
1

Distributed Systems (ICE 601)
Distributed Transactions

Dongman Lee

ICU

Distributed Systems - Distributed Transactions

Class Overview

• Distributed Transactions

• Atomic Commit Protocol

• Distributed Deadlock

2

Distributed Systems - Distributed Transactions

Distributed Transactions

• Definition
– a transaction in which more than one server is involved

multiple servers are called by a client (simple distributed transaction)

a server calls another servers (nested transaction)

– execution of program accessing shared data at multiple sites [Lamport]

Distributed Systems - Distributed Transactions

Distributed Transactions - example

..

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participantjoin

join

join

T

a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

openTransaction

b.withdraw(T, 3);

closeTransaction

T = openTransaction
a.withdraw(4);
c.deposit(4);
b.withdraw(3);
d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX

3

Distributed Systems - Distributed Transactions

Atomicity in Distributed Transaction

• Requirement
– a client requires to get congruent commitment from involved

servers due to atomic property of a transaction

• Resolution
– Coordination

– Atomic commitment protocol

Distributed Systems - Distributed Transactions

Coordination in Distributed Transaction

• How it works
– one of servers become a coordinator and the others workers

who becomes a coordinator
simple transaction: first server

nested transaction: top-level server

– each transaction should be globally identifiable (server id + unique #)

– coordinator
maintains a list of participating servers

collects results from workers and makes a decision to guarantee
congruent commitment of transaction

– workers
aware of coordinator’s existence

reports its result to the coordinator and follows a decision from it

4

Distributed Systems - Distributed Transactions

Atomic Commit Protocol

• Atomic commitment problem [Babaoglu & Toueg]
– bring a transaction to a globally consistent conclusion despite

failures
commit: all participants will make the transaction’s update permanent

decision is based on unilateral agreement among all participants

abort: none will

⇒atomic commit protocol that should satisfy these properties
all participants that decide reach the same decision

if any participant decides commit, then all participants must have
voted yes

if all participants vote yes and no failure occur, the all participants
decide commit

each participant decides at most once (i.e. decision is not reversible)

Distributed Systems - Distributed Transactions

Atomic Commit Protocol (cont.)

• Broadcast property
– (validity) if a coordinator broadcasts a message m, the all

participants eventually receive m

– (integrity) for any message m, each participant receives m at most
once and only if a coordinator actually broadcasts m

– (timeliness) there exists a known constant d such that broadcast of
m is initiated at real-time t, no participant receives m after real-
time t + d

5

Distributed Systems - Distributed Transactions

Atomic Commit Protocol (cont.)

• Generals Paradox

– There is no fixed-length protocol that will allow the generals to
agree on a common time to attack

Distributed Systems - Distributed Transactions

Why Multiple Phase Atomic Commit Protocol?

• Example: one phase atomic commit
– mechanism

coordinator keeps sending workers a commit or abort request until all
of them acknowledged that they had carried it out

– does not allow a coordinator to make a unilateral decision to abort
a transaction when a client requests a commit

there’s no room for servers to have decision consensus process among
themselves

it is caused mainly by concurrency control

allow one or more preparation phases before making a
final decision
– two phase commit protocol is most widely used

general and inexpensive

window of time during which servers are not allowed to abort the
transaction is small

6

Distributed Systems - Distributed Transactions

Two Phase Commit (2PC) Protocol

• Mechanism
– commit process consists of two message passing phases

phase 1: voting

phase 2: completion of voting result

coordinator worker
prepare

ready

commit

done

collect replies
from workers

commit

Distributed Systems - Distributed Transactions

2PC Protocol (cont.)

• Phase 1
– coordinator

send “prepare (CanCommit?)”
message to each worker

wait until
a response (“ready” or “no” is
received from each worker, or

timeout occurs

– workers
wait until “prepare” message is
received from coordinator

if transaction is ready to commit
then, send “ready” message to
coordinator

otherwise, send “no” message
to coordinator and abort

• Phase 2

– coordinator
if “ready” message was received
from every worker

send “commit” message to
each worker

otherwise, send “abort”
message to each worker

wait until
acknowledgement is received
from each worker

– workers
wait until “commit” or “abort”
message is received from
coordinator

do appropriate work according
to the message

send acknowledgement

7

Distributed Systems - Distributed Transactions

2PC Protocol for Nested Transactions

• Why extra care?
– sub-transactions can make an independent decision to commit

provisionally or to abort
– transaction can commit only if all of its provisionally committed

child transactions can commit

• Extra steps
– assumption

servers for sub-transactions record information regarding what sub-
transactions have committed provisionally or aborted => top-level
will get a list of all sub-transactions with their status

– phase 1
if worker has any provisionally committed sub-transactions

then, check whether they do not have aborted ancestors
» if yes, send “no” and abort
» otherwise, send “yes”

otherwise, send “no”

Distributed Systems - Distributed Transactions

Timeout in 2PC Protocol

• Objective
– make 2PC protocol non-blocking in the presence of

coordinator failure

worker failure

• Additional properties
– atomic commit protocol properties

every correct participant that executes atomic commit protocol
eventually decides

– broadcast properties
(uniform agreement) if any participant (correct or not) receives a
message m, then all correct participants eventually receive m

8

Distributed Systems - Distributed Transactions

Timeout in 2PC Protocol (cont.)

• Worker timeout
– coordinator failed to send “ready” message

workers unilaterally abort

– coordinator failed to send decision
workers send a coordinator a probing message (GetDecision) or

sub-transaction can ask its parent in case of nested transaction

workers cooperatively obtain a decision

• Coordinator timeout
– workers failed to send “yes” messages

coordinator decides to abort transaction

Distributed Systems - Distributed Transactions

Concurrency Control in Distributed Transactions

• Locking
– distributed deadlock may occur

• Timestamp ordering concurrency control
– if two transactions access the same data items on various servers,

they must commit them in the same order
to achieve this, servers should agree on the ordering of their
timestamp using synchronized physical clock

• Optimistic concurrency control
– parallel validation

resolve commitment deadlock

9

Distributed Systems - Distributed Transactions

Distributed Deadlock

• Centralized deadlock detection
– each server sends its local wait-for graph and the central deadlock

detector checks a cycle by global wait-for graphs

– phantom deadlocks
happens when one of transactions that holds a lock (and creates
deadlock) will have aborted during deadlock detection phase

Distributed Systems - Distributed Transactions

Distributed Deadlock (cont.)

• Distributed deadlock detection
– called edge chasing or path pushing
– no global wait-for graph
– mechanism

lock manager informs the coordinator when transactions start waiting
and when they become active again
three phases

initiation
» if transaction A starts waiting for transaction B waiting to access a data item at

another server, transaction B’s server sends a probe containing the wait-for
relationship to the server of data item where transaction B is blocked and all the
servers in which transactions share lock with transaction B

detection
» if the data item is hold by another transaction (by consulting with coordinator),

add this relationship to the probe and forward the probe in the same manner as
above

resolution
» when cycle is detected, a transaction in a cycle is aborted to break the deadlock

10

Distributed Systems - Distributed Transactions

Distributed Deadlock (cont.)

V

Held by

Waits forHeld by

Waits
for

Waits for

Deadlock
detected

U

C

A

B

Initiation

W→ U → V → W

W→ U

W → U → V

Z

Y

X

W

