Recognition of Biclique Graphs of Some Graph Classes

There is a PDF version (with references) that can be accessed here.

Table 1: Biclique graph of some classes. At column ``\(KB(G)\), \(G \in \mathcal{A}\)'' we can find a brief description of the graph \(KB(G)\) for each class; at column ``class \(KB(\mathcal{A})\)'' appears the class that is equal to (or a super-class of) \(KB(\mathcal{A})\). At column ``complexity'' we present the complexity (if known) of recognizing \(KB(\mathcal{A})\).
class \(\mathcal{A}\) \(KB(G)\), \(G \in \mathcal{A}\) class \(KB(\mathcal{A})\) complexity
complete \(L(G)\) \cite{CruzGroshausGuedesPuppo2020} \(L(\text{complete})\) \cite{CruzGroshausGuedesPuppo2020} \(\mathcal{P}\) \cite{Lehot1974,Liu2015,Roussopoulos1973}
tree \((G-leaves(G))^2\) \cite{CruzGroshausGuedesPuppo2020} \((\text{tree})^2\) \cite{CruzGroshausGuedesPuppo2020} \(\mathcal{P}\) (linear) \cite{LinSkiena1995}
path (\(P_n\)) \(\emptyset\), for \(n = 1\) \((\text{path})^2\) \cite{CruzGroshausGuedesPuppo2020} \(\mathcal{P}\) (linear) \cite{LinSkiena1995}
  \(K_1\), for \(n = 2\)    
  \((P_{n-2})^2\), for \(n > 2\)    
  \cite{CruzGroshausGuedesPuppo2020}    
half (with \(2n\) vertices) \cite{Erdos1983} \(K_n\) complete \(\mathcal{P}\) (linear)
star \(K_1\) \(K_1\) \(\mathcal{P}\) (constant)
bistar \(K_2\) \(K_2\) \(\mathcal{P}\) (constant)
\((K_3,P_4)\text{-free}\) graphs \(\mathcal{C}_{>1}(G) K_1\) \(n K_1\) \cite{Cruz2024,CruzGroshausGuedesProcedia2023} \(\mathcal{P}\) (constant)
\((K_3,\text{co-}P_3)\text{-free}\) graphs \(K_1\) \(K_1\) \(\mathcal{P}\) (constant)
caterpilar \((G-leaves(G))^2\) \((\text{path})^2\) \(\mathcal{P}\) (linear) \cite{LinSkiena1995}
cycle (\(C_n\)) \(K_1\), for \(n = 4\) \((\text{cycle})^2 - K_4 + K_1\) \(\mathcal{P}\) \cite{FarzadLauLeTuy2012}
  \((C_n)^2\), for \(n \neq 4\) \cite{CruzGroshausGuedesPuppo2020} \cite{CruzGroshausGuedesPuppo2020}  
\(\mathcal{G}_k\), for \(k \geq 5\) \((G-leaves(G))^2\) \((\mathcal{G}_k)^2\), for \(k \geq 5\) \(\mathcal{P}\), for \(k \geq 6\)
  \cite{CruzGroshausGuedesPuppo2020} \cite{CruzGroshausGuedesPuppo2020} \(\mathcal{NP}\text{-complete}\), for \(k = 5\)
      \cite{FarzadLauLeTuy2012}
\(ICB\) OPEN \(\subset (IIC-PG)^2\) \cite{Cruz2024,CruzGroshausGuedesProcedia2023,CruzGroshausGuedes2022MC} *
\(IBG\) OPEN \(\subset (IIC-PG)^2\) \cite{Cruz2024,CruzGroshausGuedesProcedia2023} OPEN
    \(\subset K_{1,4}\text{-free co-}CG\) \cite{CruzGroshausGuedesPuppo2020}  
\(PIB\) \((L(S(G))^2\) \cite{CruzGroshausGuedesPuppo2020} \((L(PIB))^2\) \cite{CruzGroshausGuedesPuppo2020} OPEN
\(PIB\text{-}ASG\) \((L(S(G))^2\) \cite{CruzGroshausGuedesPuppo2020} \(1\text{-}PIG\) \cite{CruzGroshausGuedesPuppo2020} \(\mathcal{P}\) \cite{CruzGroshausGuedesPuppo2020}
\(HIB\) \(K(G^2)\) \cite{Groshaus2006} \(\subset PIG \cap (L(PIB))^2\) OPEN
    \cite{CruzGroshausGuedesPuppo2020,GroshausGuedesKolbergLATIN2020,Groshaus2008,Hedman1984}  
\((K_3,C_5,C_6,P_6)\text{-free}\) graphs \(K(G^2)\) \cite{Groshaus2006} --- OPEN
\(DFCB\) \(K(G^2)\) \cite{Groshaus2006} \(\subset\) Dually Chordal OPEN
\(HONHG\) \(K(G^2)\) \cite{Groshaus2006} --- OPEN
\(BBHGD\) OPEN \(CHBDI\) \cite{Groshaus2006} OPEN
\(NSSG\) --- --- \(\mathcal{P}\) \cite{GroshausGuedesPuppo2016,GroshausGuedesPuppo2022}
threshold graphs --- --- \(\mathcal{P}\) \cite{GroshausGuedesPuppo2016,GroshausGuedesPuppo2022}
\(K_3\text{-free}\) graphs \((KB_m(G))^2\) \cite{GroshausGuedes2020,GroshausGuedesProcedia2021} \(\subset \mathcal{G}^2\) \cite{GroshausGuedes2020,GroshausGuedesProcedia2021} OPEN
\(bipartite\) \((KB_m(G))^2\) \cite{GroshausGuedes2020,GroshausGuedesProcedia2021} \((IIC\text{-comparability})^2\) OPEN
    \cite{GroshausGuedes2020,GroshausGuedesProcedia2021}  
    Characterization \cite{Groshaus2006}  
\(\mathcal{G}\) --- Characterization \cite{Groshaus2006} OPEN

Figure of graph classes inclusions

Figure 1: Graph classes and the status of the recognition of its biclique graph

Glossary

Classes

  • \(BBHGD\): Bipartite biclique-Helly graphs with no dominated vertices \cite{Groshaus2006}
  • \(BPG\): Bipartite permutation graphs \cite{Spinrad1987} (\(= PIB\) \cite{HellHuang2004})
  • \(CHBDI\): Clique independent Helly-bicovered with no dominated vertices graphs \cite{Groshaus2006}
  • co-\(CG\): Co-comparability graphs
  • \(C_n\): Cycle with \(n\) vertices
  • \(DFCB\): Domino-free Chordal Bipartite \cite{Groshaus2006}
  • \(\mathcal{G}\): All graphs
  • \(\mathcal{G}_k\): Graphs with girth at least \(k\)
  • \(HIB\): Helly interval bigraphs \cite{GroshausGuedesKolbergLATIN2020}
  • \(HONHG\): Hereditary open neighborhood Helly graphs (\(= (K_3,C_6)\text{-free}\) graphs) \cite{Groshaus2006}
  • \(IBG\): Interval bigraphs \cite{HellHuang2004}
  • \(ICB\): Interval containment bigraphs
  • \(IIC\text{-comparability}\): Interval intersection closed comparability graphs \cite{GroshausGuedes2020,GroshausGuedesProcedia2021}
  • \(K_n\): Complete graph of order \(n\)
  • \(NSSG\): Nested separable split graphs \cite{GroshausGuedesPuppo2016,GroshausGuedesPuppo2022}
  • \(PG\): Permutation Graphs
  • \(PIB\): Proper interval bigraphs (\(= BPG\) \cite{HellHuang2004})
  • \(PIB\text{-}ASG\): Proper interval bigraphs having acyclic simplification graph \cite{CruzGroshausGuedesPuppo2020}
  • \(PIG\): Proper interval graphs
  • \(1\text{-}PIG\): \(1\text{-Proper}\) interval graphs \cite{CruzGroshausGuedesPuppo2020}
  • \(P_n\): Path with \(n\) vertices

Operators and Functions

  • \(\mathcal{C}_{>1}(G)\): Number of non-trivial components of \(G\)
  • \(K(G)\): Clique graph of \(G\)
  • \(L(G)\): Line graph of graph \(G\)
  • \(leaves(G)\): Set of leaves (vertices of degree \(1\)) of graph \(G\)
  • \(S(G)\): Simplification graph of \(G\) \cite{CruzGroshausGuedesPuppo2020}

Date: Updated: 30 mar 2025

Author: Marina Groshaus / André L. P. Guedes
Universidade Tecnológica Federal do Paraná / Universidade Federal do Paraná
Brazil

Created: 2025-03-30 dom 21:05

Validate