeh,
“An Intelligent Notification System,” IBM Research
Report RC 22089 (99042), 2001.

[12] L. Liu, C. Pu, and W. Tang, “WebCQ - Detecting
and Delivering Information Changes on the Web,” in
CIKM, 2000.

[13] C. Jensen, D. Lin, and B. Ooi, “Query and Update
Efficient B+-Tree based Indexing of Moving Objects,”
in VLDB, 2004.

[14] M. Mokbel, X. Xiong, and W. Aref, “SINA: Scal-
able Incremental Processing of Continuous Queries in
Spatio-Temporal Databases,” in ACM SIGMOD, 2004.

[15] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and
S. Hambrusch, “Query Indexing and Velocity Con-
strained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects,” IEEE Transactions on
Computers.

[16] X. Yu, K. Pu, and N. Koudas, “Monitoring k-Nearest
Neighbor Queries over Moving Objects,” in ICDE,
2005.

[17] Y. Cai and K. Hua, “An Adaptive Query Management
Technique for Efficient Real-Time Monitoring of Spa-
tial Regions in Mobile Database Systems,” in IEEE
IPCCC, 2002.

[18] J. Xu, X. Tang, and D. Lee, “Performance Analysis
of Location-Dependent Cache Invalidation Schemes for
Mobile Environments,” IEEE TKDE, 2003.

[19] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee,
“Location-based Spatial Queries,” in ACM SIGMOD,
2003.

214

