
wxHaskell

A Portable and Concise GUI Library for Haskell

Daan Leijen
Institute of Information and Computing Sciences, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

daan@cs.uu.nl

Abstract

wxHaskell is a graphical user interface (GUI) library for Haskell
that is built on wxWidgets: a free industrial strength GUI library
for C++ that has been ported to all major platforms, including Win-
dows, Gtk, and MacOS X. In contrast with many other libraries,
wxWidgets retains the native look-and-feel of each particular plat-
form. We show how distinctive features of Haskell, like paramet-
ric polymorphism, higher-order functions, and first-class computa-
tions, can be used to present a concise and elegant monadic inter-
face for portable GUI programs.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.3.2 [Programming Languages]: Language Classi-
fications—Applicative (Functional) Programming; D.2.2 [Design
Tools and Techniques]: User interfaces.

General Terms

Design, Languages.

Keywords

Graphical user interface, combinator library, layout, wxWidgets,
Haskell, C++.

1 Introduction

The ideal graphical user interface (GUI) library is efficient, portable
across platforms, retains a native look-and-feel, and provides a lot
of standard functionality. A Haskell programmer also expects good
abstraction facilities and a strong type discipline. wxHaskell is a
free GUI library for Haskell that aims to satisfy these criteria [25].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’04,September 22, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-850-4/04/0009 ...$5.00

There is no intrinsic difficulty in implementing a GUI library that
provides the above features. However, the amount of work and
maintainance associated with such project should not be underes-
timated; many GUI libraries had a promising start, but failed to be
maintained when new features or platforms arose. With wxHaskell,
we try to avoid this pitfall by building on an existing cross-platform
framework named wxWidgets: a free industrial strength GUI li-
brary for C++ [43].

wxWidgets provides a common interface to native widgets on all
major GUI platforms, including Windows, Gtk, and Mac OS X. It
has been in development since 1992 and has a very active devel-
opment community. The library also has strong support from the
industry and has been used for large commercial applications, for
example, AOL communicator and AVG anti-virus.

wxHaskell consists of two libraries,WXCoreandWX. TheWXCore
library provides the core interface to wxWidgets functionality. It
exposes about 2800 methods and more than 500 classes of wxWid-
gets. Using this library is just like programming wxWidgets in C++
and provides the raw functionality of wxWidgets. The extensive
interface made it possible to already develop substantial GUI pro-
grams in wxHaskell, including a Bayesian belief network editor and
a generic structure editor, called Proxima [41]. TheWXCorelibrary
is fully Haskell’98 compliant and uses the standard foreign function
interface [11] to link with the wxWidgets library.

The WX library is implemented on top ofWXCoreand provides
many useful functional abstractions to make the raw wxWidgets
interface easier to use. This is where Haskell shines, and we use
type class overloading, higher-order functions, and polymorphism
to capture common programming patterns. In particular, in Sec-
tion 6 we show howattribute abstractionscan be used to model
widget settings and event handlers. Furthermore,WX contains a
rich combinator library to specify layout. In section 7, we use the
layout combinator library as a particular example of a general tech-
nique for declarative abstraction over imperative interfaces. As de-
scribed later in this article, theWX library does use some extensions
to Haskell’98, like existential types. Most of this article is devoted
to programming wxHaskell with theWX library, and we start with
two examples that should give a good impression of the functional-
ity of the library.

2 Examples

Figure 1 is a small program in wxHaskell that shows a frame with a
centered label above two buttons. Pressing theok button closes the
frame, pressing thecancelbutton changes the text of the label.

main= start gui

gui :: IO ()
gui =

do f ← frame [text := "Example"]
lab ← label f [text := "Hello wxHaskell"]
ok ← button f [text := "Ok"]
can← button f [text := "Cancel"]
set ok [on command:= close f]
set can[on command:= set lab[text := "Goodbye?"]]
set f [layout := column5 [floatCenter(widget lab)

,floatCenter$
row 5 [widget ok,widget can]]]

Figure 1. A first program in wxHaskell, with screenshots on Windows XP and Linux (Gtk)

A graphical wxHaskell program1 is initialized with thestart func-
tion, that registers the application with the graphical subsystem and
starts an event loop. The argument ofstart is anIO value that is in-
voked at the initialization event. This computation should create the
initial interface and install further event handlers. While the event
loop is active, Haskell is only invoked via these event handlers.

Thegui value creates the initial interface. Theframecreates a top
level window frame, with the text"Example" in the title bar. Inside
the frame, we create a text label and two buttons. The expression
on commanddesignates the event handler that is called when a but-
ton is pressed. Theok button closes the frame, which terminates
the application, and thecancelbutton changes the content of the
text label.

Finally, thelayout of the frame is specified. wxHaskell has a rich
layout combinator library that is discussed in more detail in Section
7. The text label and buttons float to the center of its display area,
and the buttons are placed next to each other. In contrast to many
dialogs and windows in contemporary applications, this layout is
fully resizeable.

3 Asteroids

We now discuss a somewhat more realistic example of program-
ming with wxHaskell. In particular we look at a minimal version
of the well knownasteroidsgame, where a spaceship tries to fly
through an asteroid field. Figure 2 shows a screenshot. Even though
we use a game as an example here, we stress that wxHaskell is a
library designed foremost for user interfaces, not games. Neverthe-
less, simple games like asteroids show many interesting aspects of
wxHaskell.

The game consists of a spaceship that can move to the left and right
using the arrow keys. There is an infinite supply of random rocks
(asteroids) that move vertically downwards. Whenever the space-
ship hits a rock, the rock becomes a flaming ball. In a more realistic
version, this would destroy the ship, but we choose a more peaceful
variant here. We start by defining some constants:

height = 300
width = 300
diameter= 24
chance = 0.1 ::Double

1One can access wxHaskell functionality, like the portable
database binding, without using the GUI functionality.

For simplicity, we use fixed dimensions for the game field, given
by widthandheight. Thediameteris the diameter of the rocks, and
the chanceis the chance that a new rock appears in a given time
frame. The main function of our game isasteroidsthat creates the
user interface:

asteroids:: IO ()
asteroids=

do g ← getStdGen
vrocks← variable [value:= randomRocks g]
vship ← variable [value:= div width 2]
f ← frame [resizeable:= False]
t ← timer f [interval := 50

,on command:= advance vrocks f]
set f [text := "Asteroids"

,bgcolor := white
, layout := space width height
,on paint := draw vrocks vship
,on leftKey := set vship[value:∼ \x→ x−5]
,on rightKey:= set vship[value:∼ \x→ x+5]
]

First a random number generatorg is created that is used to ran-
domly create rocks. We create two mutable variables:vrocksholds
an infinite list that contains the positions of all future rock positions,
vshipcontains the currentx position of the ship.

Next, we create the main window framef . The frame is not re-
sizeable, and we can see in the screenshot that the maximize box
is greyed out. We also attach an (invisible) timert to this frame
that ticks every 50 milliseconds. On each tick, it calls the function
advancethat advances all rocks to their next position and updates
the screen.

Finally, we set a host of attributes on the framef . Note that we
could have set all of these immediately when creating the frame but
the author liked this layout better. The textAsteroidsis displayed
in the title bar, and the background color of the frame is white. As
there are no child widgets, thelayout just consists of empty space
of a fixed size. The attributes prefixed withondesignate event han-
dlers. Thepaint event handler is called when a redraw of the frame
is necessary, and it invokes thedraw function that we define later in
this section. Pressing the left arrow key or right arrow key changes
the x position of the spaceship. In contrast to the(:=) operator,
the (:∼) operator does not assign a new value, but applies a func-
tion to the attribute value, in this case, a function that increases or

decreases the x position by 5 pixels. A somewhat better definition
would respect the bounds of the game too, for example:

on leftKey:= set vship[value:∼ \x→max0 (x−5)]

The vrocksvariable holds an infinite list of all future rock posi-
tions. This infinite list is generated by therandomRocksfunction
that takes a random number generatorg as its argument:

randomRocks:: RandomGen g⇒ g→ [[Point]]
randomRocks g=

flatten [] (map fresh(randoms g))
flatten rocks(t : ts) =

let now = map head rocks
later = filter (not◦null) (map tail rocks)

in now: flatten(t ++ later) ts

fresh r
| r >chance= []
| otherwise = [track (floor (fromIntegral width∗ r /chance))]

track x=
[point x (y−diameter) | y← [0,6. .height+2∗diameter]]

The standardrandomsfunction generates an infinite list of random
numbers in the range[0,1). Thefreshfunction compares each num-
ber agains thechance, and if a new rock should appear, it generates
a finite list of positions that move the rock from the top to the bot-
tom of the game field. The expressionmap fresh(randoms g) de-
notes an infinite list, where each element contains either an empty
list, or a list of positions for a new rock. Finally, weflattenthis list
into a list of time frames, where each element contains the position
of every rock in that particular time frame.

Theadvancefunction is the driving force behind the game, and it is
called on every timer tick.

advance vrocks f=
do set vrocks[value:∼ tail]

repaint f

Theadvancefunction advances to the next time frame by taking the
tail of the list. It then forces the framef to repaint itself. Thepaint
event handler of the frame calls thedraw function that repaints the
game:

draw vrocks vship dc view=
do rocks← get vrocks value

x ← get vship value

let ship = point x (height−2∗diameter)
positions= head rocks
collisions= map(collide ship) positions

drawShip dc ship
mapM (drawRock dc) (zip positions collisions)
when(or collisions) (play explode)

Thedraw function was partially parameterised with thevrocksand
vshipvariables. The last two parameters are supplied by the paint
event handler: the currentdevice context(dc) and view area (view).
The device context is in this case the window area on the screen,
but it could also be a printer or bitmap for example.

Figure 2. The asteroids game.

First, we retrieve the current rocks and x position of the spaceship.
The position of the spaceship,ship, is at a fixed y-position. The
current rockpositionsare simply the head of the rocks list. The
collisionslist tells for each rock position whether it collides with the
ship. Finally, we draw the ship and all the rocks. As a final touch,
we also play a sound fragment of an explosion when a collision
has happened. Thecollide function just checks if two positions
are too close for comfort using standard vector functions from the
wxHaskell library:

collide pos0 pos1=
let distance= vecLength(vecBetween pos0 pos1)
in distance6 fromIntegral diameter

A ship can be drawn using standard drawing primitives, for exam-
ple, we could draw the ship as a solid red circle:

drawShip dc pos=
circle dc pos(div diameter2) [brush:= brushSolid red]

Thecircle function takes a device context, a position, a radius, and
a list of properties as arguments. Thebrushattribute determines
how the circle is filled. wxHaskell comes with an extensive array of
drawing primitives, for example polygons, rounded rectangles, and
elliptic arcs. But for a spaceship, it is nicer of course to use bitmaps
instead:

drawShip dc pos=
drawBitmap dc ship pos True[]

drawRock dc(pos,collides) =
let picture= if collides then burning elserock
in drawBitmap dc picture pos True[]

ThedrawBitmapfunction takes a device context, a bitmap, a posi-
tion, the transparency mode, and a list of properties as arguments.
The bitmap for a rock is changed to aburningball when it collides
with the spaceship. To finish the program, we define the resources
that we used:

rock = bitmap "rock.ico"
burning= bitmap "burning.ico"

ship = bitmap "ship.ico"
explode= sound"explode.wav"

And that is all we need – asteroids in 55 lines of code.

3.1 Extensions

Extending the game with new features is straightforward. For ex-
ample, to change the speed of the spaceship by pressing the plus or
minus key, we just add more event handlers to the framef :

on (charKey’-’) := set t [interval :∼ \i → i ∗2]
on (charKey’+’) := set t [interval :∼ \i →max10 (div i 2)]

The minus key increments the timer interval, while the plus key
decrements it, effectively making the game run slower or faster.
The screenshot in Figure 2 also shows a menu and status bar. Here
is the code for creating the menu pane:

game←menuPane [text := "&Game"]
new ←menuItem game[text := "&New\tCtrl+N"

,help:= "New game"]
pause←menuItem game[text := "&Pause\tCtrl+P"

,help:= "Pause game"
,checkable:= True]

menuLine game
quit ←menuQuit game[help:= "Quit the game"]

The "&" notation in menu texts signifies the hotkey for that item
when the menu has the focus. Behind a tab character we can also
specify a menu shortcut key. There is also a structured interface to
such accelerator keys, but specifying those keys as part of the menu
text proves very convenient in practice. Note that thepausemenu
is a checkable menu item. For thequit menu, we use the special
menuQuitfunction instead ofmenuItem, as this item is sometimes
handled specially on certain platforms, in particular on Mac OS X.

To each new menu item, we attach an appropiate event handler:

set new [on command:= asteroids]
set pause[on command:= set t [enabled:∼ not]]
set quit [on command:= close f]

Thequit menu simply closes the frame. Thepausemenu toggles the
enabled state of the timer by applying thenot function. Turning off
the timer effectively pauses the game.2 Thenewmenu is interesting
as it starts a completely new asteroids game in another frame. As we
don’t use any global variables, the new game functions completely
independent from any other asteroids game. Finally, we show the
menu by specifying the menu bar of the frame:

set f [menubar:= [game]]

Our final extension is a status bar. A status bar consists of status
fields that contain text or bitmaps. For our game, a single status
field suffices.

status← statusField[text := "Welcome to asteroids"]
set f [statusbar:= [status]]

2Although one can cheat now by changing the x position of the
ship while in pause mode.

The statusis passed to theadvancefunction, which updates the
status field with the count of rocks that are currently visible:

advance status vrocks f=
do (r : rs)← get vrocks value

set vrocks[value:= rs]
set status[text := "rocks: " ++show(length r)]
repaint f

4 Design

In the previous section, we have seen how graphical user interfaces
in wxHaskell are defined using the imperativeIO monad. Despite
the use of this monad, the examples have a declarative flavour and
are much more concise than their imperative counterparts in C++.
We believe that the ability to treatIO computations as first class
values allows us to reach this high level of abstraction: using the
ability to defer, modify and combine computations, we can for ex-
ample use attribute lists to set properties of widgets.

The use of mutable variables to communicate across event han-
dlers is very imperative, though. There has been much research into
avoiding mutable state and providing a declarative model for GUI
programming. We discuss many of these approaches in the related
work section. However, this is still an active research area and we
felt it was better to provide a standard monadic interface first. As
shown in [13], it is relatively easy to implement a declarative inter-
face on top of a standard monadic interface, and others have already
started working on a Fruit [14] interface on top of wxHaskell [35].

4.1 Safety

The wxHaskell library imposes a strong typing discipline on the
wxWidgets library. This means that the type checker will reject
programs with illegal operations on widgets. Also, the memory
management is fully automatic, with the provision that program-
mers are able to manually manage certain external resources like
font descriptors or large bitmaps. The library also checks forNULL
pointers, raising a Haskell exception instead of triggering a segmen-
tation fault.

Common to many other GUI libraries, wxHaskell still suffers from
thehierarchy problem: the library imposes a strict hierarchical re-
lation on the created widgets. For example, the program in Figure 1
shows how the buttons and the label all take the parent framef as
their first argument. It would be more natural to just create buttons
and labels:

f ← frame [text := "Example"]
lab ← label [text := "Hello wxHaskell"]
ok ← button [text := "Ok"]
can← button [text := "Cancel"]

The layout now determines a relation between widgets. We believe
that the hierarchical relation between widgets is mostly an artifact
of libraries where memory management is explicit: by imposing a
strict hierarchical order, a container can automatically discard its
child widgets.

Even with the parent argument removed, there are still many ways
to make errors in the layout specification. Worse, these errors are

not caught by the type checker but occur at runtime. There are
three kind of errors: ‘forgetting’ widgets, duplication of widgets,
and violating the hierarchical order. Here are examples of the last
two error kinds.

set f [layout := row 5 [widget ok,widget ok]] -- duplication
set ok[layout := widget can] -- order

A potential solution to thehierarchy problemis the use of alinear
typesystem [7, 45] to express the appropiate constraints. Another
solution is to let the layout specification construct the components.
One can implement a set of layout combinators that return a nested
cartesian product of widget identifiers. The nested cartesian product
is used to represent a heterogenous list of identifiers, and combina-
tors that generate those can be implemented along the lines of Baars
et al [6]. Here is a concrete example of this approach:

do (f ,(lab,(ok,(can,()))))← frame(above label
(beside button button))

The returned identifiers can now be used to set various properties
of all widgets. UsingfixIO and the recursivemdonotation of Erk̈ok
and Launchbury [17], we can even arrange things so that widgets
can refer to each other at creation time.

We have not adopted this solution for wxHaskell though. First, the
syntax of the nested cartesian product is inconvenient for widgets
with many components. Furthermore, the order of the identifiers is
directly determined by layout; it is very easy to make a small mis-
take and get a type error in another part of the program. Due to
type constraints, the layout combinators can no longer use conve-
nient list syntax to present rows and columns, but fixed arity com-
binators have to be used. Further research is needed to solve these
problems, and maybe record calculi or syntax macros may provide
solutions. For now, we feel that the slight chance of invalid layout
is acceptable with the given alternatives.

5 Inheritance

Since wxHaskell is based on an object-oriented framework, we
need to model the inheritance relationship between different wid-
gets. This relation is encoded usingphantomtypes [27, 26]. In
essence, wxHaskell widgets are just foreign pointers to C++ ob-
jects. For convenience, we use a type synonym to distinguish these
object pointers from other pointers:

type Object a= Ptr a

The type argumenta is a phantom type: no value of this type is ever
present as pointers are just plain machine adresses. The phantom
typea is only used to encode the inheritance relation of the objects
in Haskell. For each C++ class we have a correspondingphantom
data typeto represent this class, for example:

data CWindow a
data CFrame a
data CControl a
data CButton a

We call this a phantom data type as the type is only used in phantom
type arguments. As no values of phantom types are ever created,
no constructor definition is needed. Currently, only GHC supports

phantom data type declarations, and in the library we just supply
dummy constructor definitons. Next, we define type synonyms that
encode the full inheritance path of a certain class:

type Window a= Object (CWindow a)
type Frame a = Window(CFrame a)
type Control a = Window(CControl a)
type Button a = Control (CButton a)

Using these types, we can impose a strong type discipline on the
different kinds of widgets, making it impossible to perform illegal
operations on the object pointers. For example, here are the types
for the widget creation functions of Figure 1:

frame :: [Prop (Frame())] → IO (Frame())
button::Window a→ [Prop (Button())]→ IO (Button())
label ::Window a→ [Prop (Label ())] → IO (Label ())

For now, we can ignore the type of the property lists which are de-
scribed in more detail in the Section 6. We see how each function
creates an object of the appropiate type. A typeC () denotes an ob-
ject of exactly classC; a typeC a denotes an object that is at least
an instance of classC. In the creation functions, the co(ntra) vari-
ance is encoded nicely in these types: the functionbuttoncreates
an object of exactly classButton, but it can be placed in any object
that is an instance of theWindowclass. For example:

do f ← frame []
b← button f []

The framef has typeFrame (). We can usef as an argument to
buttonsince aFrame () is an instance ofWindow a– just by ex-
panding the type synonyms we have:

Frame() = Window(CFrame()) ∼= Window a

The encoding of (single interface) inheritance using polymorphism
and phantom types is simple and effective. Furthermore, type errors
from the compiler are usually quite good – especially in comparison
with an encoding using Haskell type classes.

6 Attributes and properties

In this section we discuss how we type and implement theattributes
of widgets. Attributes first appeared in Haskell/DB [27] in the con-
text of databases but proved useful for GUI’s too. In Figure 1 we
see some examples of widget attributes, liketext and layout. The
type of an attribute reflects both the type of the object it belongs to,
and the type of the values it can hold. An attribute of typeAttr w a
applies to objects of typew that can hold values of typea. For
example, thetextattribute for buttons has type:

text :: Attr (Button a) String

The current value of an attribute can be retrieved usingget:

get :: w→ Attr w a→ IO a

The type ofget reflects the simple use of polymorphism to connect
the type of an attribute to both the widgets it applies to (w), and the
type of the result (a).

Using the(:=) operator, we can combine a value with an attribute.
The combination of an attribute with a value is called aproperty.
Properties first appeared in Koen Claessen’s (unreleased) Yahu li-
brary [12], and prove very convenient in practice. In wxHaskell, we
use a refined version of the Yahu combinators. Since the value is
given, the type of properties is only associated with the type of ob-
jects it belongs to. This allows us to combine properties of a certain
object into a single homogenous list.

(:=) :: Attr w a→ a→ Prop w

Finally, thesetfunction assigns a list of properties to an object:

set::w→ [Prop w]→ IO ()

As properties still carry their object parameter, polymorphism en-
sures that only properties belonging to an object of typew can be
used. Here is a short example that attaches an exclamation mark to
the text label of a button:

exclamation:: Button a→ IO ()
exclamation b=

do s← get b text
set b[text := s++ "!"]

The update of an attribute is a common operation. The update op-
erator(:∼) applies a function to an attribute value:

(:∼) :: Attr w a→ (a→ a)→ Prop w

Using this operator in combination with the Haskell section syntax,
we can write the previous example as a single concise expression:

exclamation b= set b[text :∼ (++"!")]

6.1 Shared attributes

Many attributes are shared among different objects. For example,
in Figure 1, thetextattribute is used for frames, buttons, and labels.
Since the wxWidgetsWindowclass provides for atextattribute, we
could use inheritance to define thetext attribute for any kind of
window:

text :: Attr (Window a) String

However, this is not such a good definition for a library, as user
defined widgets can no longer support this attribute. In wxHaskell,
the text attribute is therefore defined in a type class, together with
an instance for windows:

classTextual wwhere
text ::Attr w String

instanceTextual(Window a) where
text= ...

Here, we mix object inheritance withad hocoverloading: any ob-
ject that derives from theWindowclass, like buttons and labels, are
also an instance of theTextualclass and support thetext attribute.
This is also very convenient from an implementation perspective –
we can implement thetext attribute in terms of wxWidgets primi-

tives in a single location. If the inheritance was not encoded in the
type parameter, we would have to define thetextattribute for every
widget kind separately, i.e. an instance for buttons, another instance
for labels, etc. Given that a realistic GUI library like wxWidgets
supports at least fifty separate widget kinds, this would quickly be-
come a burden.

The price of this convenience is that we do not adhere to the
Haskell98 standard (in theWX library). When we expand the type
synonym ofWindow a, we get the following instance declaration:

instanceTextual(Ptr (CObject(CWindow a)))

This instance declaration is illegal in Haskell 98 since an instance
type must be of the form(T a1 ... an). This restriction is imposed
to prevent someone from defining an overlapping instance, for ex-
ample:

instanceTextual(Ptr a)

In a sense, the Haskell98 restriction on instance types is too strict:
the first instance declaration is safe and unambiguous. Only new
instances that possibly overlap with this instance should be rejected.
The GHC compiler lifts this restriction and we use the freedom to
good effect in theWX library.

6.2 Implementation of attributes

Internally, the attribute data type stores the primitive set and get
functions. Note that this single definition shows that polymorphism,
higher-order functions, and first class computations are very conve-
nient for proper abstraction.

data Attr w a= Attr (w→ IO a) (w→ a→ IO ())

As an example, we give the full definition of thetext attribute that
uses the primitivewindowGetLabelandwindowSetLabelfunctions
of theWXCorelibrary:

instanceTextual(Window a) where
text= Attr windowGetLabel windowSetLabel

Theget function has a trivial implementation that just extracts the
corresponding function from the attribute and applies it:

get :: w→ Attr w a→ IO a
get w(Attr getter setter) = getter w

The attentive reader will have noticed already that the assignment
operators,(:=) and (:∼), are really constructors since they start
with a colon. In particular, they are the constructors of the property
data type:

data Prop w= ∀a. (Attr w a) := a
| ∀a. (Attr w a) :∼ (a→ a)

We use local quantification [24] to hide the value typea, which
allows us to put properties in homogenous lists. This is again an
extension to Haskell98, but it is supported by all major Haskell
compilers. Thesetfunction opens the existentially quantified type
through pattern matching:

set::w→ [Prop w]→ IO ()
set w props

= mapM setone props
where

setone(Attr getter setter:= x) = setter w x
setone(Attr getter setter:∼ f) = do x← getter w

setter w(f x)

It is well known that an explicit representation of function applica-
tion requires an existential type. We could have avoided the use of
existential types, by defining the assignment and update operators
directly as functions. Here is a possible implementation:

type Prop w= w→ IO ()
(=:) :: Attr w a→ a→ Prop w
(=:) (Attr getter setter) x = \w→ setter w x

set::w→ [Prop w]→ IO ()
set w props= mapM (\f → f w) props

This is the approach taken by the Yahu library. However, this
does not allow reflection over the property list, which is used in
wxHaskell to implementcreationattributes (which are beyond the
scope of this article).

7 Layout

This section discusses the design of the layout combinators of wx-
Haskell. The visual layout of widgets inside a parent frame is spec-
ified with thelayoutattribute that holds values of the abstract data
typeLayout. Here are some primitive layouts:

caption:: String→ Layout
space :: Int→ Int→ Layout
rule :: Int→ Int→ Layout
boxed :: String→ Layout→ Layout

Thecaptionlayout creates a static text label,spacecreates an empty
area of a certain width and height, andrule creates a black area. The
boxedlayout container adds a labeled border around a layout.

Using thewidgetcombinator, we can layout any created widget that
derives from theWindowclass.Thecontainercombinator is used for
widgets that contain other widgets, like scrolled windows or panels:

widget :: Window a→ Layout
container:: Window a→ Layout→ Layout

To allow for user defined widgets, thewidgetcombinator is actually
part of theWidgetclass, whereWindow ais an instance ofWidget.

Basic layouts can be combined using the powerfulgrid combinator:

grid :: Int→ Int→ [[Layout]]→ Layout

The first two arguments determine the amount of space that should
be added between the columns and rows of the grid. The last argu-
ment is a list of rows, where each row is a list of layouts. Thegrid
combinator will lay these elements out as a table where all columns
and rows are aligned.

We can already define useful abstractions with these primitives:

empty = space0 0

hrule w = rule w 1
vrule h = rule 1 h

row w xs = grid w 0 [xs]
column h xs= grid 0 h [[x] | x← xs]

Here is an example of a layout that displays two text entries for
retrieving an x- and y-coordinate. Thegrid combinator is used to
align the labels and text entries, with 5 pixels between the compo-
nents.

grid 5 5 [[caption "x:" ,widget xinput]
, [caption "y:" ,widget yinput]]

7.1 Alignment, expansion, and stretch

We can see that with the current set of primitive combinators, we
can always calculate theminimum sizeof a layout. However, the
area in which a layout is displayed can be larger than its minimum
size, due to alignment constraints imposed by agrid, or due to user
interaction when the display area is resized. How a layout is dis-
played in a larger area is determined by three attributes of a layout:
thealignment, theexpansion, and thestretch.

Thealignmentof a layout determines where a layout is positioned
in the display area. The alignment consists of horizontal and ver-
tical aligment. Ideally, each component can be specified continu-
ously between the edges, but unfortunately, the wxWidgets library
only allows us to align centered or towards the edges. There are
thus six primitives to specify the alignment of a layout:

halignLeft :: Layout→ Layout -- default
halignRight :: Layout→ Layout
halignCenter:: Layout→ Layout

valignTop :: Layout→ Layout -- default
valignBottom:: Layout→ Layout
valignCenter:: Layout→ Layout

The expansionof a layout determines how a layout expands into
the display area. There are four possible expansions. By default, a
layout isrigid , meaning that it won’t resize itself to fit the display
area. A layout isshapedwhen it will proportionately expand to fill
the display area, i.e. it maintaints its aspect ratio. For ashaped
layout, the alignment is only visible in one direction, depending on
the display area.

The other two modes arehexpandandvexpand, where a layout ex-
pands only horizontally or vertically to fit the display area. Again,
wxWidgets does not allow the last two modes separately, and we
only provide anexpandcombinator that expands in both directions.
For such layout, alignment is ignored completely.

rigid :: Layout→ Layout -- default
shaped:: Layout→ Layout
expand:: Layout→ Layout

Thestretchof a layout determines if a layout demands a larger dis-
play area in the horizontal or vertical direction. The previous two
attributes,alignmentandexpansion, determine how a layout is ren-
dered when the display area is larger than the minimum. In contrast,

thestretchdetermines whether the layout actually gets a larger dis-
play area assigned in the first place! By giving a layout stretch, it is
assigned all extra space left in the parents’ display area.

static :: Layout→ Layout -- default
hstretch:: Layout→ Layout
vstretch:: Layout→ Layout

stretch = hstretch◦vstretch

As a rule,stretchis automatically applied to the top layout, which
ensures that this layout gets at least all available space assigned to it.
For example, the following layout centers anokbutton horizontally
in a framef :

set f [layout := halignCenter(widget ok)]

Due to the implicitstretchthis example works as it stands. If this
stretch had not been applied, the layout would only be assigned its
minimim size as its diplay area, and the centered alignment would
have no visible effect. So stretch is not very useful for layouts con-
sisting of a single widget; it only becomes useful in combination
with grids.

7.2 Stretch and expansion for grids

Layout containers likeboxedand containerautomatically inherit
the stretch and expansion mode of their children. Furthermore, a
grid has a special set of rules that determines the stretch of its rows
and columns. A column of a grid is horizontally stretchable when
all elements of that columnn have horizontal stretch. Dually, a row
is vertically stretchable when all elements of that row have vertical
stretch. Furthermore, when any row or column is stretchable, the
grid will stretch in that direction too and the grid willexpandto fill
assigned area.

This still leaves the question of how extra space is divided amongst
stretchable rows and columns. Theweightattribute is used to pro-
portionally divide space amongst rows and columns. A layout can
have a horizontal and vertical (positive) weight:

hweight:: Int→ Layout→ Layout
vweight:: Int→ Layout→ Layout

The default weight of a layout is one. The weight of a row or col-
umn is the maximum weight of its elements. The weight of the
rows and columns is not propagated to the grid layout itself, which
has its own weight.

There are two rules for dividing space amongst rows and columns:
first, if all weights of stretchable elements are equal, the space is di-
vided equally amongst those elements. If the weights are differing,
the space is divided proportionally according to the weight of the
element – i.e. a layout with weight two gets twice as much space as
a layout with weight one. The first rule is useful for attaching zero
weights to elements, that will cancel out as soon as another element
becomes stretchable (with a weight larger than zero). Alas, the
current wxWidgets implementation does not provide proportional
stretching yet, and wxHaskell disregards all weight attributes at the
moment of writing.

Figure 3. Layout on MacOS X.

7.3 Common layout transformers

With the given set of primitive combinators, we can construct a set
of combinators that capture common layout patterns. For example,
alignment in the horizontal and vertical direction can be combined:

alignCenter = halignCenter◦valignCenter
alignBottomRight= halignRight ◦valignBottom

By combining stretch with alignment, we can float a layout in its
display area:

floatCenter = stretch◦alignCenter
floatBottomRight= stretch◦alignBottomRight

Dually, by combining stretch and expansion, layouts will fill the
assigned display area:

hfill = hstretch◦expand
vfill = vstretch◦expand
fill = hfill ◦vfill

Using stretchable empty space, we can emulate much of the be-
haviour of TEX boxes, as stretchable empty space can be imagined
as glue between layouts.

hglue= hstretch empty
vglue= vstretch empty
glue = stretch empty

Using thegluecombinators in combination withweight, it is possi-
ble to define the ‘primitive’ alignment combinators in terms of glue.
For example:

halignCenter l= row 0 [hweight0 hglue, l,hweight0 hglue]

Note that we set the horizontal weight of thehglueto zero. When
the layoutl stretches horizontally and expands, the entire display
area should be assigned to thel in order to expand over all the
available space. Since the default weight ofl is one, a proportional
division of the available space indeed assigns everything tol, mim-
icking the behaviour of its primitive counterpart.

7.4 Example

Here is a complete example that demonstrates a complicated layout
and the convenience of the grid propagation rules. We layout a

frame that displays a form for entering an x and y coordinate, as
shown in Figure 3.

layoutDemo
= do f ← frame [text := "Layout demo"]

p ← panel f []
x ← entry p [text := "100"]
y ← entry p [text := "100"]
ok ← button p[text := "Ok"]
can← button p[text := "Cancel"]
set f [layout :=

container p$ margin 5 $
column5 [boxed"coordinates" $

grid 5 5 [[caption "x:" ,hfill (widget x)]
, [caption "y:" ,hfill (widget y)]]

,floatBottomRight$
row 5 [widget ok,widget can]

]]

Thepanelcreates an empty widget that manages keyboard naviga-
tion control for child widgets3. When this frame is resized, the text
entries fill the available space horizontally (due tohfill), while the
ok and cancel buttons float to the bottom right. Due to the propaga-
tion rules, thegrid stretches horizontally and expands, just like the
boxedlayout. Furthermore, thecolumnstretches in both directions
and expands, and thus the entire layout is resizeable. When the
floatBottomRightis replaced by analignBottomRight, there is no
stretch anymore, and the horizontal stretch of theboxedlayout is
not propagated. In this case, the top layout is no longer resizeable.

We can express the same layout using a TEX approach withglue:

container p$ margin 5 $
column0 [boxed"coordinates" $

grid 5 5 [[caption "x:" ,hfill (widget x)]
, [caption "y:" ,hfill (widget y)]]

,stretch(vspace5)
, row 0 [hglue,widget ok,hspace5,widget can]
]]

Note that we need to be more explicit about the space between ele-
ments in a row and column.

7.5 Implementing layout

The implementation of layout combinator library is interesting in
the sense that the techniques are generally applicable for declara-
tive abstractions over imperative interfaces [27, 26]. In the case of
the wxWidgets library, the imperative interface consists of creat-
ing Sizerobjects that encode the layout constraints imposed by the
wxHaskell layout combinators.

Instead of directly creatingSizerobjects, we first generate an inter-
mediate data structure that represents a canonical encoding of the
layout. Besides leading to clearer code, it also enables analysis and
transformation of the resulting data structure. For example, we can
implement the propagation rules as a separate transformation. Only
when the layout is assigned, the data structure is translated into an
IO value that creates properSizerobjects that implement the layout.

3wxHaskellpanel’s have nothing to do with Java panels that are
used for layout.

TheLayoutdata type contains a constructor for each primitive lay-
out. Each constructor contains all information to render the layout:

data Layout
= Grid {attrs :: Attrs,gap:: Size, rows :: [[Layout]]}
| Widget{attrs :: Attrs,win :: Window()}
| Space{attrs :: Attrs,area:: Size}
| Label {attrs :: Attrs, txt :: String}
...

All primitive layouts contain anattrsfield that contains all common
layout attributes, like alignment and stretch:

data Attrs = Attrs{stretchh :: Bool
, stretchv :: Bool
, alignh :: Alignh
, alignv :: Alignv
, expansion:: Expansion
...}

data Expansion= Rigid | Shaped| Expand
data Alignh = AlignLeft| AlignRight| AlignCenterh
data Alignv = AlignTop| AlignBottom| AlignCenterv

The implementation of the basic layout combinators is straightfor-
ward:

space w h= Space defaultAttrs(size w h)
widget w = Widget defaultAttrs(downcastWindow w)
...

The implementation of the layout transformers is straightforward
too, but somewhat cumbersome due to the lack of syntax for record
updates:

rigid l = l{attrs= (attrs l){expansion= Rigid}}
hstretch l= l{attrs= (attrs l){stretchh = True}}
...

The grid combinator is more interesting as we have to apply the
propagation rules for stretch and expansion. These rules have to
be applied immediately to the attributes to implement the layout
transformers faithfully. A separate pass algorithm is also possible,
but that would require a more elaborateLayoutdata type with an
explicit representation of layout transformers.

grid w h rows= Grid gridAttrs (size w h) rows
where

gridAttrs= defaultAttrs{
stretchv = any (all (stretchv ◦attrs)) rows,
stretchh = any (all (stretchh ◦attrs)) (transpose rows),
expansion= if (stretchv gridAttrs∨ stretchh gridAttrs)

then ExpandelseStatic}

We can elegantly view rows as columns usingtranspose. Note also
that the use of laziness in the definition ofexpansionis not essential.

Now that we made the layout explicit in theLayoutdata structure,
we can write a function that interprets aLayoutstructure and gen-
erates the appropiate wxWidgets’Sizerobjects:

sizerFromLayout:: Window a→ Layout→ IO (Sizer())

We will not discuss this function in detail as the interface toSizer
objects is beyond the scope of this article. However, with an ex-
plicit representation of layout, it is fairly straightforward to create
the correspondingSizerobjects. The ability to freely combine and
manipulateIO values as first-class entities during the interpretation
of theLayoutdescription proves very useful here.

8 Communication with C++

Even though Haskell has an extensive foreign function interface
[11], it was still a significant challenge to create the Haskell binding
to the wxWidgets C++ library. This section describes the technical
difficulties and solutions.

8.1 The calling convention

No current Haskell compiler supports the C++ calling convention,
and we do not expect that this situation will change in the near
future. The solution adapted by wxHaskell is to expose every C++
function as a C function. Here is an example of a wrapper for the
SetLabelmethod of theWindowclass:

extern "C"
void wxWindowSetLabel(wxWindow∗ self, const char∗ text) {

self→ SetLabel(text);
}

We also create a C header file that contains the signature of our
wrapper function:

extern void wxWindowSetLabel(wxWindow∗, const char∗);

ThewxWindowSetLabelfunction has the C calling convention and
can readily be called from Haskell using the foreign function inter-
face. We also add some minimal marshalling to make the function
callable using Haskell types instead of C types.

windowSetLabel:: Window a→ String→ IO ()
windowSetLabel self text=

whenValid self(withCString text(wxWindowSetLabel self))
foreign import ccall "wxWindowSetLabel"

:: Ptr a→ Ptr CChar→ IO ()

To avoid accidental mistakes in the foreign definition, we include
the C header file when compiling this Haskell module. GHC can be
instructed to include a C header file using the−#includeflag.

Unfortunately, this is not the entire story. The C++ library is linked
with the C++ runtime library, while the Haskell program is linked
using the C runtime library – resulting in link errors on most plat-
forms. wxHaskell avoids these problems by compiling the C++
code into a dynamic link library. A drawback of this approach is
that the linker can not perform dead code elimination and the entire
wxWidgets library is included in the resulting dynamic link library.
Of course, it can also save space, as this library is shared among all
wxHaskell applications.

8.2 wxDirect

If there were only few functions in the wxWidgets library, we could
write these C wrappers by hand. However, wxWidgets contains
more than 500 classes with about 4000 methods. Ideally, we would
have a special tool that could read C++ header files and generate the
needed wrappers for us. The SWIG toolkit [8] tries to do exactly
this, but writing a SWIG binding for Haskell and the corresponding
binding specification for wxWidgets is still a lot of work. Another
option is to use a tool like SWIG to generate IDL from the C++
headers and to use H/Direct [18, 19, 26] to generate the binding.

For wxHaskell, we opted for a more pragmatic solution. The wxEif-
fel library [39] contains already thousands of hand written C wrap-
pers for wxWidgets together with a header file containing the signa-
tures. wxHaskell uses the same C wrappers for the Haskell binding.
The Haskell wrappers and foreign import declarations are gener-
ated using a custom tool called wxDirect. This tool uses Parsec
[28] to parse the signatures in the C header and generates appropi-
ate Haskell wrappers. As the data types in wxWidgets are limited
to basic C types and C++ objects, the marshalling translation much
simpler than that of a general tool like H/Direct.

As argued in [18, 19, 26], a plain C signature has not enough infor-
mation to generate proper marshalling code. Using C macros, we
annotated the C signatures with extra information. The signature of
wxWindowSetLabelis for example:

void wxWindowSetLabel(Self(wxWindow) self, String text);

Macros likeSelfprovide wxDirect with enough information to gen-
erate proper marshalling code and corresponding Haskell type sig-
natures. When used by the C compiler, the macros expand to the
previous plain C signature. This approach means that changes in the
interface of wxWidgets require manual correction of the C wrap-
pers, but fortunately, this interface has been stable for years now.

8.3 Performance

The performance of wxHaskell applications with regard to GUI op-
erations is very good, and wxHaskell applications are generally
indistinguishable from “native” applications written with MFC or
GTK for example. This is hardly surprising, as all the hard work is
done by the underlying C++ library – Haskell is just used as the glue
language for the proper wxWidget calls. For the same reason, the
memory consumption with regard to GUI operations is also about
the same as that of native applications.

One of the largest wxHaskell programs is NetEdit: a Bayesian be-
lief network editor that consists of about 4000 lines of wxHaskell
specific code. On Windows XP, NetEdit uses about 12mb of mem-
ory for large belief networks of more than 50 nodes. The perfor-
mance of the drawing routines is so good that NetEdit can use a
näıve redraw algorithm without any noticable delays for the user.

The binaries generated with wxHaskell tend to be rather large
though – GHC generates a 3mb binary for NetEdit. The use of a
compressor like UPX can reduce the size of the executable to about
600kb. The shared library for wxHaskell generated by GCC is also
about 3mb. On Windows platforms, we use Visual C++ to gener-
ate the shared library which approximately reduces the size to 2mb,
which becomes 700kb after UPX compression.

9 Related work

There has been a lot of research on functional GUI libraries. Many
of these libraries have a monadic interface. Haggis [20] is build on
X Windows and uses concurrency to achieve a high level of com-
position between widgets. The Gtk2Hs and Gtk+Hs [42] libraries
use the Gtk library and, like wxHaskell, provide an extensive array
of widgets. Many libraries use the portable Tk framework as their
GUI platform. HTk [23] is an extensive library that provides a so-
phisticated concurrent event model [36]. TkGofer [44, 13] is an el-
egant library for the Gofer interpreter that pioneered the use of type
classes to model inheritance relations. Yahu [12] is an improved
(but unreleased) version of TkGofer for Haskell that first used prop-
erty lists to set attributes. The HToolkit [5] library has similar goals
as wxHaskell but implements its own C wrapper around the win32
and Gtk interface.

Besides monadic libraries, there has been a lot of research into more
declarative GUI libraries. Functional reactive animations (Fran)
[16] elegantly described declarative animations as continuous func-
tions from time to pictures. This idea was used in FranTk [38, 37] to
model graphical user interfaces. Functional reactive programming
[46] is a development where arrows [22, 32] are used to fix space-
time leaks in Fran. The Fruit library [14, 15] uses these techniques
in the context of GUI programming. In contrast to Fran, impera-
tive streams [40] use discrete time streams instead of continuous
functions to model animation and GUI’s.

One of the most well known functional models for GUI program-
ming is Fudgets [9, 10, 33]. The extensive Fudget library uses X
windows and is supported by many Haskell compilers. The Fud-
get combinators give a rigid structure to the data flow in a program,
and the Gadgets framework [29] introduces the concept ofwires to
present a more flexible interface.

Many GUI libraries are implemented for other functional lan-
guages. A well known library is the ObjectIO library for Clean
[2, 4, 3] that has partly been ported to Haskell [1]. This library uses
uniqueness types [7] to safely encapsulate side effects. LablGtk
[21] is a binding for O’Caml to the Gtk library and uses a label
calculus to model property lists. Exene [34] is a concurrent GUI
library for ML that uses X Windows.

H/Direct [18, 19, 26] described phantom types to model single in-
terface inheritance. Another technique to model inheritance, that
relies on multiple parameter type classes and functional dependen-
cies, was described by Pang and Chakravarty [31, 30]. Phantom
types were discussed as a general technique to impose a strong type
discipline on untyped interfaces by Leijen [27, 26].

10 Conclusion

We have learned an important lesson from wxHaskell: do not
write your own GUI library! By using the portable and well-
maintained wxWidgets C++ library, we were able to create an in-
dustrial strength GUI library for Haskell in a relatively short time
frame. Furthermore, we have shown how distinctive features of
Haskell, like parameteric polymorphism, higher-order functions,
and first-class computations, can be used to present a concise and
elegant monadic interface to program GUI’s. The resulting pro-
grams tend to be much shorter, and more concise, than their coun-
terparts in C++.

In the future, we hope to extend theWX library with more abstrac-
tions and more widgets. Furthermore, we hope that wxHaskell can
become a platform for research into more declarative models for
programming GUI’s.

11 Acknowledgements

wxHaskell could not have existed without the effort of many de-
velopers on wxWidgets and wxEiffel, in particular Julian Smart,
Robert Roebling, Vadim Zeitlin, Robin Dunn, Uwe Sanders, and
many others. Koen Claessen’s Yahu library provided the inspira-
tion for property lists in wxHaskell.

12 References

[1] P. Achten and S. Peyton Jones. Porting the Clean object
I/O library to Haskell. InProceedings of the 12th Interna-
tional Workshop on Implementation of Functional Languages
(2000), pages 194–213, 2000.

[2] P. Achten and M. Plasmeijer. The beauty and the beast. Tech-
nical Report 93–03, Research Inst. for Declarative Systems,
Dept. of Informatics, University of Nijmegen, Mar. 1993.

[3] P. Achten and M. J. Plasmeijer. The ins and outs of Clean I/O.
Journal of Functional Programming, 5(1):81–110, 1995.

[4] P. Achten, J. van Groningen, and M. Plasmeijer. High level
specification of I/O in functional languages. In J. Launchbury
and P. Sansom, editors,Workshop Notes in Computer Science,
pages 1–17. Springer-Verlag, 1993. Glasgow Workshop on
Functional Programming, Ayr, Scotland, 6-8 June 1992.

[5] K. A. Angelov. The HToolkit project.http://htoolkit.
sourceforge.net .

[6] A. Baars, A. L̈oh, and D. Swierstra. Parsing permutation
phrases. In R. Hinze, editor,Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, pages 171–182. Elsevier, 2001.

[7] E. Barendsen and S. Smetsers. Uniqueness Type Inference. In
M. Hermenegildo and S. Swierstra, editors,7th International
Symposium on Programming Language Implementation and
Logic Programming (PLILP’95), Utrecht, The Netherlands,
volume 982 ofLNCS, pages 189–206. Springer-Verlag, 1995.

[8] D. Beazley. SWIG: An easy to use tool for integrating script-
ing languages with C and C++ . In4th annual Tcl/Tk work-
shop, Monterey, CA, July 1996.

[9] M. Carlsson and T. Hallgren. Fudgets – a graphical user in-
terface in a lazy functional language. InFunctional Program-
ming and Computer Architectures (FPCA), pages 321–330.
ACM press, June 1993.

[10] M. Carlsson and T. Hallgren.Fudgets – Purely Functional
Processes with applications to Graphical User Interfaces.
PhD thesis, Department of Computing Science, Chalmers
University of Technology and Gothenburg University, 1998.

[11] M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk,
D. Leijen, S. Marlow, E. Meijer, S. Panne, S. Peyton-Jones,
A. Reid, M. Wallace, and M. Weber. The Haskell 98 for-
eign function interface 1.0: an addendum to the Haskell 98
report. http://www.cse.unsw.edu.au/˜chak/haskell/
ffi , Dec. 2003.

[12] K. Claessen. The Yahu library.http://www.cs.chalmers.
se/Cs/Grundutb/Kurser/afp/yahu.html .

[13] K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphi-
cal paradigms in TkGofer. In2nd International Conference on
Functional programming (ICFP), pages 251–262, 1997. Also
appeared in ACM SIGPLAN Notices 32, 8, (Aug. 1997).

[14] A. Courtney and C. Elliott. Genuinely functional user inter-
faces. InACM Sigplan 2001 Haskell Workshop, Sept. 2001.

[15] A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade.
In Proceedings of the ACM SIGPLAN workshop on Haskell,
pages 7–18. ACM Press, 2003.

[16] C. Elliott and P. Hudak. Functional reactive animation. InThe
proceedings of the 1997 ACM Sigplan International Confer-
ence on Functional Programming (ICFP97), pages 263–273.
ACM press, 1997.

[17] L. Erkök and J. Launchbury. Recursive monadic bindings. In
Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’00, pages 174–
185. ACM Press, Sept. 2000.

[18] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. H/Direct:
A Binary Foreign Language Interface to Haskell. InThe In-
ternational Conference on Functional Programming (ICFP),
Baltimore, USA, 1998. Also appeared in ACM SIGPLAN
Notices 34, 1, (Jan. 1999).

[19] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Call-
ing hell from heaven and heaven from hell. InThe Interna-
tional Conference on Functional Programming (ICFP), Paris,
France, 1999. Also appeared in ACM SIGPLAN Notices 34,
9, (Sep. 1999).

[20] S. Finne and S. Peyton Jones. Composing Haggis. InPro-
ceedings of the Fifth Eurographics Workshop on Program-
ming Paradigms in Computer Graphics, 1995.

[21] J. Garrigue. The LablGtk library.http://wwwfun.kurims.
kyoto-u.ac.jp/soft/olabl/lablgtk.html .

[22] J. Hughes. Generalising monads to arrows. InScience
of Computer Programming, volume 37, pages 67–111, May
2000.

[23] E. Karlsen, G. Russell, A. L̈udtke, and C. L̈uth. The HTk
library. http://www.informatik.uni-bremen.de/htk .

[24] K. Läufer. Type classes with existential types.Journal of
Functional Programming, 6(3):485–517, May 1996.

[25] D. Leijen. The wxHaskell library. http://wxhaskell.
sourceforge.net .

[26] D. Leijen.Theλ Abroad – A Functional Approach to Software
Components. PhD thesis, Department of Computer Science,
Universiteit Utrecht, The Netherlands, 2003.

[27] D. Leijen and E. Meijer. Domain specific embedded compil-
ers. InSecond USENIX Conference on Domain Specific Lan-
guages (DSL’99), pages 109–122, Austin, Texas, Oct. 1999.
USENIX Association. Also appeared in ACM SIGPLAN No-
tices 35, 1, (Jan. 2000).

[28] D. Leijen and E. Meijer. Parsec: Direct style monadic
parser combinators for the real world. Technical Report UU-
CS-2001-27, Department of Computer Science, Universiteit
Utrecht, 2001.

[29] R. Noble and C. Runciman. Gadgets: Lazy Functional Com-
ponents for Graphical User Interfaces. In M. Hermenegildo
and S. D. Swierstra, editors,PLILP’95: Seventh International
Symposium on Programming Languages, Implementations,

Logics and Programs, volume 982 ofLecture Notes in Com-
puter Science, pages 321–340. Springer-Verlag, Sept. 1995.

[30] A. T. H. Pang. Binding Haskell to object-oriented compo-
nent systems via reflection. Master’s thesis, The University of
New South Wales, School of Computer Science and Engineer-
ing, June 2003. http://www.algorithm.com.au/files/
reflection/reflection.pdf .

[31] A. T. H. Pang and M. M. T. Chakravarty. Interfacing
Haskell with object-oriented languages. In G. Michaelson
and P. Trinder, editors,15th International Workshop on the
Implementation of Functional Languages (IFL’03), LNCS.
Springer-Verlag, 2004.

[32] R. Paterson. A new notation for arrows. InInternational Con-
ference on Functional Programming, pages 229–240. ACM
Press, Sept. 2001.

[33] A. Reid and S. Singh. Implementing fudgets with standard
widget sets. InGlasgow Functional Programming workshop,
pages 222–235. Springer-Verlag, 1993.

[34] J. H. Reppy.Higher Order Concurrency. PhD thesis, Cornell
University, 1992.

[35] B. Robinson. wxFruit: A practical GUI toolkit for func-
tional reactive programming.http://zoo.cs.yale.edu/
classes/cs490/03-04b/bartholomew.robinson .

[36] G. Russell. Events in Haskell, and how to implement them.
In Proceedings of the sixth ACM SIGPLAN international con-
ference on Functional programming, pages 157–168, 2001.

[37] M. Sage. The FranTk library.http://www.haskell.org/
FranTk .

[38] M. Sage. FranTk – a declarative GUI language for Haskell. In
Proceedings of the fifth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’00), pages 106–117.
ACM Press, 2000.

[39] U. Sander et al. The wxEiffel library.http://wxeiffel.
sourceforge.net .

[40] E. Scholz. Imperative streams - a monadic combinator library
for synchronous programming. InProceedings of the third
ACM SIGPLAN international conference on Functional pro-
gramming, pages 261–272. ACM Press, 1998.

[41] M. Schrage.Proxima: a generic presentation oriented XML
editor. PhD thesis, Department of Computer Science, Univer-
siteit Utrecht, The Netherlands, 2004.

[42] A. Simons and M. Chakravarty. The Gtk2Hs library.http:
//gtk2hs.sourceforge.net .

[43] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, et al. The wxWid-
gets library.http://www.wxwidgets.org .

[44] T. Vullinghs, D. Tuinman, and W. Schulte. Lightweight GUIs
for functional programming. InProceedings of the 7th In-
ternational Symposium on Programming Languages: Imple-
mentations, Logics and Programs, pages 341–356. Springer-
Verlag, 1995.

[45] P. Wadler. Linear types can change the world! In M. Broy and
C. Jones, editors,IFIP TC 2 Working Conference on Program-
ming Concepts and Methods, pages 347–359. North Holland,
1990.

[46] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. InProceed-
ings of the sixth ACM SIGPLAN international conference on
Functional programming, pages 146–156. ACM Press, 2001.

