Distributed Systems (ICE 601)
Distributed Transactions

Dongman Lee
ICU

Class Overview

* Distributed Transactions
+ Atomic Commit Protocol
* Distributed Deadlock

Distributed Systems - Distributed Transactions




Distributed Transactions

» Definition
— atransaction in which more than one server isinvolved
+ multiple servers are called by a client (simple distributed transaction)
+ aserver cals another servers (nested transaction)
— execution of program accessing shared data at multiple sites [Lamport]

Distributed Systems - Distributed Transactions

Distributed Transactions - example

openTransaction join participant

closeTransactio
A a.withdraw(4);

BranchX

\

b.withdraw(T, 3

participant

B e b.withdraw(3);

Client
T =openTransaction
a.withdraw(4); BN
c.deposit(4); ticinant
b.withdraw(3); pAciP e _
d.deposit(3); c c.deposit(4);
closeTransaction
D e d.deposit(3);
Note: the coordinator is in one of the servers, e.g. BranchX BranchZ

Distributed Systems - Distributed Transactions




Atomicity in Distributed Transaction

* Reguirement
— aclient requires to get congruent commitment from involved
servers due to atomic property of atransaction

* Resolution
— Coordination
— Atomic commitment protocol

Distributed Systems - Distributed Transactions

Coordination in Distributed Transaction

* How it works
— one of servers become a coordinator and the others workers
+ who becomes a coordinator

= simpletransaction: first server
= nested transaction: top-level server

— each transaction should be globally identifiable (server id + unique #)
— coordinator
+ maintains alist of participating servers

+ collects results from workers and makes a decision to guarantee
congruent commitment of transaction

— workers
+ aware of coordinator’s existence
* reportsits result to the coordinator and follows a decision from it

Distributed Systems - Distributed Transactions




Atomic Commit Protocol

e Atomic commitment problem [Babaoglu & Toueg]
— bring atransaction to a globally consistent conclusion despite
failures
+ commit: all participants will make the transaction’ s update permanent
= decision isbased on unilateral agreement among all participants

+ abort: none will

= atomic commit protocol that should satisfy these properties
+ all participants that decide reach the same decision

+ if any participant decides commit, then all participants must have
voted yes

+ if all participants vote yes and no failure occur, the al participants
decide commit

+ each participant decides at most once (i.e. decision isnot reversible)

Distributed Systems - Distributed Transactions

Atomic Commit Protocol (cont.)

* Broadcast property

— (validity) if a coordinator broadcasts a message m, the all
participants eventually receive m

— (integrity) for any message m, each participant receives m at most
once and only if a coordinator actually broadcasts m

— (timeliness) there exists a known constant d such that broadcast of
misinitiated at real-timet, no participant receives m after real-
timet+d

Distributed Systems - Distributed Transactions




Atomic Commit Protocol (cont.)

* Generas Paradox

— Thereisno fixed-length protocol that will alow the generalsto
agree on a common time to attack

Distributed Systems - Distributed Transactions

Why Multiple Phase Atomic Commit Protocol?

» Example: one phase atomic commit
— mechanism

+ coordinator keeps sending workers a commit or abort request until all
of them acknowledged that they had carried it out

— does not allow a coordinator to make a unilateral decision to abort
atransaction when a client requests a commit

+ there' s no room for servers to have decision consensus process among
themselves

+ itiscaused mainly by concurrency control
< alow one or more preparation phases before making a
final decision
— two phase commit protocol is most widely used
+ general and inexpensive

+ window of time during which servers are not allowed to abort the
transaction is small

Distributed Systems - Distributed Transactions




Two Phase Commit (2PC) Protocol

* Mechanism
— commit process consists of two message passing phases
¢ phase 1. voting
¢ phase 2: completion of voting result

worker

coordinator

ed

collect replies
from workers

commit

T

Distributed Systems - Distributed Transactions

2PC Protocol (cont.)

e Phasel e Phase?2
- COOfd'”;itor , ) — coordinator
+ send “prepare (CanCommit?)” « if “ready” message was received
message to each worker from ev)éry worker
* wait until

= send “commit” message to
each worker

= otherwise, send “abort”
message to each worker

= aresponse (“ready” or “no” is
received from each worker, or
= timeout occurs

— workers + wait until

* wait until “prepare’ messageis
received from coordinator
+ if transaction is ready to commit
= then, send “ready” message to
coordinator
= otherwise, send “no” message
to coordinator and abort

= acknowledgement is received
from each worker

— workers

+ wait until “commit” or “abort”
message is received from
coordinator

+ do appropriate work according
to the message

+ send acknowledgement

Distributed Systems - Distributed Transactions




2PC Protocol for Nested Transactions

* Why extracare?
— sub-transactions can make an independent decision to commit
provisionally or to abort
— transaction can commit only if all of its provisionally committed
child transactions can commit
* Extrasteps
— assumption
+ serversfor sub-transactions record information regarding what sub-

transactions have committed provisionally or aborted => top-level
will get alist of all sub-transactions with their status

— phasel
+ if worker has any provisionally committed sub-transactions

= then, check whether they do not have aborted ancestors
» if yes, send “no” and abort
» otherwise, send “yes’

= otherwise, send “no”

Distributed Systems - Distributed Transactions

Timeout in 2PC Protocol

« Objective
— make 2PC protocol non-blocking in the presence of
+ coordinator failure
+ worker failure
» Additional properties
— atomic commit protocol properties

* every correct participant that executes atomic commit protocol
eventually decides

— broadcast properties

+ (uniform agreement) if any participant (correct or not) receives a
message m, then all correct participants eventually receive m

Distributed Systems - Distributed Transactions




Timeout in 2PC Protocol (cont.)

» Worker timeout
— coordinator failed to send “ready” message
+ workers unilaterally abort
— coordinator failed to send decision
+ workers send a coordinator a probing message (GetDecision) or
= sub-transaction can ask its parent in case of nested transaction
+ workers cooperatively obtain adecision
» Coordinator timeout

— workers failed to send “yes’ messages
+ coordinator decides to abort transaction

Distributed Systems - Distributed Transactions

Concurrency Control in Distributed Transactions

» Locking
— distributed deadlock may occur
» Timestamp ordering concurrency control

— if two transactions access the same data items on various servers,
they must commit them in the same order

+ to achievethis, servers should agree on the ordering of their
timestamp using synchronized physical clock

» Optimistic concurrency control
— pardlel validation
+ resolve commitment deadlock

Distributed Systems - Distributed Transactions




Distributed Deadlock

¢ Centralized deadlock detection

— each server sendsitslocal wait-for graph and the central deadlock
detector checks a cycle by global wait-for graphs
— phantom deadlocks

+ happens when one of transactions that holds alock (and creates
deadlock) will have aborted during deadlock detection phase

Distributed Systems - Distributed Transactions

Distributed Deadlock (cont.)

» Distributed deadlock detection
— called edge chasing or path pushing
— no global wait-for graph
— mechanism

+ lock manager informs the coordinator when transactions start waiting
and when they become active again

+ three phases
= jnitiation
» if transaction A starts waiting for transaction B waiting to access a data item at
another server, transaction B’ s server sends a probe containing the wait-for
relationship to the server of data item where transaction B is blocked and all the
servers in which transactions share lock with transaction B
= detection

» if the dataitem is hold by another transaction (by consulting with coordinator),
add this relationship to the probe and forward the probe in the same manner as
above

= resolution
» when cycleis detected, a transaction in a cycle is aborted to break the deadlock

Distributed Systems - Distributed Transactions




Distributed Deadlock (cont.)

W—=U—->V->W

Deadlock
detected

Waits for

Initiation

Held by Waits for

Distributed Systems - Distributed Transactions

10



