
Cristina Nita-Rotaru Lecture 2/ Spring 2006 1

CS603: Distributed Systems

Lecture 2: Client-Server
Architecture, RPC, Corba

Cristina Nita-Rotaru Lecture 2/ Spring 2006 2

ATC Architecture

NETWORK INFRASTRUCTURENETWORK INFRASTRUCTURE

 DATABASEDATABASE

HOW WOULD YOU START BUILDING SUCH A SYSTEM?

Cristina Nita-Rotaru Lecture 2/ Spring 2006 3

Outline

l Technologies/Protocols used in
Designing Distributed Systems
ß Client/Server

ß RPC

ß Corba

ß J2EE

ß .NET

ß Web Services

Cristina Nita-Rotaru Lecture 2/ Spring 2006 4

Client/Server Architecture

l Functionality is partitioned in a set of services
provided by a set of servers

l Clients (applications) interact with each
through the servers

l Examples:
ß File servers
ß Database servers
ß Network name servers
ß Network time servers
ß Mail servers
ß Web servers

Cristina Nita-Rotaru Lecture 2/ Spring 2006 5

Example: Group Communication Systems

l Reliable and ordered message delivery

l Group membership service (list with connected members)

Group A

Group B

Client Server

Clients do not connect with each other,
they communicate using the GCS servers

Cristina Nita-Rotaru Lecture 2/ Spring 2006 6

Client/Server General Architecture

l Client must ‘bind’ to
a server

l Standard services
run on well-known
ports

l Clients discover
services (directory
of servers providing
a desired service)

Cristina Nita-Rotaru Lecture 2/ Spring 2006 7

Styles of Client/Server

l Stateless: server does not keep any information
between requests. There may be a shared state in
the form of cache, but the correct function does not
require the shared state to be accurate.

l Stateful: server remembers information between
requests. Client may take local actions based on
accuracy of information.

l Can you think about examples in each case?

Cristina Nita-Rotaru Lecture 2/ Spring 2006 8

Remote Procedure Call (RPC)

Local function A
…
Remote function B

A
B

Provides support for programs to call a procedure
on a remote machine “just” as you would on the
local machine.(Birrell and Nelson 1985)

Cristina Nita-Rotaru Lecture 2/ Spring 2006 9

client server
“binds” to

server

prepares,
sends request

unpacks reply

registers with
name service

receives request

invokes handler
sends reply

The basic RPC protocol

Cristina Nita-Rotaru Lecture 2/ Spring 2006 10

RPC

l Provides a portable, high-level programming
interface, hides details as byte-ordering,
alignment

l The remote procedure interface defines all
communication.

l Servers can be found with the help of
portmapper:
ß Server publish port, name and version with the

portmapper daemon
ß Client contacts the portmapper and asks where it can

find the remote procedure, using name and version
ids. The portmapper daemon returns the address and
client and server communicate directly.

Cristina Nita-Rotaru Lecture 2/ Spring 2006 11

RPC: What can go wrong?

l Network failure, client failure, server failure
l Runs on UPD, reliability is achieved using

acknowledgments
ß If timeout with no ack, resend packet.
ß May result in replayed requests.

l Detect duplicates: a sequence number and
timestamp embedded to enable detection of
duplicates.

Cristina Nita-Rotaru Lecture 2/ Spring 2006 12

RPC Optimization

l Delay sending acks, so
that imminent reply itself
acts as an ack.

l Don’t send acks after each
packet.

l Send ack only at the end
of transmission of entire
RPC request.

l NACK sent when missing
sequence number
detected

Cristina Nita-Rotaru Lecture 2/ Spring 2006 13

What does a failed request mean?

l Client is waiting for acknowledgment that
does not come

l What does this mean: Network failure
(also long delay) and/or machine failure!

l How long should the client wait?

 IF THE MACHINE FAILED, DID THE
SERVER PROCESS THE REQUEST?????

Cristina Nita-Rotaru Lecture 2/ Spring 2006 14

Example: Server Replication

l Provide a highly available service using two servers:
a primary and a backup

l The primary logs everything to the backup
l If primary crashes, the backup soon catches up and

can take over

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

Cristina Nita-Rotaru Lecture 2/ Spring 2006 15

Normal case

l Everybody connected to the backup, no problems

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

Cristina Nita-Rotaru Lecture 2/ Spring 2006 16

Things go wrong…

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

Primary is down

The backup
Is down

Primary is down

Primary is
down

Cristina Nita-Rotaru Lecture 2/ Spring 2006 17

Things go very wrong…

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

I am the new
Primary !!!!

I am still the
Primary

 Swich to backup

Oops, no
Service !

Cristina Nita-Rotaru Lecture 2/ Spring 2006 18

SO WHAT?
Remember the ATC System: What if the

system is used to answer the question “is

anyone flying in such-and-such a sector of

the sky”?????

Cristina Nita-Rotaru Lecture 2/ Spring 2006 19

How to fix it???
 Intuitively all participants should agree

on who is alive and who is not, should
agree on who is the primary

 We will see later more details
about this

Cristina Nita-Rotaru Lecture 2/ Spring 2006 20

RPC on TCP

l TCP gives reliable communication when both
ends and the network connecting them are up.

l RPC protocol itself does not need to employ
timeouts and retransmission: less complex
implementation.

l Broken connections reported by TCP mean the
same thing they did earlier (without TCP):
Client still doesn’t know whether the server
processed its request.

Cristina Nita-Rotaru Lecture 2/ Spring 2006 21

RPC Semantics

l “Exactly Once”
ß Each request handled exactly once.
ß Impossible to satisfy, in the face of failures.
ÿ Can’t tell whether timeout was because of node failure

or communication failure

l “At most Once”
ß Each request handled at most once.
ß Can be satisfied, assuming synchronized clocks, and

using timestamps.

l “At least Once”
ß If client is active indefinitely, the request is eventually

processed (maybe more than once)

Cristina Nita-Rotaru Lecture 2/ Spring 2006 22

l RPC: remote procedure call

l Lots of applications are object-oriented

 How to provide support for
distributed object oriented
applications?

Cristina Nita-Rotaru Lecture 3/ Spring 2006 2

What are Web Services?

l Software components that allows
applications (different programming
languages and different platforms) to
exchange data over computer networks

l Communication is via SOAP (uses
HTTP)

l Web services can be described in a
standard way WSDL (uses XML)
language

Cristina Nita-Rotaru Lecture 3/ Spring 2006 3

Benefits

l Software components that allows
applications (different programming
languages and different platforms) to
exchange data over computer networks

ß Portability, vendor, platform independence

Cristina Nita-Rotaru Lecture 3/ Spring 2006 4

Benefits

l Communication is via SOAP (uses
HTTP)

ß Use of HTTP ensures that web services can
work through many common firewall security
measures without requiring changes to their
filtering rules.

Cristina Nita-Rotaru Lecture 3/ Spring 2006 8

Web Services: Details

l Service must be published
l Client must
ß Discover the service
ß Bind to the server
ß Pack the request (marshaling) and send the SOAP request

l Server must
ß Unpack the request (demarshaling), handles it,

computes result.
ß Sends answer back in the reverse direction: from the

server to the SOAP router back to the client.

l Communication goes through the SOAP router

Cristina Nita-Rotaru Lecture 3/ Spring 2006 9

SOAP

l a cleansing agent made from the

 salts of vegetable or animal fats

 OOOPs! Wrong definition :)

l Simple Object Access Protocol SOAP : lightweight
XML-based protocol for exchange of information in a
decentralized, distributed environment:
ß an envelope that defines a framework for describing what is

in a message and how to process it

ß a set of encoding rules for expressing instances of
application-defined datatypes

ß a convention for representing remote procedure calls and
responses

Cristina Nita-Rotaru Lecture 3/ Spring 2006 17

Where Web Services Fail Short

l Allow the data center to control decisions the
client makes

l Provide assistance in implementing naming
and discovery in scalable cluster-style services
ß How to load balance? How to replicate data? What

precisely happens if a node crashes or one is
launched while the service is up?

ß Help with dynamics. For example, best server for a
given client can be a function of load but also affinity,
recent tasks, etc

Cristina Nita-Rotaru Lecture 3/ Spring 2006 24

How Web Services Deal with Failures

l Failures of
ß naming service

ß backend servers

ß clients

l As other technologies, Web services suffers
from:
ß can not distinguish between crash failures and

transient failures (crash vs. latency)

ß when the service reports an error client does not know
details about what happened

Cristina Nita-Rotaru Lecture 3/ Spring 2006 25

Web Service Applications

l Grid Computing: Distributed computing

l Involves coordinating and sharing computing,
application, data, storage, or network resources
across dynamic and geographically dispersed
organizations.

l Research challenges: scalability, security, system
management

l Computing power and storage increase, network
remains the bottleneck

Cristina Nita-Rotaru Lecture 3/ Spring 2006 26

Future? Autonomic Computing

l Targets large-scale computer systems

l Computers must learn to manage themselves, in
accordance with high-level guidance from humans.

l Self-monitoring, self-configuration, self-optimization,
self-healing, and/or self-protection.

l Specific self-managing components, such as server,
client, database, storage, or network elements.
Emphasis should be placed on interactions with
other components, or techniques or lessons that may
generalize to other components.

l http://www.autonomic-conference.org/

Cristina Nita-Rotaru Lecture 3/ Spring 2006 28

Next …

l We will look at fundamental concepts in
distributed systems:
ß Time

ß Consistency

ß Detecting failures

ß Membership

