
CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recall our discussion of time

Logical clocks: represent part of →
relation, small overhead
Vector clocks: accurately represent →
but more costly
Wall clocks: tradeoff between precision
and accuracy.

Rarely precise enough for use in protocols
Hence often view time as an “add on”

Today: “Simultaneous” actions

There are many situations in which we
want to talk about some form of
simultaneous event

Our missile interceptor is one case
But think about updating replicated data

Perhaps we have multiple conflicting updates
The need is to ensure that they will happen in
the same order at all copies
This “looks” like a kind of simultaneous action

Temporal distortions

Things can be complicated because we
can’t predict

Message delays (they vary constantly)
Execution speeds (often a process shares a
machine with many other tasks)
Timing of external events

Lamport looked at this question too

Temporal distortions

What does “now” mean?
p0 a

f

e

p3

b

p2

p1
c

d

Temporal distortions

What does “now” mean?
p0 a

f

e

p3

b

p2

p1
c

d

Temporal distortions

Timelines can “stretch”…

… caused by scheduling effects,
message delays, message loss…

p0 a

f

e

p3

b

p2

p1
c

d

Temporal distortions

Timelines can “shrink”

E.g. something lets a machine speed up

p0 a

f

e

p3

b

p2

p1
c

d

Temporal distortions

Cuts represent instants of time.

But not every “cut” makes sense
Black cuts could occur but not gray ones.

p0 a

f

e

p3

b

p2

p1
c

d

Consistent cuts and snapshots

Idea is to identify system states that
“might” have occurred in real-life

Need to avoid capturing states in which a
message is received but nobody is shown
as having sent it
This the problem with the gray cuts

Temporal distortions

Red messages cross gray cuts “backwards”

p0 a

f

e

p3

b

p2

p1
c

d

Temporal distortions

Red messages cross gray cuts “backwards”

In a nutshell: the cut includes a
message that “was never sent”

p0 a

e

p3

b

p2

p1
c

Who cares?

Suppose, for example, that we want to
do distributed deadlock detection

System lets processes “wait” for actions by
other processes
A process can only do one thing at a time
A deadlock occurs if there is a circular wait

Deadlock detection “algorithm”

p worries: perhaps we have a deadlock
p is waiting for q, so sends “what’s your
state?”
q, on receipt, is waiting for r, so sends
the same question… and r for s…. And s
is waiting on p.

Suppose we detect this state

We see a cycle…

… but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

Phantom deadlocks!

Suppose system has a very high rate of
locking.
Then perhaps a lock release message
“passed” a query message

i.e. we see “q waiting for r” and “r waiting for s”
but in fact, by the time we checked r, q was no
longer waiting!

In effect: we checked for deadlock on a gray
cut – an inconsistent cut.

Consistent cuts and snapshots

Goal is to draw a line across the system
state such that

Every message “received” by a process is
shown as having been sent by some other
process
Some pending messages might still be in
communication channels

A “cut” is the frontier of a “snapshot”

Estudar

Chandy, K. M., and L. Lamport,
“Distributed Snapshots: Determining
States of Distributed Systems”, ACM
Transactions On Computer Systems:3:1
(February 1985): 63-75
Ou Cap. 11 Coulouris (Seção 11.5.3)

Chandy/Lamport Algorithm

Assume that if pi can talk to pj they do so
using a lossless, FIFO connection
Now think about logical clocks

Suppose someone sets his clock way ahead and
triggers a “flood” of messages
As these reach each process, it advances its own
time… eventually all do so.

The point where time jumps forward is a
consistent cut across the system

Using logical clocks to make cuts

p0 a

f

e

p3

b

p2

p1
c

d

Message sets the time
forward by a “lot”

Algorithm requires FIFO channels: must
delay e until b has been delivered!

Using logical clocks to make cuts

p0 a

f

e

p3

b

p2

p1
c

d

“Cut” occurs at point
where time advanced

Turn idea into an algorithm
To start a new snapshot, pi …

Builds a message: “Pi is initiating snapshot k”.
The tuple (pi, k) uniquely identifies the snapshot

In general, on first learning about snapshot (pi, k), px
Writes down its state: px’s contribution to the snapshot
Starts “tape recorders” for all communication channels
Forwards the message on all outgoing channels
Stops “tape recorder” for a channel when a snapshot
message for (pi, k) is received on it

Snapshot consists of all the local state contributions
and all the tape-recordings for the channels

Chandy/Lamport

This algorithm, but implemented with
an outgoing flood, followed by an
incoming wave of snapshot
contributions
Snapshot ends up accumulating at the
initiator, pi

Algorithm doesn’t tolerate process
failures or message failures.

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start
a snapshot

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring
incoming channels

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-
y”

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on
outgoing channels…

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

zs

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

Chandy/Lamport

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

What’s in the “state”?

In practice we only record things important to
the application running the algorithm, not the
“whole” state

E.g. “locks currently held”, “lock release
messages”

Idea is that the snapshot will be
Easy to analyze, letting us build a picture of the
system state
And will have everything that matters for our real
purpose, like deadlock detection

Other algorithms?

Many algorithms have a consistent cut
mechanism hidden within

More broadly we’ll see that notions of time
are sometimes explicit in algorithms
But are often used as the insight that
motivated the developer
By thinking about time, he or she was able
to reason about a protocol

We’ll often use this approach

	CS514: Intermediate Course in Operating Systems
	Recall our discussion of time
	Today: “Simultaneous” actions
	Temporal distortions
	Temporal distortions
	Temporal distortions
	Temporal distortions
	Temporal distortions
	Temporal distortions
	Consistent cuts and snapshots
	Temporal distortions
	Temporal distortions
	Who cares?
	Deadlock detection “algorithm”
	Suppose we detect this state
	Phantom deadlocks!
	Consistent cuts and snapshots
	Estudar
	Chandy/Lamport Algorithm
	Using logical clocks to make cuts
	Using logical clocks to make cuts
	Turn idea into an algorithm
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	Chandy/Lamport
	What’s in the “state”?
	Other algorithms?

