
201O IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Programming Support and Adaptive Checkpointing for
High-throughput Data Services with Log-based Recovery

Jingyu Zhou

Computer Science Department

Shanghai Jiao Tong University
zhou-jy@cs.sjtu.edu.cn

Caijie Zhang

Google Inc.

Mountain View, CA 94043
caijiezhang@google.com

Hong Tang

Yahoo Inc.

Jiesheng Wu

Microsoft

Tao Yang

University of California

Santa Barbara, CA 93106
tyang@cs.ucsb.edu

Sunnyvale, CA 94089
htang@yahoo-inc.com

Redmond, WA 98052
jieshwu@microsoft.com

Abstract

Many applications in large-scale data mining and of
fline processing are organized as network services, running
continuously or for a long period of time. To sustain high
throughput, these services often keep their data in memory,
thus susceptible to failures. On the other hand, the avail
ability requirement for these services is not as stringent as
online services exposed to millions of users. But those data
intensive offline or mining applications do require data per
sistence to survive failures.

This paper presents programming and runtime support
called SLACHfor building multi-threaded high-throughput
persistent services. To keep in-memory objects persistent,
SIACH employs application-assisted logging and check
pointing for log-based recovery while maximizing through
put and concurrency. SIACH adaptively adjusts check
pointing frequency based on log growth and throughput de
mand to balance between runtime overhead and recovery
speed. This paper describes the design and API of SIACH,
adaptive checkpoint control, and our experiences and ex
periments in using SIACH at Ask. com.

1 Introduction

This paper studies programming support for a class of
highly parallel data services, where in-memory states are
frequently updated and retrieved, and these in-memory
states must be kept persistent. Such services are typical
and important for many data mining and offline applica
tions at Google, Yahoo, Microsoft, Ask.com, and other In
ternet companies for document analysis, advertisement in-

978-1-4244-7501-8/10/$26.00 ©201O IEEE

formation mining, and user behavior studies. For example,
in the offline system of Ask.com, web pages are crawled
constantly and information regarding URLs is continuously
updated. There are hundreds of application modules ac
cessing various URL information services for data mining,
URL string matching, URL name conversion, and property
extraction. The traffic accessing such a service may reach
hundreds of thousands of requests per second. Such a ser
vice can be unavailable for a short period of time during
system upgrade or failure repair, but it must be available
with high throughput for most of the time.

It is challenging to satisfy high throughput and data
persistence at the same time for data services. Persis
tence can be achieved via data replication on multiple
nodes [9, 11, 23] or log-based recovery [6, 7, 21]. For
the class of applications we target at, fast memory access
is required to deliver extremely high throughput, and log
based recovery is relatively cheaper to achieve persistence
of in-memory states. This paper focuses on log-based re
covery. Checkpointing [5, 15, 18, 22] can be used together
with operation logging to generate a restorable execution
point of a service so that old logs can be discarded. In
practice, applications only need log and checkpoint a se
lected collection of data objects for critical recovery based
on their domain-specific requirements. Programming high
throughput concurrent services with log-based recovery is
complicated and our goal is to provide programming and
system support that simplifies the integration of application
specific logging and checkpointing with maximized concur
rency and performance.

The contribution of this work is in two areas. First,
we present application-assisted programming and runtime
support called SLACH to shield application programmers

91 DSN 2010: Zhou et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

from the complexity of managing persistence of in-memory
states. It supports and integrates previously proposed
logging and checkpointing techniques for reliable pro
duction systems while considering high-throughput and
application-specific flexibility in the design. SLACH is
lightweight and can be integrated with legacy code us
ing its narrow programming interface. Second, we pro
pose an adaptive control scheme that adjusts checkpoint
ing frequency based on log growth and throughput demand.
Checkpointing can reduce the log size and shorten the re
covery time, but checkpointing adds runtime overhead and
reduces the system throughput. We consider a tradeoff be
tween runtime service load and recovery speed for applica
tions with high performance demands.

The rest of the paper is organized as follows. Section 2
discusses the background of our targeted applications and
design considerations. Section 3 presents the design, sys
tem architecture, and API of SLACH. Section 4 describes
an algorithm for adaptive frequency control for checkpoint
ing. Section 5 describes two service deployments in the
production system of Ask.com and a persistent key-value
hash table (PHT) for in-core and out-of-core data. Section 6
presents experimental results. Sections 7 summarizes re
lated work and concludes the paper.

2 Background and Design Considerations

We summarize the characteristics of targeted data ser
vices as follows.

Request driven: These data services adopt a request
driven model where a client sends requests to a server and
the server returns a response after some processing. A
server could handle requests issued concurrently from mul
tiple clients.

High throughput and in-memory fast access: High
throughput is often the most important requirement for
some internal services in large-scale data mining and offline
processing applications. To assist such applications, some
of internal data services are required to deliver extremely
high throughput and two such services are described in Sec
tion 5. As a result, data objects of our targeted applications
are often kept in-memory for fast access.

High availability for most of the time: Offline applica
tions such as ones at search engine companies can stop run
ning for a few hours for software upgrade, hardware repair
ing, or data recovery. The availability of such an application
is not as stringent as that for online services, but those data
intensive offline or mining applications need to accomplish
on-schedule processing of a large amount of data. There
fore, targeted data services do require data persistence to
survive failures.

In addition to serving read-only operations, many data
services have frequent updates for a selected set of objects

978-1-4244-7501-8/10/$26.00 ©201O IEEE

and these updates have to be stored on persistent media
to survive crash failures. Once a failure occurs, the ser
vice state should be restored following consistent recov
ery [13], i.e., the restored state should be equivalent to that
of a failure-free execution.

Data independence and object-oriented access model:

Our targeted data services tend to host a large amount of in
dependent data items. With these characteristics in mind,
we target at partitionable data services in the sense that data
manipulated by such a service can be divided into a large
number of independent data partitions and each service ac
cess can be conducted independently on a single partition;
or each access is an aggregate of a set of sub-accesses that
can be completed independently on a single partition. Thus
we focus on persistence and high throughput for a data par
tition hosted at each machine.

We use a data object model similar to the key-value
scheme used in [3, 4]. The service state consists of a col
lection of independent homogeneous memory objects, and
each object has a unique object ID. The targeted data service
supports concurrent read and update of these objects from
multiple threads. We assume each object is a continuous
memory block. The middleware infrastructure at Ask.com
has a generic serialization framework that is able to serialize
noncontiguous C++ object to a continuous memory block
and vice versa. A read or update operation access an object
or part of an object.

The failure model we handle follows the fail-stop as
sumption. To simplify the description of proposed tech
niques, throughout the paper we make the following as
sumptions. We focus our discussion on local recovery due
to application failures. Extending the scheme to support
hardware failure is straightforward, by checkpointing to re
mote storage and restarting processes on a live machine, and
is in fact implemented in our production system.

3 Design

In this section, we first present the system architecture of
SLACH. Then we describe the application programming in
terface (API) and the underlying logging and checkpointing
mechanism of SLACH.

3.1 System Architecture

Figure I illustrates the system architecture of an
application service with SLACH. On the left side, a
network-accessible data service employs multiple applica
tion threads concurrently accessing a number of objects in
memory. A thread may perform read or update operations
on these objects when servicing client requests. The ap
plication thread logs object update operations through a

92 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

SLACH function call. On the right side, SLACH peri
odically triggers checkpointing to reduce the log file size.
During service recovery, SLACH loads the latest check
point from the disk, followed by replaying the logs from
the checkpoint time till the time the service ceases its previ
ous execution. Then the application resumes its execution
from the consistent memory state just recovered.

Application Threads Memory Objects

� � ead
�UPdate

�e
�

SLACH

Figure 1 . Architecture of SLACH.

The key modules in SLACH are discussed as follows.
The log manager is responsible for appending the new up
date operations to the log. The checkpoint manager records
a snapshot of object values to the disk. The threshold con
troller manages the frequency of checkpointing and triggers
checkpointing when appropriate. The recovery manager
uses object checkpoints to start the data service application
and also replays the log to bring the service data into a con
sistent and up-to-date state.

3.2 Programming Interface

SLACH currently supports application services written
in C++. To use SLACH, an existing service must be aug
mented in three ways: (1) Implementing the application ser
vice as a subclass of SLACH: : Appl icat ion and provid
ing three callback routines to replay log records, to dump all
objects into a checkpoint file, and to load one object from
within a checkpoint file; (2) Creating a SLACH API object
that handles physical storage of logs and checkpoints, and
provides failure recovery during service start-up; (3) Issu
ing logging requests through SLACH API before modifying
object states.

Table I summarizes the actions taken by various compo
nents in our implementation. We illustrate each component
as following.

SLACH Managers: During a failure-free execution,
the checkpoint manager periodically triggers application
defined checkpoint callback. The checkpointing frequency
is adjusted dynamically by the threshold controller. During
failure recovery, the recovery manager performs automatic

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

service state recovery by loading checkpoints and replaying
log records.

class SLACH: :Application

1* a parameter is a pair of size and address*1

typede£ std: :pair<uint32_t, void*> para-pair;

1* a vector of parameters *1
typedef std: :vector<para-pair> para_vee;

protected:

};

/* application checkpoint callback function */

virtual void ckpt_callback()=O;

/- callback of loading one object checkpoint-/
virtual void load_one_callback(int64_t obj_id,

const void *addr,uint32_t size)=O;

/- callback of replaying one operation log -/
virtual void replay_one_callback(int64_t

obj_id, int op, const para_vec& args)=O;

Figure 2. Callback functions defined in an ap
plication and called by SLACH during check
pOinting, recovery and log replaying.

Application: An application needs to implement
three service-specific callbacks by inheriting from the
SLACH: : Application class as shown in Figure 2. Dur
ing a failure-free execution, the application service needs to
log an operation for every update of the memory objects. A
checkpoint callback, ckpLcallback (), is invoked peri
odically by the checkpoint manager to make a checkpoint
of application memory objects. During failure recovery,
load_one_callback () and replay _one_callback ()
are invoked by the recovery manager to load an object
checkpoint and replay an operation log respectively.

SLACH API: This row lists two library functions that
can be used by applications. Figure 3 illustrates the pro
gramming interface of these functions: log () and ckpt () .
In addition, function registeLpolicy () gives applica
tions the flexibility to customize the checkpoint policy of
the SLACH threshold controller (Section 4).

93

class SLACH: :API {

public:

};

/_ register ckpt. policy and parameters _/
void register-policy(const Policy& p);

/- log one write operation -/
void log(int64_t obj_id, int op, ...);

/- checkpoint one object -/
void ckpt(int64_t obj_id, const void. addr,

uint32_t size);

Figure 3. The SLACH programming interface
used for logging and checkpointing.

DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Failure-free Execution Failure Recovery

Logging Checkpointing Checkpoint loading Log replaying

SLACH Periodically call For each object checkpoint, For each opera-

Man- ckpLcallback () . cail load_one_callback (). tion log record, call

al!ers reola _one_callback ().

Application For each object up- Define ckpLcallback () Define load_one_callback () Define

date, call log () . for each selected object, call : recover an object from check- replay_one_callback()

ckpt () . ooinl. : reolav an uodate operation.
SLACHAPI log () ckpt ()

Table 1 . Illustration of actions taken by various components in the SLACH framework.

3.2.1 An Example

We uses the following example to illustrate how a data ser
vice is constructed using SLACH. Assume an object Item

is defined as:

struct Item (

double price;

) ;
int quantity;

Figure 4 gives the skeleton of a service called
My Service that manages 1000 such objects. In this ex
ample, the application uses the array index as object ID.

My Service defines the operation type for updating
an item's price as OP_PRICE. Function update_price ()
shows the implementation of this write operation. Note
that operation logging is performed before updating the
object in memory and the operation log is sent to
SLACH. ckpLcallback () iterates through all 1000
memory objects and checkpoints these objects one by one.
load_one_callback () restores a memory object by copy
ing saved object data from a checkpoint. During replay,
replay_one_callback () is called to redo a logged oper
ation on a specified object.

3.3 Selective Operation Logging and
Checkpointing

Our framework employs a selective operation logging to
keep a list of operations that modify applications' memory
objects. Each log record has the following format:

(aid, op_type, parameters, timestamp),
where oid specifies the object on which the operation is ap
plied, op_type is the user-defined type of the operation, pa
rameters contain the parameters for replaying the specific
operation, and timestamp is the logical timestamp when the
operation happens. SLACH is oblivious to the meanings
of opJype and parameters, and directly passes them to a
service-specific log replay routine during recovery. Similar
to write-ahead log, logging requests are issued by service
threads prior to any state change of memory objects.

The advantage of the above operation log with a cus
tomized log-replaying callback function is that an applica
tion programmer can define domain-specific strategies on

978-1-4244-7501-8/101$26.00 ©2010 IEEE

class MyService : public SLACH: :Application

private:

Item obj[l OOO] ; 1* Application objects *1

SLACH: :API slach_; 1* SLACH API *1

static const int OP_PRICE=O; I* an op type *1

public:

) ;

1* Update an item's price: log then update *1

void update-price(int id, double p) (

slach_.log(id, OP_PRICE, &p, sizeof(p»;

obj[id] .price = p;

void ckpt_callback()

for (int i=O; i<lOOO ; i++)

slach_.ckpt(i, &obj[i], sizeof(obj[i] »;

void load_one_callback(int64_t id,

canst void *p, uint32_t size) {

memcpy(&obj[id], p, size);

void replay_one_callback(int64_t id, int op,

const para_vec& args) (

switch (op) (

case OP_PRICE:

obj[id] .price * (double*)args[O] .second;

break;

II ...

Figure 4. A simplified example of using

SLACH.

how an object update should be logged and replayed when
needed. As a special instance, we can use this to imple
ment value log, which records the whole object state after
each update operation. For applications discussed in Sec
tion 5, objects are normally partially changed and recording
the entire object state has too much space overhead. Given
SLACH's support, we only log operation-specific data nec
essary to replay update operations, which reduces log size
significantly. Noted that for certain applications, if replay
ing an operation takes a longer time, a programmer can
choose a tradeoff of implementing operation logs or value
logs.

SLACH adopts an object-level fuzzy checkpointing [14,

94 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Object during checkpointing
0 Object readlwrite

Initial State � Checkpointing Process � Checkpoint

�
-

0, (T,)
O2

-
0, (T,)

03 G
-
O,(T,)

·0
-

• •
• • •
• • •

� (u:) [Q::J . I O,(T,) I
T, T2 T3 Tn Time

Figure 5. Fuzzy checkpointing allows access
to objects that are currently not being check
pointed.

21] to avoid service disruption during the checkpointing
process. In this way, when some objects are being check
pointed, all of other objects can still be accessed in parallel.
As illustrated in Figure 5, during the checkpointing process
objects are dumped out one at a time and the checkpointing
of one object does not affect access to other objects. For
instance, when object 01 is being checkpointed, the access
to object O2 is still allowed.

Let C {01(T1), 02(T2), ... , On (Tn)} denote
the latest checkpoint before a failure. Let Ct
{01 (t), O2 (t), . . . , On(t)} denote the recovered state for
these objects at time t. Let timestamps T1 < T2 < ... <
Tn < t and there is no failures until time t. With two as
sumptions that all objects (01, O2, ... , On) are independent
and all update operations applied to these objects are deter
ministic, we can show that our scheme has the following
property.

Property 3.1 At any time t1 (tl > t) when there is a fail
ure, SlACH can roll back the states of all objects to time t.
The recovered state Ct is consistent to the state of objects
obtained by executing updating operations up to time t.

For any object Ok with a checkpoint as Ok(Tk), any update
operation after time Tk and before time t is logged. Thus
SLACH will retrieve this checkpoint Ok(Tk) and then ap
ply additional update operations in the log up to time t. This
results in a deterministic and consistent state for object Ok.
Because each object is independent of each other, logged
operations can be applied safely to produce consistent ob
ject states.

4 Adaptive Control for Checkpointing Fre

quency

The SLACH architecture includes an adaptive check
pointing frequency controller to strike a balance between

978-1-4244-7501-8/101$26.00 ©2010 IEEE

checkpointing cost and recovery speed. If checkpointing is
conducted sporadically, the operation log can become very
large, leading to lengthy service recovery. On the other
hand, frequent checkpointing degrades runtime service per
formance, because the checkpointing process competes sys
tem resources and temporarily blocks access to objects be
ing captured.

Our scheme uses an adaptive runtime controller to dy
namically adjust the checkpointing frequency. The basic
idea behind this scheme is that when the service load is
high, checkpointing should be done less frequently to avoid
service performance degradation. On the other hand, when
service load is low, the overhead of checkpointing is negli
gible, so we can conduct checkpointing more frequently to
reduce the log size for fast service recovery.

In our current SLACH implementation, a programmer
can select one of the following policies to control check
pointing frequency: the number of logged records, log file
size, or checkpointing time interval, and can also spec
ify the allowable threshold lower bound and upper bound
[LB, U B]. For example, if the number of logged records is
used, the SLACH threshold controller selects a threshold to
control the number of logged records between LB and U B.
When the number of logged records on disk exceeds this
threshold, the checkpointing process is triggered to reduce
the number of logged records.

SLACH determines the triggering threshold as follows.
When the predicted server load drops below a low wa
termark (L W), the overhead of checkpointing is negligi
ble and the lower bound is used as a threshold to perform
checkpointing more frequently. On the other hand, when
the predicted server load exceeds a high watermark (HW),
the upper bound is used to adjust the checkpoint controller
in order to perform checkpointing as sporadically as possi
ble. When the predicted server load lies between L W and
HW, we compute the threshold through a nonlinear func
tion of the server load. Specifically, the controller adjusts
the checkpoint threshold using the following formula:

Threshold = LB + F(load) x (UB - LB),
where

F(load) � { o

(load-Lw){3
HW-LW

1

load � LW

Lwdoad<Hw

load 2: HW

In our scheme, load is an exponentially weighted moving
average (EWMA) of the incoming request rate.

loadcurr = 0: X loadprev + (1 - 0:) X sample,

where loadcurr is the estimated current system load, sample
is the observed system load within the last sampling win
dow. The parameter fJ can be adjusted for different appli-

95 DSN 2010: Zhou et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

cations accordingly. In addition, HW and L W can be ad
justed and different applications can register the controller
with different policy and control parameters.

5 Implementation and Applications

We have implemented SLACH API and its runtime sup
port in C++ and it is part of a middleware infrastructure plat
form at Ask.com. Using SLACH, we have developed and
deployed a number of production data services at Ask.com
and we describe two data services below: URL property
service (UPS) and host information service (HIS). In addi
tion, we have also implemented a high-throughput persis
tent hash table (PHT) using the SLACH library and com
pared it with an implementation using Berkeley DB for in
core benchmarks. These services are described as follows.

UPS hosts meta data for tens of billions of URLs and this
meta data set is the property of each URL discovered from
the Internet such as the last modified time, the last crawled
time, document language and other classification features.
Each URL's property is a persistent object that is updated
independently and must be kept persistent after failures.
These URL properties hosted by UPS are frequently read
and updated by many other services in the Ask.com offline
system, such as crawling service and near-duplication elim
ination service. UPS runs on a cluster of machines, serving
hundreds of thousand requests per second generated from
other offline services and sometime millions of requests per
second. Meta data of different URLs is highly independent
and these URLs are partitioned among machines. Thus each
data access request is answered by one of UPS machines
and access to different URLs is served in parallel. SLACH
is used to log each memory object update at each machine
and critical local disk data is periodically copied to remote
storage to tolerate disk failures.

HIS, which runs a cluster of machines also, manages the
meta information of all web hosts on the Internet. For each
host, HIS maintains the country it belongs to, the number of
URL stored, and its network delay, etc. Both UPS and HIS
are high-throughput services with all the service data held
in memory and partitioned on hundreds of machines. But
UPS has much more write traffic on average. For example,
the property of a URL gets updated immediately following
the changes of its crawling time. At our production sites,
we have observed its write traffic varies from 20% of the
total traffic to 80% sporadically. For HIS, the host update
traffic is bursty at times because the properties of all hosts
are updated once a day or so.

Hash table is known to be a common building block for
many network services [4, 9] and we have implemented
a high-throughput persistent hash table service (PHT) that
provides atomic single-element modifications using the
SLACH library. The in-memory part of PHT is constructed

978-1-4244-7501-8/10/$26.00 ©l01O IEEE

as a number of buckets where each bucket contains multiple
elements. Locks at the bucket level guarantee mutual exclu
sion of access to different elements. In our implementation,
each bucket is constructed as a __ gnu_cxx: : hashJTlap
object. Data persistence is ensured by the SLACH library.

Our experiences with the use of SLACH have been pos
itive as service developers can focus on application logic,
leaving persistent management to SLACH. For example, in
tegrating existing UPS and HIS services with SLACH only
takes an experienced programmer less than one day. In con
trast, developing each of these two services from scratch
without SLACH would take over a month to include the
feature of log-based recovery while allowing high through
put.

6 Evaluations

We present an evaluation of SLACH with the following
objectives: 1) Demonstrate that SLACH imposes a small
run-time overhead on applications when selective logging is
integrated; 2) Study the system behavior during the check
pointing process, and illustrate that services can continu
ously handle client requests without interruptions during
checkpointing; 3) Evaluate the effectiveness of the pro
posed adaptive run-time checkpoint control mechanism; 4)
Compare the performance of persistent hash table using
SLACH with a Berkeley DB implementation for in-core
benchmarks.

The performance metrics we use are throughput and re
sponse time. In measuring the sustained throughput com
pared with the request arrival rate, we use the throughput
loss percentage defined as

SuccessfulRequests
LossPercent = 1 00 -

I
x 1 00.

Tota Requests

A loss percent of zero means that all arrived requests are
handled successfully. In terms of response time, we com
pute the average response time of all successfully processed
requests.

6.1 Settings

Our evaluation studies were conducted on a cluster of
15 machines. Each machine has dual 2.8 GHz Intel Xeon
processors with hyper-threading enabled, 4 GB of memory,
one 130 GB Seagate ST3146707LC SCSI disk, and a giga
bit Ethernet link. We run three applications described in the
previous section. Because all applications are partitioned
into a number of separate service instances running on dif
ferent machines, the evaluation focuses on the performance
and recovery of a single service instance on a node.

Table 2 summarizes the characteristics of UPS and HIS
for a single partition in terms of in-memory data size and

96 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

the maximum performance for read and write requests re
spectively. In order to determine the maximum read and
write performance, we run the service on one machine and
clients on another six machines. Each client sends out re
quests following exponentially distributed arrival intervals.
We increase the request arrival rate until there are five per
cent throughput losses. This probed request rate is then used
as the service capacity.

Table 2. Characteristics of UPS and HIS appli
cations on a single partition.

Service Max. Read Max. Write

lIOK Reqls 56K Reqls
58K Reqls 15K Reqls

Table 3 lists the parameter values used in the checkpoint
frequency control of SLACH for these two services.

Table 3. Parameters used in checkpoint fre
quency control.

6.2

Description UPS HIS

0: Moving avg. weight 0.8 0.8
UB Log upper bound 8.0 M 1.8 M
LB Log lower bound 1.0 M 0.3 M
HW High watermark 85% 85%
LW Low watermark 20% 35%

f3 Scaling factor 3 6
w Sampling window 5 s 5 s

Overhead of SLACH with Selective
Logging

We use UPS to assess runtime overhead introduced
SLACH for selective logging. In this evaluation, we com
pare the performance of two schemes: 1) Base scheme,
where logging is disabled; 2) Log scheme, which enables
selective logging. The Base scheme has better performance
as it only writes data in memory, but it does not guarantee
data persistence. For these two schemes, we compare their
performance difference by varying the percentage of writes
under different load conditions.

Figure 6 shows the results of throughput loss and re
sponse time when the write percentages are 20%, 50%, and
80% respectively. For all experiments, the Log scheme in
troduces some but reasonable runtime overhead compared

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

to the Base scheme that has no disk writes. The overhead
slightly increases when write traffic grows.

40L---���----��----W=-----=80-----=lOO�--�'�
Time(sec)

1oo,-----�----�----�----�----�----,

� 80
Q) � 60
�
� 40
�
c1! 2

°O�--�2�O-----4�O-----6�O----�80-----,�OO�--�120
Time(sec)

Figure 7. System behavior during check
pointing for UPS under 1 00% server load.

6.3 Performance of SLACH with Fuzzy
Checkpointing

In this experiment, we study the system behavior dur
ing object-level fuzzy checkpointing. The primary goal is
to illustrate that our checkpointing scheme achieves good
throughput with no service disruption during the check
pointing period.

Figure 7 shows throughput and response time during the
memory state checkpointing for UPS under 100% server
load. The checkpointing happens between time 30 and 84.
During this period of time, the service can continue han
dling client requests without interruption. During the period
when checkpointing writes 1.9 GB in-memory service data
to the disk (about 35 MB/s), the service has an 8.9% de
crease of throughput and 57.6% increase of response time.

6.4 Effectiveness of Adaptive Threshold
Selection

We evaluate the effectiveness of adaptive selection of
checkpoint threshold by comparing with a fixed threshold
policy.

We first evaluate service recovery time for the fixed
threshold approach and the adaptive scheme. The service
recovery time consists of the checkpoint loading time and
the replay time of operation logs. The checkpoint loading
time for a service is a constant factor that only depends on
the size of service data. For instance, the checkpoint load
ing times are about 20 seconds and 25 seconds for UPS and

97 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

20% write � 10r---------------,
�

50% write 80% write
� 10 ,-------------------,
�

� 40 ,-------------------, � 40 ,-------------------, � 40 r---------------,
00 00 00

g� g� g� w w w

�� �� ��
w w w � 25 � 25 � 25 0 0 0 � � �
�� �� ��

� � �

@ 15 @ 15 @ 15
w w w
� 1 a L---"l"=--'----�-----' � 1 a L-----'-____ � ____ -' � 1 a '--------�--------'

a 50 100 a 50 100 a
Load(%) Load(%)

50
Load(%)

100

Figure 6. Runtime overhead of selective logging for UPS during normal execution.

(A) UPS 16,-------------------,
14

j 12
-; 10
E
;:: ,., 8 " 15.
Il! 6
8'

...J 4

-4 1M -A 3M
-e- 8M
-+ Adaptive

0'---------------' o 20 40 60 80 100
Load(%)

4- 300K -A 900K
-e- 1800K

(B) HIS

+- Adaptive

0'---------------' o 20 40 60 80 100
Load(%)

Figure 8. A recovery speed comparison for
UPS and HIS using fixed checkpoint thresh
old with adaptive threshold control.

HIS, respectively. Thus, this experiment focuses on the dif
ference of log replay time.

Figure 8 illustrates the average log replay time for UPS
and HIS. The replay time is almost constant for fixed thresh
old scheme because of the fixed log size. For the same rea
son, using a smaller threshold results in less replay time.
The adaptive scheme selects smaller threshold values when
system is lightly loaded, thus requires less replay time than
the fixed threshold scheme with a bigger value.

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

15 40
t 'M t 'M 3M 3M

t -e- 8M 35 -e- 8M
-+ Adaptive -*- Adaptive 'i' 0 � 10 .s 30 ffi

a. �
0 E
.3 i= 25

� '5 0 B- 5 0.

g> � 20
e a:
� 15

0 0 80 100 10 0 40 60 80 100
Load(%)

Figure 9. A performance comparison of UPS
using fixed checkpoint threshold (1 M, 3M,
8M) with adaptive threshold control.

We then evaluated the run-time overhead for these two
approaches. Figure 9 compares the run-time performance of
UPS using fixed checkpoint threshold and adaptive thresh
old control under different service load. The fixed thresh
old policies use 1 million, 3 million, and 8 million log en
tries respectively. For the fixed threshold policy, we can see
that a higher threshold value always results in lower runtime
overhead. This is due to the fact that a policy with a smaller
threshold value would result in more frequent checkpoint
ing, and thus higher run-time overhead. The adaptive ap-

98 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

proach performs favorably under different load conditions
and has comparable performance as the best fixed threshold
policy of 8 million.

6.5 Performance of PHT

This experiment evaluates the maximum throughput of
lookups and updates on the persistent hash table using
SLACH and using Berkeley DB's BTREEI. We limit the
maximum memory for both schemes to be 1.5 GB. For
Berkeley DB, the version being used is 4.4.2; page size
is set to 32 KB; and cache size is 1.5 GB. To perform
a fair comparison, we configure both schemes in a mode
that guarantees no loss of data after an application crash,
as long as the operating system does not also crash. For
SLACH, we flush every operation log to the OS buffer. For
Berkeley DB, we configure the transaction options to use
both DB1XN_WRITE...NOSYNC and DB...AUTO_COMMIT
flags [I].

-& SlACH -e- BerkeleyDB

o��������
10' 102 103 10'

Hash table value size (bytes)

x 10' (8) Random Update

9 �� ____ �� __ -, t �t:g�-d<PI
-e- 8erkeleyDB
-+ BerkeleyDB-ckpt

o l,-.!:.=�='!':::::!i'::=��
10' 102 103 10'

Hash table value size (bytes)

Figure 1 0. A comparison of maximum
throughput of random lookups and updates
on PHTs built out of SLACH and Berkeley DB.

This experiment studies the performance of PHT when
the hash table data can be completely held in memory. We
vary the size of hash table elements from 30 bytes to 10 KB
and conduct random lookups and updates on the hash table.

Figure 10 (A) shows the maximum throughput of ran
dom lookups as a function of hash table value size. The
SLACH scheme outperforms the Berkeley DB scheme for
all value sizes, and the smaller the value size, the higher
performance yielded by SLACH. For a 30-byte value size,
the performance of SLACH scheme is 533.1 % higher
than that of Berkeley DB scheme. This is because per
operation overhead is the performance bottleneck when
value size is small. The SLACH scheme uses a more ef-

I In theory, Berkeley DB's HASHTABLE is a more direct comparison
to PHT, however, our experiments show that Berkeley DB's HASHTABLE
performs even worse than BTREE.

978-1-4244-7501-8/101$26.00 ©2010 IEEE

ficient __ gnu_cxx: : hashJr\ap as the internal data struc
ture, whose single key lookup only takes about 0.5 p,s, ten
times faster than Berkeley DB. With the increase of value
size, the overhead of memory copying gradually dominates
the response time. As a result, the difference between these
two schemes becomes smaller.

Figure 10 (B) shows the performance of random up
dates. Again, the SLACH scheme outperforms Berkeley
DB scheme for all value sizes. The reasons that SLACH
scheme provides better performance are two folds. First,
Berkeley DB incurs more per-operation overhead; Second,
Berkeley DB involves more disk IIOs than SLACH.

Figure 10 (B) also shows that SLACH checkpointing
has much less overhead than Berkeley DB. This is because
Berkeley DB checkpointing is not asynchronous and it has
to flush all committed changes in the log to the database
file. SLACH conducts object-level fuzzy checkpointing so
that most requests can be served in parallel as usual.

7 Related Work and Concluding Remarks

Previous research has recognized the importance of pro
viding infrastructure platform for building cluster-based
network services [8, 17]. Distributed replication [9, 17, 20]
provides reliability by replicating data on a number of
servers for network services. Replication support for highly
available key-value stores is the key research focus in the
Dynamo [4] to achieve a 24x7 "always-on" experience.
Replication is an orthogonal strategy compared to log-based
recovery and is needed for many applications.

Logging has been extensively used in database sys
tems [14] and distributed message systems [6]. To capture
the non-deterministic events of a multi-threaded network
server, we choose to log operations that change the appli
cation state, which is more fine-grained than logging the
incoming application requests. Process-based checkpoint
ing is a well-known technique for fault tolerance [2, 7, 16]
and migration [12, 15]. The idea is to suspend a program's
execution, save the entire address space of the process, and
then resume the execution [19]. Unlike these process-based
checkpointing, object-level fuzzy checkpointing exploits
the data independence of applications and conducts fine
grained checkpointing without service disruptions. Fuzzy
checkpointing is first explored in database systems [14].
Recently, Wang et al. [21] has applied fuzzy checkpointing
for middleware servers. For stream processing, SPADE lan
guage of System S [10] has been extended to support check
pointing, which allows states of user-defined operators to be
saved. The targeted applications and programming interface
of SPADE are different from SLACH.

SLACH provides a lightweight programming framework
for supporting selective logging of update operations and
fuzzy object checkpointing while achieving very high per-

99 DSN 2010: Zhou et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

formance and concurrency, thus simplifying the construc
tion of high-throughput persistent data services. Another
contribution of this work is adjusting checkpoint frequency
dynamically to meet throughput demands as much as possi
ble. Our experimental studies of three applications show
that SLACH can successfully deliver data persistence as
well as very high runtime throughput.

The experiment of the persistent hash table shows that
SLACH is 3-8 times faster than an alternative approach us
ing Berkeley DB and the performance degradation imposed
by the checkpoint of SLACH is only one fourth of that of
Berkeley DB. Database systems such as Berkeley DB sup
port general persistent storage with logging and thus it is
hard for them to meet high throughput demands under a
limited resource budget as they require more machines to
provide much more functionalities than SLACH.

Our work focuses on addressing performance challenges
for a class of applications by exploiting its characteristics
(e.g. data object independence) and conducting fine-grained
checkpointing without service disruptions for high through
put. Our system only logs deterministic operations because
these operations can be replayed deterministically. While it
is a limitation, our experience at Ask, Google, Microsoft,
and Yahoo is that many data mining and Internet applica
tions have deterministic operations and the proposed sup
port is suitable for many such applications.

Acknowledgment

The authors would like to thank anonymous reviewers
for their helpful comments. Much of work described was
conducted when the authors were at Ask.com. Jingyu Zhou
is supported in part by National Natural Science Foundation
of China (Grant No. 60811130528).

References

[I] Berkeley DB Reference Guide. http://www .

sleepycat.com/docs/api_c/env_set_flags.

html.

[2] R. Baldoni, F. Quaglia, and M. Rayna. Consistent checkpoint
ing for transaction systems. The Computer Journal, 44(2):92-

100,2001.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A Distributed Storage System for Structured Data.

In OSDl, pages 205-218, Seattle, WA, Nov. 2006.
[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: amazon's highly available key-value

store. In Symposium on Operating System Principles, pages

205-220, Stevenson, WA, Oct. 2007.
[5] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The Per

formance of consistent checkpointing. In the II th Symposium

on Reliable Distributed Systems, Oct 1992.

978-1-4244-7501-8/101$26.00 ©2010 IEEE

[6] E. N. Elnozahy and W. Zwaenepoel. On the Use and Imple

menting of Message Logging. In the 24th International Sym

posium on Fault-Tolerant Computing, pages 298-307, 1994.
[7] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John

son. A Survey of Rollback-Recovery Protocols in Message

Passing Systems. ACM Computer Surveys, 34(3):375-408,

2002.
[8] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gau

thier. Cluster-Based Scalable Network Services. In Proc.

of the 16th Symposium on Operating Systems Principles, St.

Malo, France, Oct. 1997.
[9] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.

Scalable, Distributed Data Structures for Internet Service

Construction. In OSDI, 2000.
[10] G. Jacques-Silva, B. Gedik, H. Andrade, and K.-L. Wu.

Language-level checkpointing support for stream processing

applications. In Proc. of Int. Con! on Dependable Systems

and Networks (DSN), Lisbon, Portugal, June 2009.
[II] B. C. Ling, E. Kiciman, and A. Fox. Session State: Beyond

Soft State. In NSDl, pages 295-380, 2004.
[12] M. Litzkow and M. Solomon. Supporting Checkpointing and

Process Migration Outside the UNIX Kernel. In Usenix Con

ference, pages 283-290, Jan 1992.
[13] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring Fail

ure Transparency and the Limits of Generic Recovery. In the

4th Symposium on Operating Systems Design and Implemen

tation, Oct 2000.
[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. Aries: a transaction recovery method support

ing fine-granularity locking and partial rollbacks using write

ahead logging. ACM Trans. Database Syst., 17(1):94-162,

1992.
[15] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and

Implementation of Zap: A System for Migrating Computing

Environments. In OSDI, Dec 2002.
[16] B. Randell, P. A. Lee, and P. C. Treleaven. Reliability Is

sues in Computing System Design. ACM Computer Surveys,

10(2): 123-165, 1978.
[17] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,

and H. Zhu. Neptune: Scalable Replica Management and

Programming Support for Cluster-based Network Services. In

USENIX Symposium on Internet Technologies and Systems,

pages 197-208, San Francisco, CA, 2001.
[18] J. S.Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans

parent Checkpointing under Unix. In Usenix Winter 1995

Technical Conference, Jan 1995.
[19] Y. Tamir and C. H. Sequin. Error Recovery in Multicomput

ers using global checkpoints. In the International Conference

on Parallel Processing, pages 32-41, 1984.
[20] R. van Renesse and F. B. Schneider. Chain Replication for

Supporting High Throughput and Availability. In the 6th Sym

posium on Operating Systems Design and Implementation,

Dec 2004.
[21] R. Wang, B. Salzberg, and D. B. Lomet. Log-based recovery

for middleware servers. In S1GMOD, pages 425-436, 2007.
[22] Y. M. Wang, Y. Huang, K.-P. Vo, P. Y. Chung, and C. Kin

tala. Checkpointing and its applications. In Proc. IEEE

Fault-Tolerant Computing Symposium (FTCS-25), pages 22-

31, June 1995.
[23] H. Yu and A. Vahdat. Design and Evaluation of a Continuous

Consistency Model for Replicated Services. In OSD1, 2000.

100 DSN 2010: Zhou et al.

