
Automatic reasoning and help about human errors in
using an operating system

Maria Virvou

Department of Computer Science, University of Piraeus, 80 Karaoli and Dimitriou St, Piraeus 18534, Greece

Abstract

Human errors occur frequently in the interaction of a user with an operating system. However,
current user interfaces of operating systems lack some reasoning ability about user’s intentions and
beliefs. Intelligent Help Systems (IHS) can provide additional reasoning and help. This paper
presents a discussion of the features of IHSs and a review of a few IHSs for users of operating
systems. Then it describes the research and results of employing a cognitive theory of Human
Plausible Reasoning Theory in error diagnosis for users interacting with an operating system.
This theory has formalized the reasoning based on similarities, generalizations and specializations
that people use to make plausible guesses about questions. Here we exploit the fact that plausible
guesses can be incorrect and thus turned into human errors. The error diagnosis is performed by the
user modelling component of an IHS, called RESCUER.q 1999 Elsevier Science B.V. All rights
reserved.

Keywords:User-modelling; Error diagnosis; Human Plausible Reasoning; User interfaces; Intelligent Help
Systems

1. Overview

When one user gives a command to the computer to do something that s/he does not
really mean, then an error has been made. The consequences of errors vary depending on
what is achieved by the command given as opposed to what was desired. Sometimes,
errors which are made by the computer users themselves may be catastrophic with respect
to the users’ real intentions. For example, users may accidentally delete files that contain
information which may be far from unwanted.

It seems that user interfaces, no matter how friendly they may be, lack an important
feature of some reasoning ability about the actual way that they are being used by human
users. On the other hand, human users often employ an approximate reasoning based on
analogies, generalizations and specializations which is very good as a heuristic method for
understanding, discovering and making guesses but is error prone, especially when inter-
acting with a computer, which can only interpret very precise instructions.

Interacting with Computers 11 (1999) 545–573

0953-5438/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0953-5438(98)00043-5



This belief has been formulated by analysing the results of an empirical study [1,2]
made on real users’ interactions with UNIX, which is an operating system having a
command-driven user interface. During this empirical study, users were often observed
to give UNIX commands that they did not really mean since they were incompatible with
their intentions. However, problems and errors similar to the ones encountered by the
UNIX users may well occur to users of other operating systems. For example, users of a
GUI interface of an operating system such as Windows 95 still have to do some actions in
order to carry out a plan which they think serves their intentions well. In this case, the
actions may be different from actions in a command–language interface, such as selecting
some files and then clicking on a certain icon for them to be deleted or placed in the
clipboard. However, even in user-friendlier interfaces like this, a user still needs to
conform with the user interface’s formalities and may end up initiating the wrong actions
with respect to her/his intentions.

Intelligent Help Systems (IHS) are pieces of software that have been specially
constructed to address the lack of sophisticated reasoning ability of existing software
packages. Intelligent Help Systems operate on top of the original software package and
are meant to provide more help to users than that of the user interface of the original
package. However, if this kind of help was provided by the user interface of the original
software package then there would be no need for the construction of IHSs. Actually, all
the results achieved by IHSs could be used for the design of adaptive user interfaces which
would provide more flexibility to human errors and more useful help to users than what
they currently offer.

Intelligent Help Systems usually consist of four components, namely the Domain
Knowledge, the User Modelling component, the Advice Generation component and the
User Interface of the IHS. The Domain Knowledge provides the information about the
domain of the software package that the IHS has been constructed for. The User Modelling
component models the user’s beliefs and intentions concerning the software package that
s/he is interacting with. The Advice Generation component has to decide when and how
the IHS is going to provide help. Finally, the User Interface of the IHS can be in natural
language or something simpler.

RESCUER, which stands for ‘REasoning System about Commands Using Evidence
Reasonably’, is a prototype Intelligent Help System that monitors users interacting
with UNIX. RESCUER reasons about the observed users’ actions and their possible
errors and offers spontaneous help. Its reasoning focuses on error diagnosis. Hoppe
[3] describes the term of ‘error diagnosis’ as a procedure of inference process by
which incorrect user actions are recognized and analysed. Hoppe adds that checking
the correctness of given user’s actions is an essential problem related to error
diagnosis which is not trivial, especially in domains where there is a variety of
correct actions. Other researchers also point out that there is ambiguity in interpret-
ing a user’s behaviour because there are different explanations of observed incorrect
user’s actions [4]. Davis [5] notes that in spite of the important progress made by the
scientific community, diagnostic reasoning is still a hard task. Finally, Cerri and Loia [6]
find diagnostic reasoning particularly complex and note that in the case of incorrect task
performance of humans one may consider applying a diagnosis only after a model of the
human reasoning is available.

M. Virvou / Interacting with Computers 11 (1999) 545–573546



In view of the generally acknowledged complexity of the problem of error diagnosis,
due to the need of an automatic generation of hypotheses about the user’s reasoning, we
explored the utility of a cognitive theory of Human Plausible Reasoning, which was
adapted and implemented in the context of RESCUER.

Human Plausible Reasoning theory (from now on referred to as HPR) was constructed
by Collins and Michalski [7] in order to provide a formal model of the reasoning that
people use to make plausible guesses about questions for which they do not know the
immediate answer. Plausible guesses are made based on analogies, generalizations and
specializations and may be correct as well as incorrect. RESCUER exploits the fact that
plausible guesses may be incorrect and hence turned into plausible errors. Thus, it uses this
theory to gain more insight into possible users’ misconceptions or accidental slips, espe-
cially in cases where these would be easily identified by a human expert who would
observe the interaction. RESCUER’s user modelling component provides the automatic
reasoning about possible user’s errors in order to help the user rectify them as quickly as
possible (sometimes, even before the user realizes that there has been an error).

In this paper we focus our discussion on the sub-domain of file manipulation of operat-
ing systems, such as UNIX. The reason for this is that file (or folder) manipulation is
performed by a wide range of users varying from computer experts to novices and
accounts for a significant proportion of users’ time spent using an operating system.
The problems that users encounter in this sub-domain is representative of the domain as
a whole. Moreover, the nature of a computer operating system is such that it is feasible to
create an interface which can take an action issued by a user and reason about it before it is
executed. In this way catastrophic errors might be prevented.

In Section 2 of this paper, there is a description of possible errors that users of operating
systems may make, as these have been observed and analysed during an empirical study.
Some of these errors may be catastrophic with respect to the user’s intentions. In Section 3
we present a discussion of Intelligent Help Systems and a review of a few IHSs that have
been developed to offer on-line assistance to users of operating systems. This review
consists of a short description of the systems that highlights both their strengths and
weaknesses with particular focus on assistance to users’ errors. The main body of this
paper in Sections 4, 5 and 6 presents the results of the research involved in the develop-
ment of RESCUER. In this paper we focus our presentation on the user modelling compo-
nent of RESCUER that provides the reasoning about users’ errors. Finally, we give the
conclusions drawn from this work.

2. Problematic situations and errors of users of operating systems

Users of operating systems often get themselves into problematic situations which are
frequently leading to their making errors with respect to their intentions. This is something
that most computer-users can acknowledge and has also been shown by an empirical study
undertaken on a cross-section of UNIX users at an academic site [1,2]. Volunteer subjects
included faculty members, research staff and post-graduate students. Each subject inter-
acted with the user interface of the operating system in an unobtrusive manner as s/he went

M. Virvou / Interacting with Computers 11 (1999) 545–573 547



about her/his normal activities on the system. At the same time, each command issued was
recorded on a log-file associated with the particular user.

The hand-analysis of the samples collected, revealed that users make errors which fall
into three categories, in terms of how difficult it is for users to realize that they have made
the errors and rectify them.

1. Errors that the users have not realized that they have made and thus remain unrectified.
2. Errors that the users rectify themselves soon after they have made them.
3. Errors that cannot be rectified by the users irrespective of whether the users have

realized their existence.

In terms of their consequences, serious errors can be catastrophic or simply difficult to
rectify. However, even errors that are rectifiable may cause the user frustration for having
to repeat some actions until they can work. If an automatic help system can give advice on
errors it should definitely attach more importance to catastrophic errors than harmless
ones. Gertner [8] gives a useful classification of errors in terms of their consequences:

1. Tolerable, probably harmless.
2. Non-critical but potentially harmful.
3. Critical, potentially fatal.

In the following subsections we give some examples of errors and problematic situa-
tions leading to errors, which reveal a role for an IHS that provides more sophisticated
reasoning about users’ actions than that currently available by operating systems.

2.1. Catastrophic errors

Naturally, the worst kind of error is a catastrophic error. In terms of the interaction of a
user with an operating system, an example of a catastrophic error may result from the
accidental removal (complete or partial) of important files. The accidental removal of a file
may occur at various situations, the simplest of which is when the user issues a ‘delete’
action instead of some other action that s/he may have meant. In this case, the catastrophic
error may be prevented by the operating system’s request for confirmation of the action of
deletion of certain files. For example, operating systems may prompt the user with a
message reading: ‘Are you sure you want files X to be deleted? Y/N’.

However, there are trickier situations where the accidental removal of some entities
(directories, files, folders etc.) occurs in cases where the removal of the entities is only a
part of a broader plan of the user that may have failed at a previous stage without the user
having realized it. For example, a user was observed removing a directory which she
probably thought she had already copied elsewhere although she had not. In that case, a
simplecopyandremoveplan ended up in the single catastrophic actionremovesince the
copy part of the plan had failed without the user having realized it.

2.2. Not realizing an error has been made

When users of operating systems give a command that does not serve their intentions
well, this does not necessarily mean that an error message would be produced by the
operating system to alert them. This often happens when a perfectly acceptable command

M. Virvou / Interacting with Computers 11 (1999) 545–573548



or action has been issued by the user. Operating systems do not normally provide reason-
ing about whole sequences of commands or actions of users in terms of their possible plans
and goals. Hence, a sequence of syntactically correct actions may represent an erroneous
plan in terms of a user’s goal. For example, a user was observed accidentally creating a file
with a very similar name to an existing file through a ‘copy’ command which had a typing
error; the user had typed the syntactically correct command ‘cp fred perquish’ instead of
‘cp fred perqish’, where ‘perqish’ was mistyped as ‘perquish’. This led the user to prob-
lematic situations that she would only realize after a considerable amount of time, when it
was really difficult for her to figure out what had happened.

2.3. Considerable effort wasted in the rectification of errors

Naturally, there are simpler cases where errors are not catastrophic and users realize that
they have made an error soon after this was made. However, even in these cases, users
have to formulate and carry out a plan for the rectification of the error made. In cases like
this, users have often been observed wasting considerable effort trying to recover from a
small error and getting involved in new ones resulting to their frustration and inefficient
use of the operating system.

2.4. Problematic situations leading to errors

Users may not know how to achieve a goal while using an operating system. For example, a
user may want to copy certain files from her/his hard disk to a diskette and s/he may not know
how to do it. Users have frequently been observed getting on-line help and making a mistake
immediately after that. This means that users may find it difficult to retrieve the right piece
of information from the on-line manuals, probably because they need advice tailored to the
individual circumstances in which their question or problem has occurred.

3. A survey of the literature of intelligent help systems

In this section, we discuss a lot of the general issues concerning IHSs and then we
present three prototype IHSs that have been developed to assist users.

3.1. Discussion of general issues of IHSs

Intelligent help systems are meant to operate on top of the original user interface of a
software package and provide on-line help. The main reason that stimulates research on
this area in general, is simply the fact that the currently available user help consisting of
on-line and off-line manual information, is insufficient. A user might waste an awful lot of
time trying in vain to find the piece of information that s/he needs. Advice tailored to the
user’s knowledge of the domain and the particular circumstances that caused a question, is
bound to be appreciated.

IHSs are usually classified into two main categories, thepassiveand theactive. Passive
systems behave like the expert who has beencalled to offer advice, whereas active systems
behave like the ‘over the shoulder’ expert who watches the user andoffers spontaneous
help.In computer terms, passive systems can answer all sorts of questions relevant to the

M. Virvou / Interacting with Computers 11 (1999) 545–573 549



domain area that the user may pose, whereas active systems monitor all user actions,
reason about them and decide themselves whether to interrupt or not.

Intelligent help systems have an architecture that consists of a User Modelling compo-
nent, an Advice Generation component and a representation of the Domain Knowledge. A
fourth component is the interface between the user and the help system and is not always
mentioned, although it has been the central focus for many help systems. The boundaries
of the functionality of these components are not clear cut and vary considerably in differ-
ent implementations of help systems, depending on the emphasis, the needs and the design
decisions of the particular help systems.

Ideally, an IHS would consist of all four main components as well as being able to
operate in both passive and active mode leaving the user with a complete choice and
making the help system itself much more flexible.

3.1.1. The user modeller
The user modeller is concerned with how information about users can be acquired by

automated systems and with how that information can be used to improve the system’s
performance [9]. It tries to infer all the information needed about the user’s actions and
possibly store useful long-term information about him/her. For example, it tries to infer the
user’s goals, plans, beliefs, the misconceptions (if any) underlying these beliefs and the
more long-term information such as the extent of his/her knowledge of the domain, typing
skills, common errors and many more issues that would help the system form an idea of the
user and his/her actions. One important task of user modelling isplan recognition. A plan
of a user consists of several actions that the user issues in order to achieve a goal. For
example, in Windows 95, when a user issues a ‘cut’ action and then a ‘paste’ action, these
two actions may be considered to constitute a plan of a user that serves his/her goal to
move certain items from one place to another. The plan recognition mechanism usually
has to overcome the problem that actions serving the same goal may not appear one
immediately after the other. For example, the user may issue the ‘cut’ action, then have
a look at his/her e-mail and then issue the ‘paste’ action.

There are many types of user model depending on where the emphasis has been placed.
Rich [10] makes a distinction between long-term and short-term user models. A long-term
user model may consist of all past user information that has been stored by the developer
of the help system or has been acquired and stored by the help system itself. For example,
information about the user’s level of knowledge of the domain, or style in the use of the
domain can be considered to belong in the long-term user model. A short-term user model
consists of the user’s beliefs at a very specific time (e.g. before s/he issues command X)
and is the output of some reasoning that combines pieces from several sources of informa-
tion, such as the long-term user model, domain knowledge, the current user’s actions and
the current state of the environment (e.g. screen, file store etc.).

3.1.2. The advice generator
The user modeller is doing all the understanding about a user and the advice generator is

needed for the acting. In terms of plans, it isplan generationthis time. For example, the
user is known to have a certain goal in mind; what is the best way to achieve it? The help
system should be able to suggest an alternative plan to a user’s inefficient one or just

M. Virvou / Interacting with Computers 11 (1999) 545–573550



suggest one to a user who does not know how to do something and is explicitly asking for
help. Besides, help systems have to decide what sort of advice they are going to give and
how. For example they have to decide how much information to give to the user so as to
avoid presenting issues that the user already knows and say no less than the user needs.
This is when the advice generator has to seek information in user models.

A classification that we have made of IHSs [11], depends on the kind of advice that they
are aiming at. According to this classification we distinguish between ‘trouble-shooting’
and ‘coaching’ help systems.Trouble-shootingsystems help users who have experienced a
problem while applying previously acquired knowledge, whereas thecoachingones help
users improve and expand their knowledge.

Trouble-shooting systems mainly try to diagnose the cause of the problem that the user
encountered at a specific situation and offer remediation. The cause could be a user’s
misconception, a misinterpretation of an error message, a wrong belief about the current
state, lack of a particular piece of domain knowledge etc. The more failure causes that the
system is able to diagnose, the more powerful it becomes. Active systems seem closer to
the trouble-shooting aspect because of the plan recognition and user monitoring that they
involve. However, this is not always true. For example, active systems that are only
concerned with the optimization of user’s codes could be classified to the coaching
ones because their aim is to improve and expand the user knowledge rather than help
with a particular problem. Similarly, passive systems seem closer to coaching systems
because of their ability to answer questions of how to do this or what is that. Again this is
not always true. For example, a passive system that answers questions by giving an
explanation to a user who describes an awkward situation, should be considered as a
trouble-shooting system.

3.2. Help systems

In the remainder of this section, we present three help systems that have been developed
to assist users of operating systems. The help systems selected to be presented here, are
particularly concerned with UNIX. In this way the uniformity of the domain may help the
user to gain a better insight to the issues concerning IHSs.

First is UC, which is a prototypical passive UNIX help system. Then AQUA, which is a
passive and trouble-shooting system. Finally, the EUROHELP system which is both
passive and active as well as both trouble-shooting and coaching.

A summary of the classification of the UNIX help systems reviewed, is illustrated in
Table 1.

3.2.1. The UNIX consultant (UC)
This is a prototypical passive help system, developed at Berkeley [12–16]. UC aims at

helping the user in the coaching way by answering his/her questions. It can also handle
simple forms of dialogue. For example,

USER: How do I delete a file?
UC: Typing ‘rm filename’ will remove the file with namefilenamefrom your current
directory.
USER: a directory?

M. Virvou / Interacting with Computers 11 (1999) 545–573 551



UC: Typing ‘rm -r directory-name’ will recursively delete the directory with name
directory-name and all the files and directories contained in the directory.

Another example could be:

USER: What is the best way to create a file?
UC: The best way to create a file is to use an editor, e.g. ‘vi filename’.

A lot of research effort for this system has been put into the natural language compo-
nent. Facts about UNIX, the English language and the world are represented in Knowledge
Bases as frame-like structures. Its knowledge bases are extensible allowing it to learn
effortlessly more about new UNIX skills and English.

Thenatural language componentis split into two other components. One component is
a language analyser, which analyses the user’s question and the other gives the advice in
English. UC infers the user’s intentions from the question. It can also reason about the
question and see whether the user meant something else or just determine what the focus of
attention of the question is. All this concerns the understanding of the user’s question
despite any ambiguities of the expressions that s/he used.

The advice generatorconsists of a plan generation mechanism and an expression
formation mechanism. Its function is based on a plan library. Among the tasks of the
plan formation is to select one goal among conflicting ones. For example, if the user asked
the system to tell him/her how to get more disk space, the system could advise the deletion
of all the user’s files. However, this conflicts with another long-term goal of the user
preserving his/her files. The Goal Projector and the Goal Detector are meant to handle this.
The Goal Projector simulates the situation that would occur, should a goal be pursued. In
the above example, it shows what would happen if the goal ‘remove your files’ was
adopted. The Goal Detector then is applied to the simulated environment and infers the
goal of preserving the files. Finally, an expression formation mechanism is used to give the
user the piece of information that s/he seeks and no more than that.

UC responds only to the user’s request, as all passive systems are meant to work. This
saves a lot of computational effort, but does not save the user from catastrophic errors that
s/he might accidentally get her/himself into. In addition, the information used about the
user is general and does not take into account her/his actions. Therefore help is not tailored
to the particular circumstances that made the user ask for help. This could be destructive
sometimes as there are cases where users might be seeking information that they think they
need while in reality this is absolutely against their overall plan. A very illustrative
example of this situation was a session observed in a real interaction of a user with UNIX.

M. Virvou / Interacting with Computers 11 (1999) 545–573552

Table 1
Classification of three existing UNIX help systems

Active Passive

Systems Coaching Trouble-shooting Coaching Trouble-shooting

UC z

AQUA z

EUROHELP z z z z



In that case the user thought that an old directory called ‘tf’ had been copied in a new
directory called ‘poplog/tf’. In fact, although this UNIX shell did not complain, the
directory contents had not been copied. However, the user did not get any error message
and therefore proceeded to the next goal of removing the ‘copied’ directory. The user did
not know how to do this either, but was aware of that this time. If UC was available, this
user might have asked how to remove the ‘unwanted’ directory and UC would have replied
without any objection, but the user would not thank UC for that.

UC is very good at helping the user find out how to achieve certain goals and thus make
fewer mistakes in the planning method that they achieve. However, the monitoring of
users’ actions which would be useful to users is beyond the scope of this help system.

3.2.2. AQUA
AQUA is a trouble-shooting, passive help system for UNIX [17,18].
It aims at handling dialogues with the user, such as:

1.User: I tried to remove a file with the ‘rm’ command. But the file was not removed and the
error message was ‘permission denied’. I checked and I own the file. What’s wrong?
Advisor: To remove a file, you need to be able to write into the directory containing it.
You do not need to own the file.
2. User: How do I make the directory writeable?
Advisor: To make a directory writeable, use ‘chmod1 w’ command.
3. User: Wait while I try it. No, ‘chmod1 w’ prints the error message ‘permission
denied’.
Advisor: To make a directory writeable, you need to own it.
4. User: So, to remove a file, I have to own the directory that contains it.
Advisor: No, to remove a file, you need to have write permission on the directory that
contains it. You do not need to own the directory that contains it. You need to own that
directory when you do not already have write permission on it.
5. User: So, how do I remove the file?
Advisor: Send mail to whoever has write permission on the directory, asking him to
remove the file for you.

In this sort of dialogue, the user explicitly states what his/her situation was when the
problem arose. That means that the user has to state his/her goal, planning method for
achieving it and the UNIX response to it. In return s/he gets from the help system replies
that highlight any misconceptions and gaps of knowledge that led him/her to the awkward
situation. In the above example, the advisor detected two user misconceptions:

1. An incorrect belief that owning a file is a precondition to removing it.
2. A subsequent incorrect belief that the precondition is owning the directory in which it

resides.

It also detects three gaps in the user’s knowledge:

1. The user has no plan for making a directory writeable.
2. Does not know why the advisor’s plan for doing so failed.
3. Has no plan for removing a file that is not in a writeable directory.

M. Virvou / Interacting with Computers 11 (1999) 545–573 553



Actually, the focus of attention of this system is the detection of the user planning
misconceptions.

The system has anadvice generation mechanism, whose input is an initial short-term
user model consisting of a set of inferred user’s beliefs and output a set of advisor’s beliefs
that contradict those of the user. The set of advisor’s beliefs is the explanation that high-
lights the user’s planning misconception. Both its input and output could be viewed as part
of the short-term user model, in the sense that they are concerned with what the user
believes. However, its input is supposed to be a set of user’s beliefs, whereas the output is a
set of advisor beliefs about the user’s beliefs and therefore the whole computation has been
included in the advice generator.

The advisor expertise is a large set of advisor beliefs. A subset of the advisor’s
knowledge is the usual planning library. It consists of plans (sets of planning
relations) associated with planning failures (goals to which a plan does not
apply). Planning failures are regarded as ‘potential explanations’ and are classified
according to the planning relation that they are attached to. A potential explanation
is verified if all the planning relations it consists of are proved to hold. Actually, the
overall aim of the system is tofind an explanationto present to the user in case of
a failure.

For example, an explanation for the first misconception of the user in the above example
was inferred using the rule: if the user tries to verify a stateS(this case: owning a file) and
both S and a known precondition (this case: having write permission) are instances of a
more general state (this case: having sufficient permission) then assume thatS is a precon-
dition of the user’s goal.

Unlike UC, thenatural languagecomponent has not been a major issue for AQUA. The
focus of this system is on planning misconceptions and addresses the problem of diagnosis
more deeply, than other help systems. It does not address other kinds of errors, like
typographic errors.

3.2.3. The EUROHELP system
The EUROHELP system was developed in the context of a very large ESPRIT research

project (about 100 man-years over 5 years), which included several researchers from
several countries [19–22]. The original aim was the construction of a shell meant to be
used for all help systems dealing with Information Processing Systems (IPS). However,
the techniques specified were applied on UNIX mail first. It is both passive and active as
well as both trouble-shooting and coaching. In principle, it addresses most of the issues
discussed in the previous sections.

The passive component can answer seven general classes of enquiry in natural
language, such as ‘What is a folder?’ or ‘What do I do next?’. The answers to these
questions are formed taking into account the current working context and the user’s
knowledge and intentions. The active component is monitoring a user performance aiming
at recognizing inefficiencies in his/her plans as well as diagnosing any possible errors. In
this system theuser modelleris working for both the active and the passive mode, using
different components for each of them.

For theactive modethere is aPerformance Interpreterconsisting of aPlan Recognizer
and aPlanner. The performance interpreter evaluates the user’s action by considering four

M. Virvou / Interacting with Computers 11 (1999) 545–573554



anomaly criteria:

1. Whether the action was legal, i.e. it could be executed.
2. Whether the action was useful, i.e. it led to some change of state.
3. Whether the latest action could be incorporated into a plan.
4. Whether that plan was optimum as far as the user was concerned.

The plan recognizer collaborates with the planner in order to guide its search for suitable
plans. The plan recognizer uses a hierarchical database of known tasks and plans for them.
The first user action identifies which plans it could be the first action of and one of these is
selected as a hypothesis of the user’s plan. If subsequent actions also fit in this plan they
are considered explained. If a subsequent action does not fit in with the hypothesized plan
then the plan recognition system backtracks and reconsiders alternative plans. One diffi-
culty involved with this plan recognition strategy is the search involved.

TheDiagnoseris activated when attempting to explain a potential problem in terms of
lack of knowledge or misconception. In thecase of lack of knowledge, it is generating
hypotheses by taking some knowledge out of the domain representation. In aperturbation
caseit is perturbing concepts. The search space is controlled by the use of predefined
knowledge about general misconceptions and also by the use of several heuristics such as
parsimony of misconceptions in one single case, lower complexity of replacing concepts,
extent of user knowledge etc. The diagnoser is also used for thepassive mode. In that case
the question is first passed to the Question Interpreter which defines the user’s need within
the context of the performance.

The advice generatoris taking input from the diagnoser and tries to define a ‘tactic
structure’ according to the way the problem was caused (question or performance) and the
diagnosis of the problem itself. There is a special module that transforms the answer into
natural languageor some other formalism.

However, predefined knowledge about general misconceptions, which is the main heur-
istic of EUROHELP, can prove inadequate when an unknown case comes up. The ability
of reasoning about misconceptions themselves is quite limited.

4. RESCUER, an IHS that reasons about plausible errors

4.1. Main focus of RESCUER

RESCUER operates in a trouble-shooting mode, offering active assistance to users who
may be involved in problematic situations. Unlike UC, RESCUER does not give answers
to explicit questions of users on how to achieve certain goals but rather it monitors users’
actions and reasons silently about them until a problem is diagnosed. AQUA also operates
in a trouble-shooting mode, like RESCUER, in the sense that it tries to give explanations
to the user on what may have been wrong. However, AQUA generates advice which is
based on the users’ explicit description of the problem that s/he encountered. Both UC and
AQUA offer help based on user’s explicit questions and on the user’s initiative. However,
in cases where the user does not realize that s/he needs help during the interaction both

M. Virvou / Interacting with Computers 11 (1999) 545–573 555



systems would not be able to offer help. In contrast, RESCUER aims at providing such
context-sensitive on-line help, on its own initiative.

This type of behaviour was also included in EUROHELP, which was meant to address
most issues concerning an IHS. However, EUROHELP was a very large project where
many researchers were involved for many years and yet some parts were never imple-
mented. This means that a project like this may be very difficult to reproduce for other
domains of user interfaces, although the wealth of ideas presented in this project are
certainly useful for this purpose. In any case, a common criticism of the application of
Artificial Intelligence to computer-aided instruction, is what McGraw notes [23] about the
resulting products that they may miss the mark in terms of task reality, feasibility and
effectiveness although they are usually superior to traditional standup products. This
criticism may also apply to EUROHELP. However, McGraw continues saying that user
interface developers may want to consider the feasibility and benefits of using AI to
enhance the user interface. This is precisely one of the main aims of the design of
RESCUER, namely to enhance the user interface performance in terms of the recognition
of user errors without missing the mark in terms of feasibility. Therefore, RESCUER
focuses on providing help to ‘plausible’ user errors rather than any possible error. A
user error is considered ‘plausible’ if multiple sources of evidence show that this error
may have been made. When RESCUER ‘thinks’ that a user has made an error with respect
to his/her hypothesized intentions, it intervenes and offers advice.

For example, suppose a UNIX user types the following sequence of commands:

1. % mkdir programs
2. % cp program1.pas programs
3. % cp program2.pas program

where in command 1 a user makes a directory called ‘programs’, in command 2 this user
copies the file ‘program1.pas’ into the directory ‘programs’ and in command 3 the user
literally copies the file ‘program2.pas’ into a newly created file called ‘program’.

Most human observers would think that command 3 would be meant to read:

% cp program2.pas programs

which would copy ‘program2.pas’ into the directory ‘programs’, just like ‘program1.pas’
was copied into this directory.

The reaction of a human observer would probably be to let the user know about the
possible error, although the user may not have made a mistake. This is a case that is not
simply the correction of a typographic error but is the result of combining evidence that
shows there may have been a typographic error. The whole context suggests that there has
been an error, whereas if somebody looked at command 3 alone, it would probably look
correct. If a computer-advisor intervened and suggested the correction of command 3,
given its particular context, this intervention would look natural to human users. This is the
kind of behaviour that RESCUER aims to achieve.

The evidence that RESCUER takes into account comes from the following sources:

1. Certain peculiarity criteria that show that a given action may have been problematic
(e.g. when a command has failed to execute).

M. Virvou / Interacting with Computers 11 (1999) 545–573556



2. A mechanism for generating alternative hypotheses of what the user may have meant.
This mechanism applies the Human Plausible Reasoning (HPR) so that the hypothetical
actions generated are similar to the action typed and also allow for ‘plausible’ errors to
have been made.

3. A plan recognition mechanism which focuses on the sequences of the effects of
commands rather than sequences of commands themselves.

The combination of these three sources of evidence agreeing that a certain action may
have been erroneous makes RESCUER react to offer advice, otherwise RESCUER does
not react. It may be the case that RESCUER does not react to situations where there has in
fact been a problem. This is because the focus of its attention is in cases that would look
‘obvious’ to a human observer that there has been an error. Even in cases like this a user
interface would require intelligence to spot the error. If these errors are recognized then
much of the frustration of users can be alleviated and a lot of catastrophic errors can be
prevented.

In the remainder of this section we introduce Human Plausible Reasoning theory so that
the reader can have an idea of the background used in RESCUER and then we present the
overall design of RESCUER.

4.2. Human plausible reasoning theory

Human Plausible Reasoning Theory [7,24,25], has been constructed by Collins and
Michalski in an attempt to formalize several patterns that people use in order to answer
questions, when they do not know the exact answer. It is assumed that people have a
patchy knowledge of certain domains such as geography or biology. However, if people
are asked a question about something that they do not know, they will try to conclude the
answer from what they already know and consider relevant.

An example of patchy knowledge that one person may have, is illustrated in the experi-
mental Matrix of Biologic Data in Table 2. The places with the question mark denote lack
of knowledge of the person. In this case, the person does not know how a whale breathes
and whether it is a fish or a mammal, but knows that it lives in the water and that it is large.
The person also has a complete record of information about a shark and an elephant, i.e.
that a shark is a fish, breathes through gills, lives in the water and is large and so on.

Suppose a human subject has this patchy knowledge about the animals mentioned and is
asked to give some answer about something that s/he does not know. For example, how a
whale breathes. The corresponding entry in the experimental matrix has a question mark,

M. Virvou / Interacting with Computers 11 (1999) 545–573 557

Table 2
Experimental matrix of biologic data

Class Isa Breath Lives Size

Mammal Animal Lungs Water, land Large, medium, small
Fish Animal Gills Water Large, medium, small
Whale ? ? Water Large
Shark Fish Gills Water Large
Elephant Mammal Lungs Land Large



which means that the person has no direct knowledge to answer the question. In this case
the person will use the knowledge which s/he considers relevant, from other places of the
matrix.

For example, the person may come up with the following reasoning. The way an animal
breathes is relevant to the place it lives and to the structure of its body and because a shark
is similar to a whale with respect to these factors then probably the whale breathes in the
same way as the shark, namely through gills.

This is a plausible guess although incorrect in this case. HPR is not concerned with
misconceptions or incorrect beliefs mainly because it focuses on the inferential process
that leads people to derive a belief based on another belief, irrespective of the correctness
of either beliefs. The HPR theory gives a way to formalize this kind of plausible reasoning.
Facts are expressed in the so-called ‘statements’ and inferences are drawn from the
‘statement transforms’ or the ‘mutual implications and/or dependencies’. A brief outline
of these is given in the section that follows.

4.2.1. Terminology
The matrix presented in Table 2 is an example of the knowledge of a person in a certain

domain and can be formally expressed in a collection of ‘statements’ that represent the
person’s beliefs. For example a statement has the following structure:

breath(shark)� gills,

where ‘breath’ is called a ‘descriptor’. This descriptor is applied to ‘shark’ which is called
an ‘argument’. The relation of a descriptor applied to an argument is called a ‘term’. A
term can take values which are called ‘referents’. In this case, the referent of the term
‘breath(shark)’ is ‘gills’. In the matrix of the example we see that the person may have
gaps of knowledge, such as breath(whale)� ? which means that s/he does not know how a
whale breathes.

A statement can be regarded as an object-attribute-value triple where the object is an
argument, the attribute is a descriptor and the value is a referent together with a set of
certainty parameters.

The simplest class of inference is calledstatement transforms. If a person believes the
statement about the way a shark breathes, i.e. breath(shark)� gills, there are eight state-
ment transforms which allow plausible conclusions to be drawn. Theargument transforms
move up, down or sideways in the argument hierarchy, using GEN, SPEC, SIM or DIS,
respectively. Thereferent transformsdo the same in the referent hierarchy.

For example, the person knowing the above statement can draw conclusions like the
following:

Argument transforms

1. breath(fish)� gills, through a generalization argument transform. This is done because
fish is a generalization of a shark in an animal hierarchy.

2. breath(white-shark)� gills, through a specialization argument transform. This is done
because a white shark is a special case of a shark in an animal hierarchy.

3. breath(whale)� gills, through a similarity argument transform. This is done because a
whale can be found similar to a shark.

M. Virvou / Interacting with Computers 11 (1999) 545–573558



4. breath(wasp)(gills), through a dissimilarity argument transform. This is done because a
wasp is found dissimilar to a shark.

Referent transforms

1. breath(shark)� internal-organ, through ageneralizationreferent transform. This is
done because an internal organ is a generalization of gills in a hierarchy about the parts
of an animal body.

2. breath(shark)� gills of a big fish, through aspecializationreferent transform. This is
done because the gills of a big fish is a special case of gills with respect to some
features, such as size and so on.

3. breath(shark)� lungs, through asimilarity referent transform. This is done because
lungs can be found similar to gills in a hierarchy of animal organs.

4. breath(shark)± ear, through adissimilarity referent transform. This is done because
ears are found dissimilar to gills in a hierarchy of animal organs.

4.2.2. A notation for argument and referent transforms
Argument transformsare quite straightforward in the way that they answer questions in

the matrix. For example, we have ‘breath-organ(whale)� ?’. An argument transform
would involve changing the argument ‘whale’ with another argument from the matrix,
such that:

1. Its breath-organ is known.
2. The argument itself is similar to a whale with respect to some descriptor that is relevant

to ‘breath-organ’.

For example, ‘shark’ could replace the argument ‘whale’ because:

1. ‘breath-organ(shark)� gills’.
2. ‘shark’ is similar to ‘whale’ with respect to where they live (water) and their size (large)

and these have some dependence on how an animal breathes.

The notation that we have used for this example is illustrated in Table 3. The two arrows
are used to show how the transform works to answer a question. We start from the
statement bearing the question, then apply an argument transform to find a known state-
ment and then use the referent of the known statement to replace the question mark.

M. Virvou / Interacting with Computers 11 (1999) 545–573 559

Table 3
A notation for argument transforms to answer questions

Argument transform
First statement: d(a) � ?
Arg. transform # "
Transformed statement: d(a0) � r 0

An example
First statement: breath-organ(whale) � ?

Arg. transform # "
Transformed statement: breath-organ(shark) � gills



Referent transformsare not so straightforward in the way they can answer questions in
the matrix. The reason for this is that the statement which we start from is the statement
with the unknown referent. However, if the referent is completely unknown to the person
then it cannot be transformed. A solution to this problem would be to assume that the
person whose knowledge is being modelled, has some preconception of what the unknown
referent should be and uses this preconception to come to a final conclusion. For example,
the person may know that a whale breathes through an internal breathing organ and tries to
find what this organ is. In this case, the person would also have to know what possible
breathing organs may be.

Therefore, our interpretation involves some knowledge of the person on the possible
values of the referent. In the example, we may have to assume that the person knows that
the known statement ‘breath-organ(whale)� internal breathing organ’ may lead to
‘breath-organ(whale)� gills’ through a referent transform.

The notation that we have used for referents (illustrated in Table 4) will only show the
statement used for the replacement of the question mark by some answer.

The hierarchy that is assumed to underlie the referent transforms of the example, is
illustrated in Fig. 1.

4.3. Overall design of RESCUER

The overall performance of RESCUER is outlined as follows: RESCUER’s input is the
command typed by the user which is evaluated against certain peculiarity criteria that are
used to alert RESCUER as to whether the command needs further examination. These
criteria include the questions whether the command was acceptable to UNIX or not,
whether it was expected by RESCUER, in terms of the hypothesized users’ intentions,
whether it was a command frequently used by most users, and so on, and are only used as
unconfirmed symptoms of a possible problem. Whether there has in fact been a problem
has to be confirmed and explained by the diagnostic part of RESCUER.

The diagnosis of a problem is done by the User Modeller. If RESCUER can find an
alternative interpretation about the user’s command such that it is similar to the inter-
pretation that UNIX has given but is better than that in terms of RESCUER’s evaluation
criteria, then RESCUER may have to adopt this alternative interpretation. For example, if
the command typed by the user has failed to do anything at all, or if it was not expected in
terms of the plan recognition scheme then the User Modeller will generate hypotheses

M. Virvou / Interacting with Computers 11 (1999) 545–573560

Table 4
A notation for referent transforms to answer questions

Referent transform
First statement: d(a) � ?
Ref. transform "
Transformed statement: d(a) � r 0

An example
First statement: breath-organ(whale) � ?

Ref. transform "
Transformed statement: breath-organ(whale) � gills



about possible interpretations of what the user’s beliefs may have been. The hypotheses
will be generated using HPR transforms as will be explained in detail in the following
section.

Plan recognition is achieved by considering the domain (here the UNIX file store) as an
entity that has certain properties, one of which is called ‘instability’. The existence of
instabilities implies a possible future transition of the current state of the domain to another
state which is expected to follow. In this way, RESCUER overcomes the problem of
having to recognize particular sequences of actions as part of a user’s plan.

For example, if a user creates a new directory (or folder in other domains) then
RESCUER attaches an instability to the domain. The attached instability can be removed
if the user issues an action that gives contents to this directory (e.g. it copies or creates one
file into the new directory). The particular actions that the user is going to issue do not play
an important role. The focus of attention is on the effects of actions to the domain.
Expectations in terms of effects to the domain are used to guide the search about possible
corrections of commands.

The process of the generation of an alternative interpretation contains all the informa-
tion needed for the construction of an explanation of what happened. The generation of
response, if any, is done by the Advice Generator. If RESCUER has confirmed its initial
suspicions about the existence of a problem then it will form two kinds of response:

1. A suggestion of an alternative command which would fit better in the context.
2. An explanation of what happened which includes presenting what misconception at

what conceptual level was to blame for the problem observed.

Instabilities are used to indicate that a user may have started some plan. An unstable file
store does not mean that the user has made an error but that perhaps s/he is in the middle of
a plan. The notion of instability could be extended to other domains as well where there are
sequences of actions. For example, in the domain of somebody’s life, if this person

M. Virvou / Interacting with Computers 11 (1999) 545–573 561

Fig. 1. A hierarchy of internal organs of an animal.



registers for a degree then s/he creates an instability in her/his life. The instability could be
removed if this person graduates or if s/he drops the study. Registering for another degree
(i.e. introducing a new instability while the previous one is not removed) could be consid-
ered as an action which might need attention in terms of the person’s plans.

The overall architecture of RESCUER is shown in Fig. 2. An example of RESCUER’s
performance in monitoring a UNIX user could be the following:

Supposing the user has typed:

%cp fredd directory1

which copies ‘fredd’ into ‘directory1’.
Then after a few commands, none of which has to do with ‘fredd’ or its duplicate which

resides in ‘directory1’, the user types:

%rm fred

which aims at removing a file called ‘fred’.
At this point RESCUER offers some suggestion to the user:

RESCUER: Did you mean to type:
‘rm fredd’ instead of ‘rm fred’?

This suggestion would be offered to the user irrespective of whether ‘fred’ existed or not
which means that the suggestion would be offered irrespective of whether there has been a
UNIX error message or not.

The reason why RESCUER would be alerted would be because the command ‘rm’ is a
destructive command and therefore it attracts RESCUER’s attention. RESCUER would
expect ‘fredd’ to be removed instead of ‘fred’ because first the two names are very similar
(therefore there could have been a mistake) and second ‘rm fredd’ could be considered to

M. Virvou / Interacting with Computers 11 (1999) 545–573562

Fig. 2. Overall architecture of RESCUER.



complete a plan of ‘copy and remove’ whereas ‘rm fred’ is a destructive command that is
not connected to the previous commands.

If the user had not issued the command ‘cp fredd directory1’ then RESCUER would not
have responded with a suggestion to the user to remove the file ‘fredd’ unless the mistyped
‘fred’ did not exist in the file store, in which case there would have been an error message.

From the above example, it is clear that RESCUER combines evidence from more than
one sources and addresses situations where there may have been a mistake irrespective of
whether this has produced an error message by the operating system. It also addresses
situations where an action may have been used constructively by a user although it may
have produced an error message as well. This can to happen in cases where an action has
more than one effect, one of which may fail and produce an error message but the rest of
them may work.

5. Human plausible reasoning theory in automatic error diagnosis

The HPR theory can be directly applied to situations where a person is asked a question,
such as ‘how does a whale breathe?’. However, an active help system like RESCUER, is
supposed to monitor a user without asking him/her explicit questions about the domain.
Therefore, the application of the theory to the user modelling component of RESCUER is
made on the assumption that users ask themselves certain questions about the commands
of the operating system, in their effort to form and issue a command (or action) that would
be accepted by the operating system and will serve their intentions well. The chain of such
questions constitutes a path of reasoning that is assumed to have led the user into conclud-
ing what command to type.

For example, in the case of the UNIX domain, the user is assumed to have assessed the
command typed before typing it, in terms of whether it would be acceptable by UNIX. The
user must have come to the conclusion that the command would be acceptable and then
typed it. This basic assumption about the user relates to his/her intention to issue a
command that would not fail to execute and therefore would be acceptable by UNIX.
The assessment of the command by the user is called basic principle and it represents the
main assumption of RESCUER about the user. The basic principle consists of two ques-
tions that the user is assumed to have asked her/himself in her/his effort to check whether
the command s/he has selected to type is correct. The two questions are the following:

What is the semantic and syntactic structure of the command?
Is this semantic and syntactic structure acceptable to UNIX?

The user is assumed to have used the answer of the first question in the second question.
The user is also assumed to have given the answer ‘yes’ to the second question before
typing a command.

The two questions have been expressed as two ‘statements’ using the representation
language of HPR. The fact that the answer of the first question is used in the formation of
the second question leads to the use of what is called a ‘multiple descriptor statement’ in
HPR terminology, which represents a chain of reasoning that a person may have used. In
order to express the two questions in HPR statements we have used two descriptors,

M. Virvou / Interacting with Computers 11 (1999) 545–573 563



namely ‘UNIX-acceptable’ and ‘intended-pattern’. Each descriptor is applied to an
argument.

The argument of ‘intended-pattern’ is ‘action’. The descriptor ‘intended-pattern’ is used
to mean a simplified form of what the user must have believed that the preconditions of the
command were. The argument ‘action’ is used to mean the command line that the user has
typed. For example, if there is a file called ‘fred’ in the user’s file store and the user has
issued the command:

rm fred

then ‘rm fred’ is the ‘action’ and the ‘intended-pattern’ of this action is the referent ‘rm
file’ which conveys the semantic and syntactic information about the action; ‘rm’ has
taken one argument1, which is a file. In the HPR representation language we have the
statement:

intended-pattern(action)� rm file.

This statement corresponds to the question: ‘What is the semantic and syntactic struc-
ture of the command?’. The answer to this question can either be thetyped patternor a
similar pattern.

The second statement is formed by replacing the ‘intended-pattern(rm fred)’ with the
referent which in this case is ‘rm file’:

UNIX-acceptable(intended-pattern(rm fred))� UNIX-acceptable(rm file).

The statement UNIX-acceptable(rm file) refers to the second question that the user is
assumed to have asked himself or herself: is this semantic and syntactic structure accep-
table to UNIX?

The answer that the user is assumed to have given to this question is ‘yes’ unless s/he is
not sure about the correctness of the command that s/he issues.

The referent in the first statement refers to the instantiated semantics of the action typed,
whereas argument in the second statement refers to the semantics of the command
involved. In some cases the instantiated semantics may be different from the accepted
semantics of the command. For example, if the user had typed the command

rmdir fred

then the instantiated semantics would be (rmdir file) whereas the semantics accepted for
this command would be (rmdir directory).

The set of HPR transformations are applied to statements constituting the basic princ-
iple and generate different possible interpretations of how a user may have come to the
conclusion that the command s/he typed was acceptable to UNIX. These interpretations
reveal the possible misconceptions involved.

The basic principle expresses a fundamental assumption about the user, that the user
believes that the semantics of the command s/he intends to type is legal as far as UNIX is
concerned. The name ‘basic principle’ is justified by the fact that it is used as the main
source for the generation of hypotheses about possible misconceptions.

M. Virvou / Interacting with Computers 11 (1999) 545–573564

1 ‘Argument’ here, means the UNIX argument and not the ‘argument’ used in the HPR terminology.



Errors and misconceptions of all kinds, varying from deep conceptual confusions to
accidental slips, are treated as gaps in the user’s knowledge or skill that became filled with
something similar to what was intended or correct. In terms of HPR, certain trans-
formations have taken place that have led the user to the incorrect or unexpected filling
of the gap. Depending on where the transformation takes place, we have the conceptual
level of the error and depending on the kind of the transform we have the cause of the
misconception.

5.1. The user modelling task

RESCUER’s User Modeller constructs an individual, dynamic, short-term user model.
A user model in this paper is an account of the user’s correct or incorrect beliefs about the
domain. By definition, a user model like this is impossible to construct with absolute
certainty because we do not have access to the user’s mind. Therefore, more accurately,
a user model is the system’s hypothesis about the user’s beliefs. In this text we will usually
omit the phrase ‘the system’s hypothesis about’ and just refer directly to ‘the user’s
beliefs’.

In particular, a user model just before a command has been issued, consists of the
following correct or incorrect beliefs that RESCUER believes that the user has:

1. The user’s beliefs about the file store.
2. The command intended by the user.
3. The user’s beliefs about the semantics of the command intended.
4. The user’s goal that the command intended was meant to achieve.

RESCUER has to have a hypothesis about the first three at all times when a command
has been issued. If the command is not considered suspect at all then these three have the
default values of the UNIX interpretation:

1. The configuration of the file store that UNIX holds in memory.
2. The command typed.
3. The standard UNIX semantics of the command typed.

All three beliefs are involved in the multiple descriptor statement that constitutes the
basic principle. The command typed is the argument of the first statement. The config-
uration of the file store that UNIX holds in memory is used to form the instantiated
semantics of the command typed which is the referent of the first statement. Finally, the
standard UNIX semantics of the command typed is the argument of the second statement.

The actual compilation and execution of a user’s command can be viewed as UNIX’s
‘interpretation’ of this command. This interpretation does not necessarily account for what
the user believes about the command that s/he typed and does not necessarily account for
what RESCUER believes about the user’s beliefs. RESCUER uses the HPR transforms to
alter this default UNIX interpretation at any time that it believes that the user may have
different beliefs.

For every action of the user, RESCUER instantiates the semantics of the action and
computes the typed internal pattern that corresponds to the instantiated semantics. The
typed internal pattern serves as the default hypothesis about what the intended internal

M. Virvou / Interacting with Computers 11 (1999) 545–573 565



pattern is. If RESCUER is alerted about a command then the default hypothesis will be
questioned. For example, if a command fails to execute then RESCUER will be alerted
and will question the default hypothesis by generating transformed hypotheses.

5.2. Hypotheses about user’s misconceptions

The chain of reasoning that the help system uses to generate hypotheses about possible
user’s misconceptions which are hidden in the action typed, is contained in the statement
transforms of the basic principle which was explained above.

Each of the transforms has a different meaning in terms of what the user’s misconcep-
tion or error may have been. The whole lot of transforms provide a satisfactory range of
hypotheses about errors that the system has to examine in order to select the most appro-
priate to present to the user. For the purposes of the illustration of some examples we will
assume that a user has typed the incorrect command: % rm tf, where tf is an empty

M. Virvou / Interacting with Computers 11 (1999) 545–573566

Table 5
No transforms in the basic principle

(1) Action having no
obvious problem

First statement A fact:
intended-pattern(action)� typed-pattern

Second statement A fact:
UNIX-acceptable(typed-pattern)� yes

Transforms None
Meaning Apparently the action intended was the action typed, unless there is evidence to the

contrary.
Misconception Apparently none.

Table 6
Argument transform in the first statement of the basic principle

(2) Another action was intended

First statement intended-pattern(action)� ?
Arg.transform # "

Transformed statement intended-pattern(action0) � close-known-pattern
A fact:

Second statement UNIX-acceptable(close-known-pattern)� yes
Meaning The action typed was not fully intended.

The action intended was different from the action typed.
Misconception Superficial misconception involving accidental slips:

Different arguments or commands were meant to be used.
Any of the following could have happened:
1. Typographic errors in either the command or the arguments may have been
involved.
2. The arguments or the command typed may have been used in previous actions of
the session resulting in their accidental use in the present action.
3. The arguments typed may belong to a different directory from the current
working directory.



directory. This means that thetyped internal patternis rm empty-dir. The command is
incorrect because ‘rm’ does not remove directories but files. We will also assume that the
user has a file called tff in her file store.

Since the user has typed an incorrect command, RESCUER will try to diagnose the
cause of the problem by generating hypotheses about errors. The generation of hypotheses
is based on statement transforms of the basic principle which are illustrated in the follow-
ing five cases.

1. Action having no problem.In this case there are no transforms involved. What the user
typed was correct as far as UNIX was concerned (see Table 5). This case does not apply
to our example.

2. Another action was intended. This case (see Table 6), is characterized by anargument
transform in the first statement. The transform results in the replacement of the action
typed by another action, which means that a similar but different action was meant to be
typed. For example, the user who typed % rm tf may have meant to type % rm tff which
is a different action. The action intended would produce a UNIX-acceptable internal
pattern: rm file.

3. A UNIX-acceptable internal pattern was intended.This case (see Table 7), is charac-
terized by a referent transform in the first statement. It is assumed that the user intended
a similar pattern to the one typed. In this case the action intended was the action issued
but the user thought that a different internal pattern corresponded to this action.
However, that the pattern the user had in mind was UNIX-acceptable. The misconcep-
tion involved here would have to do with the types of the arguments2 of the action
typed. The user must have believed that the arguments had different types from what
they actually had. For example, the user may have typed % rm tf only because s/he
thought that tf was a file. If this had been true the command would have worked. In this
case, the intended internal pattern would be rm file which is UNIX-acceptable, unlike
the typed internal pattern.

M. Virvou / Interacting with Computers 11 (1999) 545–573 567

Table 7
Referent transform in the first statement of the basic principle

(3) A UNIX-acceptable internal pattern was intended

First statement intended-pattern(action)� ?
Ref. transform "

Transformed statement intended-pattern(action)� close-known-pattern
A fact:

Second statement UNIX-acceptable(close-known-pattern)� yes
Meaning The action typed was fully intended; but the internal pattern was not.

The user thought that a different internal pattern corresponded to the action typed
from the one that actually did.
The pattern the user had in mind was UNIX-acceptable.

Misconception Rather superficial misconception involving memory slips:
Misconception about the UNIX file store state.
The types of the arguments of the action issued were thought to be different from
what they actually were.

2 ‘Arguments’ here, mean the UNIX arguments and not the ‘arguments’ used in the HPR terminology.



4. The typed action and its internal pattern were intended.This case (see Table 8), is
characterized by an argument transform in the second statement. This would mean that
the action intended was the action issued and the internal pattern intended was the typed
pattern which the user falsely concluded to have been UNIX-acceptable. In terms of the
misconception involved, this case reveals a problem with the semantics of the
command. The user may have confused the semantics of the command issued with
that of another command. For example, the user may have typed % rm tf because s/he
thought that rm could be used for removing directories as well as files. In this case, the
intended internal pattern is rm empty-dir which the user may have confused with the
rmdir empty-dir, which is correct.

5. The typed action and internal pattern were intended but the user was not sure whether
they were UNIX-acceptable or not.This case (see Table 9), has to do with areferent
transform in the second statement, i.e. the value ‘yes’ or ‘no’ as to whether the typed
pattern was UNIX-acceptable or not. The answer ‘yes’ is not similar to ‘no’ therefore

M. Virvou / Interacting with Computers 11 (1999) 545–573568

Table 8
Argument transform in the second statement of the basic principle

(4) The typed action and its internal pattern were intended, but there was a misconception about the semantics.

A fact:
First statement intended-pattern(action)� typed-pattern
Second statement UNIX-acceptable(typed-pattern) � ?

Arg. transform # "
Transformed statement UNIX-acceptable(close-known-pat) � yes
Meaning The action typed was fully intended and so was the typed internal pattern.

The user falsely concluded that the typed pattern was UNIX-acceptable.
Misconception Deeper misconception involving conceptual confusions about the semantics of

the command.
The user may have confused the semantics of the command issued with the
command suggested by the close-known-pattern in the argument transform.

Table 9
Referent transform in the second statement of the basic principle

(5) The typed action and its internal pattern were intended but user uncertain whether they were UNIX-
acceptable

A fact:
First statement intended-pattern(action)� typed-pattern
Second statement UNIX-acceptable(typed-pattern) � ?

Ref. transform "
Transformed statement UNIX-acceptable(typed-pattern) � yes
Meaning The action intended was the action issued and the internal pattern intended was

the typed pattern. The user was probably aware that this was either UNIX-
acceptable or not (the two values of the referent being ‘yes’ or ‘no’) and decided
to try and see whether UNIX would accept the pattern and the action.

Misconception Doubts about the semantics of the command.
The user was not sure whether semantics of the command issued was UNIX-
acceptable or not and decided to have a go and find out whether UNIX would
complain.



the explanation that one can give is that the user was doubtful about the command and
decided to have a go and let UNIX complain if there was an error. This case reveals a
problem with the semantics of the command.

5.3. Depth of misconceptions

The basic principle is used to generate hypotheses about misconceptions. The four
different statement transforms can represent a cognitive classification of possible different
misconceptions involved in the same kind of user error. As Hollnagel notes [26,27] there is
a difference between the underlying cause of an error and the observable manifestation of
the error and points out that it is wrong to mix the classification of observable phenomena
with the interpretation of their causes.

The first two cases are characterized by transforms in the first statement. This
means that the misconceptions involved are more superficial as can be seen by the
errors that correspond to these cases (e.g. typos, misconceptions about types of
objects etc.). As we go to the second statement, misconceptions become deeper
because they have to do with the understanding of UNIX static domain knowledge such
as the semantics of commands. The User Modeller of RESCUER favours the most super-
ficial errors first and drops this hypothesis only if there is evidence that this does not apply
to the particular case.

6. Evaluation of RESCUER

The role of this section is to demonstrate the evaluation of RESCUER’s performance in
terms of its primary aim which is to reproduce some ‘plausible human reasoning’ from an
observer’s point of view as to what a user may be doing and the kind of help s/he may need.

The idea is to show how well RESCUER could have followed the reasoning of users in
sequences of commands which were entirely created by real UNIX-users who pursued
their own plans and goals.

For this kind of evaluation of RESCUER’s performance we have used sample scripts of
real UNIX–user interactions, which were collected during the empirical study described in
Section 2. The sessions which were recorded, constitute a sample of everyday interactions
of users with UNIX.

Evaluating RESCUER’s performance on samples of real UNIX–user interactions
where users pursued their own goals, has the following advantages:

1. Evaluating RESCUER by testing the plausibility of the whole notion of filestore
instabilitieswhich has been used as a way of the system’s keeping track of the user’s
plans and goals. It is interesting to see whether a real user does indeed tend to remove
the filestore instabilities in a single session.

2. Evaluating RESCUER’s responses in terms of their correctness.We can verify the
success or not of RESCUER’s suggestions by the very actions of the user as these are
issued after the command that would trigger RESCUER’s response.

3. Evaluating the utility of RESCUER’s successful responses.The fact that RESCUER has
not had real-time interaction with the user who produced the sample script means that

M. Virvou / Interacting with Computers 11 (1999) 545–573 569



the user has not seen RESCUER’s responses. This gives us the opportunity to evaluate
the utility of the responses in terms of how much effort RESCUER could have saved the
user if the user had seen and followed RESCUER’s advice. The effort is estimated in
terms of the number of commands that the user issued only to rectify an error that could
have been rectified by RESCUER. Evidently, this test applies only to the cases where
RESCUER has been successful at generating the correct hypothesis about the rectifica-
tion of an error.

As an example of an evaluation of RESCUER on samples completely unknown to
RESCUER, we comment on RESCUER’s performance in a rather long session of an
interaction of a user with UNIX. This session was long enough (73 commands) to bring
up a variety of issues and errors that the user had made and also had the advantage of their
all being contained in one session which showed clearly how many commands RESCUER
was able to follow in a single session and how well it could associate related commands
which may have been issued at very different stages of the same session.

6.1. Statistics of RESCUER’s performance

In the example of a very long session of a total of 73 commands, RESCUER responded
to seven commands which it considered problematic and suggested alternative commands
which were either verified correct by the user’s later actions or at least seemed reasonable.
These seven commands account for almost a 10% of the whole session.

It also had a strong expectation on about nine commands of the session. These nine
commands, if added to the seven commands where it produced a response, make a total of
16 commands that RESCUER had a strong opinion about and hence managed to perform
plausible plan recognition. These account for slightly more than 20% of the whole session.

RESCUER succeeded in offering plausible corrections for four commands that had
failed. In three out of four commands it was verified that RESCUER managed to suggest
the right correction in terms of the user’s goals. One of the corrections remained unver-
ified, but certainly looked plausible.

RESCUER did not respond to eight commands that had failed. In principle, it could
have responded to more commands in a more expanded version of its prototype imple-
mentation. However, for some commands it simply may not have been plausible to offer
some suggestion.

6.2. RESCUER’s reasoning and success in cases where the command had failed

In the sample session, 12 commands failed completely to do anything at all except
producing an error message. These were the following commands:
9 %cp prolog.dcg1 dcg1
12 %cp.dcg1 prolog
16 %top prolog
22 %cp prolog.is_d_f prolog
34 %greetings
36 %greetings
48 %I
49 %more uk.general

M. Virvou / Interacting with Computers 11 (1999) 545–573570



54 %cp dcg1 dcg2
56 %cp dcg1 dcg2
59 %isa_d_f
64 %top cp dcg1 dcg2

RESCUER found them all ‘suspect’ and managed to find plausible corrections for four
of them, at commands 16, 22, 48 and 49.

RESCUER uses two degrees of expectation about commands typed, to rate the degree of
certainty about the hypotheses,neutral andexpected.This means that if RESCUER has
generated a hypothesis with a label ‘neutral’ and a hypothesis with a label ‘expected’, only
the latter will be presented to the user because RESCUER has more reasons to believe that
this is a good alternative. If there are more than one hypotheses with the same label then all
of them are presented.

The corrections that were suggested to the user by RESCUER for the example were the
following:

At command 16 RESCUER suggested % ls prolog with a degree of certainty ‘neutral’.
At command 22 RESCUER suggested % cp prolog.isa_d_f prolog with a degree of
certainty ‘expected’.
At command 48 RESCUER suggested % ls with a degree of certainty ‘neutral’.
At command 49 RESCUER suggested the following two possible replacements:
% vi uk.general with a degree of certainty ‘neutral’.
% more.uk.general with a degree of certainty ‘neutral’.

The replacements that RESCUER suggested were confirmed correct with respect to the
user’s intentions as this was shown by the subsequent commands that the user issued.

6.3. The degree of utility of a successful response

We assess the degree of utility of a correct suggestion in terms of how many commands
the user issued in order to recover from an error that RESCUER managed to identify. This
only applies to the verified suggestions of RESCUER.

1. 16% top prolog. RESCUER neutral: ls prolog. In this case the user wanted to see what
the contents of prolog were but did not know how to do it from his/her home directory.
Therefore s/he went into prolog, typed an ‘ls’ and went back to his/her home directory
where s/he was originally. All this took him/her three commands to do (17, 18 and 19),
which s/he would not have needed to type if s/he had seen RESCUER’s response.

2. 22% cp prolog.is_d_f prolog. RESCUER expected: cp prolog.isa_d_f prolog. This time
it took the user four commands to recover from his/her error (23, 24, 25 and 26) and
took him/her three commands to find out what had gone wrong. RESCUER could have
saved him/her all this trouble.

3. 49% more uk.general. RESCUER neutral: vi uk.general. RESCUER neutral: more.uk.-
general. In this case, the right command came immediately after the wrong command.
Still the user had to retype the command, with the possibility of making new typing
errors.

M. Virvou / Interacting with Computers 11 (1999) 545–573 571



7. Conclusions

The main point of this paper is that a kind of ‘human reasoning’ is crucial for the
construction of user interfaces that would provide more tolerance to user errors. A user-
interface like this could be feasible to construct if it focuses primarily at ‘plausible’ user
errors. Providing assistance to users for these errors would alleviate much of the frustration
of users and reduce the risk of the users being involved in catastrophic errors with respect
to their intentions.

Human Plausible Reasoning theory has been examined for the above purpose and has
proved successful at the generation and evaluation of hypotheses about possible user’s
beliefs underlying the user’s observed actions.

In particular, HPR provides a framework for generating hypotheses about misconcep-
tions and distinguishes between the conceptual levels at which the misconceptions may
have occurred and their types. Competing hypotheses for possible users’ errors can be
reduced if commands are assigned more meaning with respect to the user’s goals by some
plan recognition mechanism. In our view, the command instances issued by a user do not
play an important role with respect to plan recognition as long as the commands used
produce (or not) some expected effects.

The approach taken in this research can be generalized to be used in domains other than
command languages since the theory used is domain-independent. For example, in a GUI
(Graphical User Interface) a user’s action could be a mouse event. In this case again we
could assume that the user intends to use the interface correctly. Errors could also occur at
different cognitive levels depending on the kind of similarity of the action issued with the
action that would serve the user’s goals. For example, there could be a geographical
similarity of the actions, meaning that the user may have clicked on a place near the
one intended, or a misconception on the semantics of actions in terms of the effects that
clicking on something would have and so on. HPR could be used to generate hypotheses
about possible errors using the statement transforms.

The notion of instability could be used in this case as well, to give more meaning to
sequences of actions. For example, selecting an object or objects could be considered as
adding an instability. This means that there should be an action following this, otherwise
the action of selecting does not have any sense of purpose.

Acknowledgements

I would like to thank Professor Ben du Boulay, Dr Mark Millington and Professor Roger
Hartley for their constructive comments on a previous version of this work. I would also
like to thank Professor Chris Johnson (editor of this volume) and the anonymous reviewers
for their helpful comments on this paper.

References

[1] M. Virvou, A human plausible reasoning theory in the context of an active help system for UNIX users.
Ph.D. Thesis, Dept of Cognitive and Computing Sciences, University of Sussex, 1992.

M. Virvou / Interacting with Computers 11 (1999) 545–573572



[2] M. Virvou, J. Jones, M. Millington, Virtues and problems of an active help system for UNIX, in: S. Hegner,
P. Norvig, R. Wilensky (Eds.), Intelligent systems for UNIX, Dordrecht, The Netherlands, Kluwer
Academic Publishers (1999).

[3] H.U. Hoppe, Deductive error diagnosis and inductive error generalization for intelligent tutoring systems,
Journal of Artificial Intelligence in Education 5 (1) (1994) 27–49.

[4] A. Mitrovic, S. Djordjevic-Kajan, L. Stoimenov, INSTRUCT: modeling students by asking questions, User
Modeling and User Adapted Interaction 6 (4) (1996) 273–302.

[5] R. Davis, Retrospective on diagnostic reasoning based on structure and behavior, Artificial Intelligence 59
(1993) 149–157.

[6] S.A. Cerri, V. Loia, A concurrent, distributed architecture for diagnostic reasoning, User Modeling and
User-Adapted Interaction 7 (2) (1997) 69–105.

[7] A. Collins, R. Michalski, The logic of plausible reasoning: a core theory, Cognitive Science 13 (1989) 1–49.
[8] A. Gertner, Plan recognition and evaluation for on-line critiquing, User Modeling and User Adapted

Interaction 7 (2) (1997) 107–140.
[9] D.W. Oard, The state of the art in text filtering, User Modeling and User-Adapted Interaction 7 (3) (1997)

141–178.
[10] E.A. Rich, User modeling via stereotypes, Cognitive Science 3 (1979) 329–354.
[11] J. Jones, M. Virvou, User modeling and advice giving in intelligent help systems for UNIX, Journal of

Information and Software Technology 33 (2) (1991) 121–133.
[12] R. Wilensky, D. Chin, M. Luria, J. Martin, J. Mayfield, D. Wu, The Berkeley UNIX Consultant Project,

Computational Linguistics 14 (4) (1988) 35–84.
[13] D.N. Chin, Intelligent agents as a basis for natural language interfaces. Report no. UCB/CSD 88/396,

Computer Science Division (EECS), Berkeley, California, 1988.
[14] M. Luria, Knowledge intensive planning. Report no. UCB/CSd 88/433, Computer Science Division

(EECS), Berkeley, California, 1988.
[15] J.H. Martin, A computational theory of metaphor. Report no. UCB/CSd 88/465, Computer Science Division

(EECS), Berkeley, California, 1992.
[16] J. Mayfield, Controlling inference in plan recognition, User Modelling and User-Adapted Interaction 2 (1-2)

(1992) 55–82.
[17] A.E. Quilici, M.G. Dyer, M. Flowers, AQUA and intelligent UNIX advisor, in: B. du Boulay (Ed.),

Proceedings of the 7th European Conference on Artificial Intelligence, vol. II, 1986, pp. 33–38.
[18] A. Quilici, AQUA: a system that detects and responds to user misconceptions, in: A. Kobsa, A. Wahlster

(Eds.), User Modelling and Dialog Systems, Springer, New York, 1988.
[19] J. Breuker, J.R. Winkels, J. Sandberg, A shell for intelligent help systems, in: Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, 1987, pp. 167–173.
[20] J. Breuker, Coaching in help systems, in: J. Self (Ed.), Artificial Intelligence and Human Learning, Chap-

man and Hall, London, 1988, pp. 310–337.
[21] J.R. Hartley, M. Smith, Question answering and explanation giving in on-line help systems, in: J. Self (Ed.),

Intelligent Computer Aided Instruction, Chapman and Hall Computing, London, 1988.
[22] R. Winkels, Explorations in Intelligent Tutoring and Help. IOS Press, 1992.
[23] K.L. McGraw, Performance support systems: integrating AI, hypermedia and CBT to enhance user perfor-

mance, Journal of Artificial Intelligence in Education 5 (1) (1994) 3–26.
[24] M.H. Burstein, A.M. Collins, Modelling a theory of human plausible reasoning, in: T. O’Shea, V. Sgurev

(Eds.), Artificial Intelligence III: Methodology, Systems, Applications, Elsevier Science, North Holland,
1988, pp. 21–28.

[25] M.H. Burstein, A. Collins, M. Baker, Plausible generalisation: extending a model of human plausible
reasoning, The Journal of the Learning Sciences 3/4 (1991) 319–359.

[26] E. Hollnagel, The phenotype of erroneous actions: implications for HCI design, in: G.R.S. Weir, J.L. Alty
(Eds.), Human–Computer Interaction and Complex Systems, Academic Press, London, 1991.

[27] E. Hollnagel, The phenotype of erroneous actions, International Journal of Man–Machine Studies 39 (1993)
1–32.

M. Virvou / Interacting with Computers 11 (1999) 545–573 573


