
1

D
istributed System

s (IC
E 601)

C
oncurrency C

ontrol -Part2

D
ongm

an
Lee

IC
U

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

C
lass O

verview
�•

Transactions
�•

W
hy C

oncurrency C
ontrol

�•
C

oncurrency C
ontrol Protocols

�–
pessim

istic
�–

optim
istic

�–
tim

e-based

2

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

O
ptim

istic C
oncurrency C

ontrol
�•

Principle
�–

transaction proceeds w
ithout checking conflict w

ith others and
prior to com

m
it, validatesits change by checking to see if data

item
s have changed by com

m
itted transactions

�–
each transaction has three phases

R
ead phase

com
m

itted version of data item
s for read -read set

tentative version of data item
s for w

rite -w
rite set

V
alidation phase

starts w
ith EndTransaction request

validate its change by checking to see if data item
s have changed by

other transactions
if no conflicts, com

m
it; otherw

ise, abort
W

rite phase
m

ake changes perm
anent

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

O
ptim

istic C
oncurrency C

ontrol (cont.)
�•

V
alidation test rule

�–
Tjis serializable

w
ith respect to overlapping Tiif their operations

conform
 to the follow

ing rules

�–
transaction # is sequentially assigned w

hen validation phase starts

�•
V

alidation m
echanism

s
�–

backw
ard validation

�–
forw

ard validation

Ti
Tj

R
ule

Read W
rite 1. Tim

ust not read data item
s w

ritten by Tj
W

rite Read 2. Tjm
ust not read data item

s w
ritten by Ti

W
rite W

rite
3. Tim

ust not w
rite data item

s w
ritten by Tjand

Tjm
ust not w

rite data item
s w

ritten by Ti
(A

ssum
ption: Tialw

ays preceeds Tjif i<
jand Tioverlaps w

ith Tj)

3

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

O
ptim

istic C
oncurrency C

ontrol (cont.)

�•
B

ackw
ard validation

�–
algorithm

checks transaction in validation phase w
ith other preceding

overlapping transactions that have entered validation phase
W

rite operations are ok since R
ead operations of earlier transactions are

done already (R
ule1)

check if Read
operations have any conflict w

ith W
rite

operations of
earlier overlapping transactions (R

ule 2) => if yes, abort transaction

V
alid := True;

for Ti := startTn + 1 to finishTn
do

if read set of Tj intersects w
rite set of Ti

V
alid := False;

end

�–
no check is needed for transaction w

ith only W
rite operations

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

O
ptim

istic C
oncurrency C

ontrol (cont.)

E
arlier com

m
itted

transactions

W
orking

V
alidation

U
pdate

T
1

Tv
Transaction
being validated

T
2

T
3

C
heck if read set of Tv

conflicts w
ith

the w
rite sets of the preceding

overlapping transactions that have
entered validation phase

�•
B

ackw
ard validation exam

ple

4

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

�•
Forw

ard validation
�–

algorithm
checks transaction in validation phase w

ith other overlapping active
transactions

Read operations are ok since later transactions do not w
rite until the Tjis

done (R
ule 2)

check if W
rite

operations have any conflict w
ith Read

operations of
overlapping active transactions (R

ule 1) => if yes, abort transaction

O
ptim

istic C
oncurrency C

ontrol (cont.)

V
alid := True;

for Ti := active1 to activeN

do
if w

rite set of Tj intersects read set of Ti
V

alid := False;
end

�–
no check is needed for transaction w

ith only Read operations
�–

other options than aborting the current transaction
defer validation until conflicting transaction is done
abort conflicting transaction instead

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

O
ptim

istic C
oncurrency C

ontrol (cont.)

Tv
Transaction
being validated

Later active
transactions

active
1

active
2

�•
Forw

ard validation exam
ple

C
heck if w

rite set of Tv
conflicts w

ith
the read sets of the overlapping
active transactions

5

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

�•
Issues in optim

istic concurrency control
�–

O
verhead

B
ackw

ard validation
if there exists long transaction, retention of old w

rite sets ofdata item

m
ay be a problem

Forw
ard validation
a new

 transaction can start during the validation process -> increase
chances by w

hich the current transaction is forced to abort or delay

�–
Starvation

prevention of a transaction ever being able to com
m

it

O
ptim

istic C
oncurrency C

ontrol (cont.)

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering

�•
A

ssum
ption

�–
each transaction is given a unique tim

estam
p w

hen it starts
�–

there is only one version of data item
 and only one transaction can

access it at a tim
e => m

ultiple tentative versions of data to increase
concurrency

�•
R

ule
�–

W
rite

operation is valid only if the data w
as last read and w

ritten
by earlier transaction

Rule1: Tjm
ust not w

rite data item
 read by any Ti w

here Ti > Tj (i.e. Tj>=
m

ax read tim
e stam

p of data item
)

Rule 2: Tjm
ust not w

rite data item
 w

ritten by any Ti w
here Ti > Tj (i.e. Tj>

m
ax w

rite tim
e stam

p of com
m

itted data item
)

�–
Read

operation is valid only if the data w
as last w

ritten by earlier
transaction

Rule 3: Tjm
ust not read data item

 w
ritten by Ti w

here Ti > Tj (i.e. Tj> w
rite

tim
e stam

p of com
m

itted data item
)

6

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering (cont.)

�•
W

rite operations and tim
e stam

p
if (T

c
m

axim
um

 read tim
estam

p on D
&

&

T
c > w

rite tim
estam

p on com
m

itted version of D
)

perform
 w

rite operation on tentative version of D
w

ith w
rite tim

estam
p T

c

else /* w
rite is too late */

A
bort transaction T

c

(a)
w

rite
w

rite

(c)
T

3
w

rite
object produced by
transaction T

i (w
ith

w
rite tim

estam
p T

i)

(b)
T

3
T

3w
rite

(d) T
3

T
1 <T

2 <T
3 <T

4

Tim
e

B
efore

A
fter

T
2

T
2

T
3

Tim
e

B
efore

A
fter

T
2T
2

T
3

T
1

T
1

Tim
e

B
efore

A
fter

T
1T
1

T
4T
3

T
4

Tim
e

Transaction
aborts

B
efore

A
fter

T
4T
4

Tentative

C
om

m
itted

T
i

T
i

K
ey:

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering (cont.)

�•
R

ead operations and tim
e stam

p
if (T

c > w
rite tim

estam
p on com

m
itted version of D

) {
let D

selected be the version of D
w

ith the m
axim

um
 w

rite tim
estam

p
T

c
if (D

selected is com
m

itted)
perform

 read
operation on the version D

selected
elseW

aituntil the transaction that m
ade version D

selected com
m

its or aborts
then reapply the read

rule
} elseA

bort transaction T
c

7

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering (cont.)

�•
R

ead operations and tim
e stam

p -exam
ple

Tim
e

read
proceeds

S
elected

T
2

Tim
e

read
proceeds

S
elected

T
2

T
4

Tim
e

read w
aits

S
elected

T
1

T
2

Tim
e

Transaction
aborts

T
4

K
ey:

Tentative

C
om

m
itted

T
i

T
i

object produced
by transaction T

i
(w

ith w
rite tim

estam
p T

i)
T

1 < T
2 < T

3 < T
4

(a) T
3 read

(c) T
3 read

(d) T
3 read

(b) T
3 read

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering (cont.)

�•
M

ulti-version tim
estam

p ordering
�–

keep old versions of com
m

itted data as w
ell as tentative versions

read operation is alw
ays allow

ed; m
ay need to w

ait for earlier
transactions to com

plete
no conflict betw

een w
rite operations since each transaction w

rites its
ow

n com
m

itted version (rem
ove rule 2)

�–
w

rite rule
if read tim

e stam
p (m

ost recent version) <= Tj then perform
 w

rite
operation on a tentative version w

ith w
rite tim

e stam
p Tj

8

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

Tim
estam

p O
rdering (cont.)

�•
M

ulti-version tim
estam

p ordering -exam
ple

Tim
e

T4 w
rite;

T5 read;
T3 w

rite;
T3 read;

T
2

T
3

T
5

T
1

T
3

T
1

< T
2

< T
3

< T
4

< T
5

K
ey:

Tentative
C

om
m

itted

T
i

Ti
Tk

Tk
object produced by transaction
T

i (w
ith w

rite tim
estam

p T
i and

read tim
estam

p T
k)

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (2/2)

C
om

parison
�•

Locking vs. tim
estam

p ordering
�–

both are pessim
istic

�–
dynam

ic vs static ordering
�–

w
rite-dom

inated vs. read-dom
inated

�•
O

ptim
istic

�–
efficient w

hen there are few
 conflicts

�•
N

ew
 requirem

ents to concurrency control
�–

m
ulti-user applications

im
m

ediate notification of change (relaxed isolation)
need to be able to access uncom

m
itted data item

�–

co-operative C
A

D
/C

A
M

co-operations of users to resolve data conflicts

