
Software Economics
Barry W. Boehm and Kevin J. Sullivan

University of Southern California and University of Virginia
boehm@cs.usc.edu; sullivan@Virginia.edu

December, 1999

I. Introduction

Rapid, sustained advances in computing and communications are now enabling
the incorporation of high-speed, low-cost, distributed information processing capabilities
into technology components and system of all kinds, at all scales. This trend promises to
provide enormous benefits by enabling new functions and improving the performance of
existing functions. The potential for value creation is seen to be so great that it is driving
information machinery into essentially all serious social, business, and military human-
machine systems: appliances, homes, communities, industries, research activities, armies.
The results will transform society.

Although hardware production is the catalyst, it is the software that embodies new
value added functions. Software thus takes on a critical new level of economic and social
importance. This role is reflected in demand that far outstrips our production capacity
[PITAC, 1999], in world-wide expenditures on software now estimated at US$800 billion
annually [Boehm & Sullivan, 1999], and in many other aspects of the modern economy.

Yet, as the importance of and our dependence on software grows, there is a new
awareness that its production and use of are among the most complex and problematical
aspects of modern technology development. The symptoms are clear . Large projects fail
at an alarming rate, for example. The resources invested in failed projects has been
estimated at $85 billion for U.S. business in 1998 alone [Business Week, 1999].

Project, program, and business failures are inevitable, even desirable, in an
efficient marketplace. However, problems in the development and use of software
destroy value and create risks of losses with unacceptable unpredictability and at an
unacceptable rate. Doomed projects consume considerable value before being cancelled.
Software costs jump in ways inconsistent with expected risk, as exemplified by the
experience of Garlan et al., in what appeared to be a straightforward integration task
[Garlan et al., 1995]. Delays lead to lost profits and missed opportunities. Unexpected
absences of critical properties make costly systems unusable. Our inability to effectively
manage the risk-return characteristics of software is a serious and difficult problem.

In this paper we trace many difficulties in software development to our failure to
understand adequately the economics of software development and use, and thus to make
software and systems design decisions for products, processes, projects, portfolios that
maximize the value created for the resources invested. We discuss how a sophisticated
economic perspective on software design promises to significantly improve the
productivity of investments in software-intensive systems. We review the state of the art
in software economics. We identify important shortcomings in the existing work in view
of conditions in the software and information technology sectors today. We then provide
a roadmap for future research, and we discuss several current activities in that context.

II. The Need for Research

A. Software Engineering Decision-Making Today

Guided largely by the principle of separation of concerns, most software designers
today make their design decisions in an economics-independent "Flatland," where the
focus is on representation structure and logical semantics. An analysis of sixteen books
on software architecture and object-oriented design, for example, showed that only two
included the word cost in the index. More generally, links between technical issues and
value creation appear not to be central concerns of most software designers and engineers
today. Part of the problem is that the links are not even understood very well in theory.

While software contributed primarily to off-line, backroom activities, designing in
economics-independent Flatland was not particularly harmful. That is no longer the case.
Software design decisions are now intimately coupled with fundamental business, public
service, and other decisions in almost every field of endeavor. It is therefore now critical
to understand how software design decisions in a given context relate to value creation.
Context matters because it determines what is valued and by whom, but the logic of good
software design is a logic of value creation independent of context.

Consider the business context. It is an axiom of corporate finance that for a
publicly held firm, value is assessed in monetary terms, by the market, and the primary
goal of management is to maximize present value, where present value incorporates an
expectation of future gains. Uncertainty, incomplete knowledge, and competition pose
major challenges that demand intelligent investment strategies. Such an enterprise can
create value in one of two ways: first, by producing or having options to produce benefits
at costs that are not only less than the value of the resources used, but less than the costs
for competitors to produce the same benefits; second, by producing or having options to
produce greater benefits at equal cost. If the axiom is accepted, then software design
decisions in a business context must be linked to creating business value in these terms.

Less well known perhaps is that non-business enterprises, such as philanthropic
foundations and universities, are also driven by a maximal value creation objectives. For
example, in ÒPhilanthropyÕs new agenda: creating value,Ó Porter and Kramer argue, ÒThe
goals of philanthropy may be different, but the underlying logic is still the same. Instead
of competing in markets, foundations are in the business of contributing to society by
using scarce philanthropic resources to their maximum potential. A foundation creates
value when it achieves an equivalent social benefit with fewer dollars or creates greater
social benefit for comparable costÓ [Porter and Kramer, 1999, p.126]. Similarly, in a
paper on strategic philanthropy, the President and Chief Executive Officer of the Pew
Charitable Trust, says, Ò...trusts have begun to think more like venture capitalists, seeking
to derive the greatest benefit from every strategic investment of capital, time, and
talentÑexcept, in PewÕs case, the return on investment is measured not in profits but in
long-lasting, positive, and powerful benefits to societyÓ [Rimel 1999, pp. 230 Ð 231].

Software development involves the investment of valuable resources. The goal is
maximal value creation. Benefits are measured in various terms but the logic is the same.
Linking technical software decisions to value creation is essential in the new world that
we now inhabit: in which investing in software is central to all aspects of doing business.

Software Engineering as a Value-Creation Activity

The core competency of software engineers is in making technical software
product and process design decisions. Today, however, there is a disconnect between the
decision criteria that tend to guide software engineers and overarching value creation
criteria. It is not that technical criteria such as information hiding, abstraction, and the
need for mathematical precision are incorrect. On average, they are enormously better
than no sound decision criteria. However, software engineers are usually not involved in
or often do not understand enterprise-level value creation objectives. The connections
between technical parameters and value creation are understood vaguely, if at all. There
is rarely any real measurement or analysis of how software engineering investments
contribute to value creation. And senior management often does not understand success
criteria for software development or how investments at the technical level can contribute
fundamentally to value creation. As a result, technical criteria tend to be applied in ways
that in general are not connected to, and thus are probably not optimal for, value creation.

Software designers, engineers, and managers must begin to understand and reason
systematically and effectively about the connections between software design decisions
and value maximization objectives. Understanding the connections will drive decision-
makers at all levels to new and better technical criteria, and to making better choices.
One important adjustment is that decision-makers will begin to think more strategically.
Getting to this point requires that software specialists step out of ÒFlatlandÓ and away
from purely technical criteria that are not linked to outcomes in terms of value added.
The first step is to understand that the mismatch between the criteria that are used today
and ones more aligned with value creation has several identifiable and remediable causes.

Sources of Mismatch Between Software Decisions and Value Creation

First, we lack adequate frameworks for modeling, measuring and analyzing the
connections between technical decisions and value creation. Sullivan et al. have argued,
for example, that central concepts in software engineering, such as information hiding
and its manifestation in modern software architecture [Parnas 72, Shaw & Garlan 95], the
spiral model [Boehm 88], and heuristics on the timing of software design decisions, have
yet to be linked adequately to the creation of business value, but that such linkages can
and should be made. We are left making decisions today on mostly technical grounds that
are not necessarily right for value.

Failing to cancel projects quickly that new information shows are unlikely to
succeed is an example of not making a value-optimizing decision. Another of the many
consequences of inadequate foundations of software design theory in the realm of value
is that conflicts among decision-makers are common, often taking the form of arguments
over whose technical criterion is better. E.g., should we use a composition or generator
approach? Absent clear connections from the technical domain to value, there is little
hope that such debates will converge, or that the decisions best for value will be taken.

Second, the design space within which software designers operate today is
inadequate. By the design space we mean the set of technologies with which, and the
organizational, regulatory, tax, market and other structures within which, software is
developed and used. Designers are unable to make decisions that could, if available,

significantly increase the value created by software development and use. Powerful new
technologies certainly are of great value in improving software development productivity.
However, beyond technology, the overall economic environment has shortcomings that
need to be understood and corrected. Examples include the ability of firms to account for
software as a capital investment; to have rich sets of third-party components available;
and to buy and sell software risk in the open marketplace through warranties, insurance
policies, and similar instruments. The study of such issues is part of software economics.

B. Why an Increased Emphasis on Software Economics?

Software economics is situated at intersection of information economics and
software design and engineering. It is concerned with improving the value created by
investments in the development and use of software. The goal is first to understand the
relationships between economic objectives, constraints, and conditions, on one hand, and
technical software issues, on the other, and then to use this understanding to improve
software productivity. The benefit sought is a significant, measurable improvement in
value created by investments in software-intensive information technology projects and
portfolios at all levels: project, program, portfolio, enterprise, industry, and national.

Software economics is not a new discipline, but there are several reasons why it
should now receive increasing attention. First, the end of the cold war and globalization
of capital markets have fundamentally altered the dynamics of technology innovation.
The nexus has moved from large, government defense projects to the commercial sector.
Different measures of value apply, and different dynamics are in play, e.g., competition
that makes time to market critical owing to the enormous opportunity costs of delay.

Second, the impacts of software-enabled change today reach much further across
and into organizations today than in the past [Thorp, 1998]. Many aspects of an enterprise
now have to be transformed rapidly for software-enabled change to create value. A good
example is order fulfillment for electronic retailing. Software-based information systems
are catalyzing revolutionary change, but complex human-machine systems with software
as merely a component have to function successfully for value to be created. Focusing on
value creation demands a holistic perspective that considers all investments that have to
be made for software investments to pay off. Without a holistic approach, low software
development cost-effectiveness is likely to continue, as misguided and inefficient
software decision patterns continue to consume resources, careers and organizations.

Third, there is an increasing understanding in business, philanthropy, government,
and in most other major organizations, that value creation is the final arbiter of success
for investments of scarce resources; and far greater sophistication than in the past is now
evident in the search for value by the most effective organizations. In particular, there is
a deeper understanding of the role of strategy in creating value in a world of uncertainty,
incomplete knowledge, competition, bounded rationality.

New Sources of Value

Along with a new emphasis on value and strategy is an increasing understanding
that value is a complex and subtle idea. Consider, for example, the sophisticated ways in
which markets value companies. They value them not only for the profits that they might

produce based on their current configurations; but also for options that they have to
reconfigure to exploit opportunities that might arise in the future or to exploit synergies
between concurrent investments or between current and future investments [Trigeorgis,
1997]. Good strategists understand that maximizing the business value of an enterprise
often depends on investing to create real options and synergies. Not for selling books at
a profit has Jeff Bezos been named Time MagazineÕs 1999 Man of the Year.

The extraordinary valuations that the market currently assigns to some internet
companies reflects an assessment of the present value of uncertain future gains, including
gains made possible by options that these companies have to exploit future conditions if it
becomes favorable to do so. The investment by Amazon.com in an infrastructure and an
initial foray into books, for example, created not only a cash flow stream from book sales,
but real options to enter other markets. The capability to exercise those options quickly
depends in part on the ability to change the software on which the company runs. That
ability is supported or not by architecture and other technical properties of their systems.

The Òleap-froggingÓ of Intel and AMD in the race to keep the worldÕs fastest-
clocked microprocessor reflects the value of time in that market. The design processes
have to be organized in part to enable effective competition. At a grander scale, when
firms are driven to compete in this way the resulting increase in velocity of innovation
and product range that occurs has a tremendous impact on technology and the economy.

MicrosoftÕs independent-feature-based architectural style for many applications,
combined with their synchronize-and-stabilize process, creates real options to abandon
features late in development to meet time-to-market requirements [Cusumano & Selby,
1995]. In selecting and integrating product and process models, they are clearly doing so
in a way that is meant to create value in part in the form of valuable decision flexibility.

Reasoning about how software designers can create value with strategic design,
and understanding how and the extent to which our technical design decision criteria
embody good value-based strategies, are important topics in software economics. As the
Amazon.com example illustrates, in competitive markets one can create value by creating
options. In the software realm, architectural and process design are critical in that regard.
Investing intelligently in product and process design to create options is thus a dimension
of this issue. Sullivan et al. suggest that the value of such options can sometimes be made
tangible in economic terms, with varying degrees of confidence, using techniques related
to option pricing [Sullivan et al., 1999]. The broader point is that design succeeds only
when it responds to sometimes complex economic drivers in ways that create value.

One goal of software economics is thus simply to make these connections clear:
to describe important relationships between the technical and the economic dimensions.
Just understanding that value is the goal and that it is created by intelligent application of
technical means is a start. The links between value and software design are tight but still
not understood well enough today. A more aggressive but important goal is to develop a
basis for prescribing software product and process decisions based on economic analysis.
Beyond mere questions of cost, it is becoming important to be able to address, in a sound
and systematic way in technical decision-making, such questions as whether the value of
an option is more than the cost of the investment in architecture or process to obtain it?

New Measures of Value

A complicating factor is that although value often can and very often should be
expressed in monetary terms, that is not always true. In some cases it is even difficult to
measure it as a scalar quantity. Consider cost and public safety. These are two, separate
dimensions of value, and there is no simple (linear) exchange formula. At the extremes
of safety, it might incur tremendous costs to gain tiny increments in safety, and that trade
might be judged uneconomical. On the other hand, when low on the safety scale, a small
cost increment might give a disproportionate payoff in safety and be seen as worthwhile,
for example [Haimes, 1999].

Others have argued that the greatest and most enduring of companies do not value
money as the highest goal. Rather, they understand that it is essential, but they treat it as
an enabler for achieving and creating value in other dimensions [Collins & Porras, 1997].

In what dimensions and units is value measured? How are contingent future
payoffs valued? What is the role of risk-aversion in valuing contingent payoffs? How
should one reason about tradeoffs in multi-dimensional value spaces? How does one
reason about such valuations in the face of uncertainty and incomplete knowledge. How
does competition complicate models? A theory or practice of software engineering based
on value criteria has to incorporate answers to these and many other related questions.

Answers to some of these questions have been developed, mostly outside of the
software engineering field. Decision (utility) theory [Raiffa, 1968] provides a framework
for decisions under uncertainty in light of the risk aversion characteristics of the decision-
maker. The mathematics of multi-objective decision-making has been addressed in depth
[Keeney & Raiffa, 1993]. Smart Choices: A Practical Guide to Making Better Decisions,
is a superb introduction relevant to engineering decision makers [Hammond et al., 1999].

Classical corporate finance is an extensive framework for making profit-oriented
corporate investment decision-making in the face of uncertainty. The book of Brealey
and Myers is a standard introduction [Brealey & Myers, 1998]. Important topics include
net present value (NPV) as an investment decision criterion; computing it by discounted
cash flow analysis (DCF); and optimal portfolio theory, or how to invest in a portfolio of
risky assets to maximizes its return characteristics for a given level of risk. The NPV and
DCF concepts are fundamental in building business cases, in general.

Work on real options [Amram & Kulatilaka, 1999; Dixit & Pindyck, 1994;
Trigeorgis, 1995; Trigeorgis, 1997] addresses major, often overlooked, shortcomings in
DCF-based computations of the NPV of investment opportunities. DCF treats assets
obtained by investing as passively held (like mortgages), not actively managed (like
projects or portfolios). Yet, management often has the flexibility to make changes to real
investments in light of new information. (e.g., to abandon a project, enter a new market,
etc.) The key idea is to treat such flexibility as an option, and to see that in some cases
such real (as opposed to financial) options can be priced using techniques related to those
for financial (e.g., stock) options.

The fundamental advantage of the real options framework over the traditional
DCF framework is that the resulting valuations incorporate the value added by making
smart choices over time. Options pricing is not the only available technique for valuing

such decision flexibility. Teisberg presents perhaps the best available analysis of three
key valuation techniques: options pricing, utility theory and dynamic discounted cash
flow analysis. She explains the assumptions that each of these approaches requires as a
condition of applicability, and the advantages and disadvantages of each [Teisberg].

The options pricing approach has two major advantages. First, it relieves the
decision-maker of having to forecast cash flows and predict the probabilities of future
states of nature. Second, it provides valuations that are based not on these subjective,
questionable parameter values, but rather on data from the financial markets. The details
are beyond the scope of this paper. In a nutshell, the decision-maker provides the current
value of the asset under consideration and the variance in that value over time. That is
enough to determine the Òcone of uncertaintyÓ in the future value of the asset, rooted at
its current value and extending out over time as a function of the volatility.

The variance is obtained by identifying assets in the financial markets that are
subject to the same risks as the one in question. A requirement for using this method for
valuing decision flexibility is that the risk (variance) in the asset being considered be in
the span of the market, i.e., be a function of the risk in identifiable traded assets. The
option to port a software system to a platform with an uncertain future might be valued
this way, because the risk in the platform is arguably reflected in the behavior of the
stock price of the company selling the platform. Because the market has already priced
that risk, it has implicitly priced the risk in the asset under consideration, even if it is not
traded. We get a market-calibrated price, rather than one based on subjective guesses.
Much of the literature is vague on the need for spanning to hold. Amram and Kulatilaka
provide a very good introduction to this complex field [Amram & Kulatilaka, 1999].

The work of Baldwin and Clark is especially relevant. They view ParnasÕs
information hiding modules [Parnas 1972] as creating options, which they then value as
options (without depending on spanning). On the basis of this insight, they develop a
theory of how modularity in design influenced the evolution of the industry structure for
computers over the last forty years [Baldwin & Clark, 1999]. Sullivan et al., draw on this
material and the material discussed above to sketch of a unified, options-based account of
the value in software available through modularity, phased investment process models,
and either delaying or accelerating key design decisions [Sullivan et al., 1999].

The Need for Multi-Stakeholder Satisficing

The question of valuation is clearly difficult. Another complicating factor is who
is doing the valuing? Is it a company, a philanthropic foundation, a school or university, a
government research funding agency? What does that person or entity value? Is it the
likelihood of financial gain, the solution of major societal problems, the continuation of a
valued culture, or the pleasure of learning or of designing things that work?

Even the question who is often not simple. Any major software design activity
involves many participants, each with its own goals and measures of value. Even if they
agree on metricsÑas in a coalition of profit-making companies cooperating to make a
profitÑthey have conflicting interests in the distribution of gains. Reconciling economic
conflicts of this kind is a key success factor in software development. Reconciliation has
to be built into software processes, in particular.

A utilitarian view of this issue is possible. For a system to succeed in creating
value for any one participant, it must create value for all whose contributions are critical
to project success. The failure to satisfy any one creates risks of compensatory actions
that lead to a project failure, thus to the satisfaction of none. Ensuring a credible value
proposition for each stakeholder at each point in time is thus an essential part of design.
In practice, each player will carry a different amount and set of risks. Aligning rewards
to, and dependencies of a project on, any given stakeholder has to account for their risks.

A non-utilitarian view of stakeholder reconciliation is also possible. Collins et al.,
discuss an approach based on a Rawlsian ethics of fairness [Collins et al., 1994, Rawles,
1971]. The ideal is that the stakeholders in a given situation negotiates an arrangement
under which each is treated fairly, where fairness is defined by fairness axioms (e.g.,
never cause more harm to the least advantaged stakeholder), and each player negotiates
as if it were unaware of its self-interest. Collins et al. present a fictional scenario
involving a software provider, buyer, users, and a ÒpenumbraÓ of people who are affected
by the software. The hospital is the buyer, the doctors, nurses and others the users, and
patients, who might be harmed by wrong dosages, are the penumbra.

An analogous situation that is becoming quite visible at the national policy level
in the United States relates to private ownership of critical civic infrastructures. Most of
these systems have come to depend on software and information systems in ways that
most people never imagine [Knight et al., 2000, Sullivan et al. 1999b]. There is great
concern that many of these systems are no longer adequately dependable, given both our
increased dependence on them and that they are now operating in environments that are
significantly more threatening than those for which they were designed, owing to their
having been opened to manipulation through networks, outsourcing of code development,
and other means, and to the growing capabilities of potential adversaries. Is public
interest in the dependability of transportation and logistics, banking and finance, energy
production, transmission and distribution, and other such infrastructures perfectly aligned
with the interests of the shareholders of the private firms that own these infrastructures?

Understanding how to integrate the concern for value into complex, software-
intensive development processes is a real software design and engineering challenge,
where software design is construed in very broad terms, to include public policy. The
stakeholder win-win concept and its integration into the Win-Win Spiral Lifecycle Model
[Boehm et al., 1998] represent a serious attempt at economics-driven software design.
The design of this process model is clearly responsive to, and indeed based on, a serious
consideration of the economics of complex software development processes. It also
provides a way to embed Rawlsian ethical considerations into the daily practice of
software engineers [Egyed-Boehm, 1998].

From Win-Win, it is a relatively easy mental jump to related models based on
strategy in multi-player games. Tit-for-Tat is an effective strategy, for example, in two-
player, iterated prisonerÕs dilemma situations, an abstract model that captures aspects of
many business interactions. In this game, win-win occurs if each side cooperates. In
this case, each makes a small gain. Lose-lose occurs if both sides defect. The penalty to
each side is large. The interesting part is that in win-lose, where one side cooperates but
the other defects, the winner gets a large payoff, but the penalty to the loser is significant.

Value creation in this world depends on whether youÕre likely to encounter the
other player for another round in the future. If not, defecting is a reasonable strategy. If
so, cooperating is reasonable because cooperation is the only strategy likely to produce
consistent positive returns over time. However, cooperating naively with a consistent
defector, e.g., one who takes your money but provides an unreliable product, is clearly
not optimal. Over time, limited retaliatory defectionÑi.e., tit-for-tatÑappears to be a
productive strategy. It punishes defections in a limited way to deters future defections
but is otherwise willing to cooperate [Axelrod, 1985]. Software design in a world of
dynamically assembled profit-making virtual enterprises might well be subject to such
economic considerations.

Future Trends Create Additional Challenges

Future trends will continue to exacerbate this situation. The world is changing
rapidly in ways that make the situation ever more challenging. While ever smaller, less
costly devices penetrate into the technology fabric, the World-Wide Web and Internet
have the potential to connect everything with everything. Autonomous agents making
deals in cyberspace will create a potential for chaos. Systems of systems, networks of
networks, and agents of agents will create huge intellectual control problems.

Further, the economics of software development leave system designers
with no choice but to use large commercial-off-the-shelf (COTS) components in their
systems. Developers have no way of knowing precisely what is inside of these COTS
components, and they usually very limited or no influence over their evolutionary paths.

The PITAC Report accurately states (page 8) that ÒThe IT industry
expends the bulk of its resources, both financial and human, in rapidly bringing products
to market.Ó The dizzying pace of change continues to increase. Software architecture
and COTS decisions are made in great haste. If you marry an IT architecture in haste,
you no longer even have the opportunity to repent at leisure. Commercial companies
with minimal electronic commerce capabilities must now adapt to e-commerce or die.

Of course, these trends also make this a time of fantastic opportunity. The
PITAC Report is Òright onÓ in emphasizing that IT offers us the potential to significantly
improve our quality of life by transforming the ways we learn, work, communicate, and
carry out commerce, health care, research, and government. Value creation opportunities
abound, but the path Òfrom concept to cashÓ [Thorp, 1998] is becoming ever more
treacherous.

A new focus on software economics is needed. We now discuss the history and
the current status of software economics, with the goal of understanding how it should
evolve to be better positioned to address important emerging issues in software design.

C. History and Current Status of Software Economics

Software economics can be considered as a branch of information economics, a
subfield of economics which began to receive serious treatment in the 1960Õs. Its
original subjects were such topics as the economics of advertising and search for best
prices [Stigler, 1961], the economics of investments in research and development [Arrow,

1962], and the economics of the overall knowledge industry [Machlup, 1962]. A good
early comprehensive treatment of information economics is Economic Theory of Teams
[Marschak & Radner, 1972].

The first comprehensive application to computing issues was SharpeÕs The
Economics of Computers [Sharpe, 1969]. It covered such issues as choices between
buying, leasing, or renting computer systems; pricing computer services, and economies
of scale in computer systems. It had a small section on software costs, based largely on
the first major study of this topic, performed by System Development Corporation (SDC)
for the U.S. Air Force [Nelson, 1966].

The SDC study formulated a linear regression model for estimating software
costs. Although it was not very accurate, it stimulated considerable research into better
forms for software cost models in the 1970Õs and early 1980Õs. This resulted in a number
of viable models still in use today, such as SLIM [Putnam, 1978], PRICE S [Freiman-
Park, 1979], COCOMO [Boehm, 1981], SEER [Jensen, 1983], Estimacs [Rubin, 1985],
and SPQR/Checkpoint [Jones, 1986].

Besides the COCOMO model, Software Engineering Economics [Boehm, 1981]
contained a summary of the major concepts and techniques of microeconomics
(production functions, economies of scale, net value, marginal analysis, present value,
statistical decision theory), with examples and techniques for applying them to software
decision situations. Related contemporary works were the monumental Data Processing
Technology and Economics [Phister, 1979], a detailed compendium of cost estimating
relationships and cost comparisons for computing equipment and services (unfortunately
with a short half-life); Computers and Profits [Kleijnen, 1980], applying information-
economics techniques to computer-related decisions; and The Economics of Computers:
Costs, Benefits, Policies and Strategies [Gotlieb, 1985], providing economic techniques
for managing computer centers and for related purchasing and strategic-management
decisions.

A number of mainstream software engineering techniques implicitly embody
economic considerations. Software risk management uses statistical decision theory
principles to address such questions as Òhow much (prototyping, testing, formal
verification, etc.) is enough?Ó in terms of buying information to reduce risk. Spiral,
iterative, and evolutionary development models use risk and product value considerations
to sequence increments of capability. The spiral modelÕs "Determine Objectives,
Alternatives, and Constraints" step [Boehm, 1988] was adapted from RAND-style
treatments of defense economic analysis [Hitch-McKean, 1960].

ParnasÕs notion of design for change, is based on the recognition that much of the
total lifecycle cost of a system is incurred in evolution, and that a system that is not
designed for evolution will incur tremendous cost [Parnas, 1979]. However, the work
focuses on modularity as a structural issue, per se, more than on the weighing of lifecycle
costs, benefits and value creation. The over-focus on structural issues has carried through
much of the more recent work on software architecture [Shaw & Garlan, 1996].

Architecture and economics also play a large role in dealing with software reuse.
Some good books in this are [Jacobson et al., 1997; Poulin, 1997; Reifer, 1997; and Lim,
1998]. Economics concepts of satisficing among multi-stakeholder criteria and utility

functions as articulated in SimonÕs The Sciences of the Artificial [Simon, 1998] have
been incorporated in software engineering approaches such as Participatory Design, Joint
Application Design, and stakeholder win-win requirements engineering [Boehm & Ross,
1989; Carmel et al., 1993].

D. Shortcomings that Need to be Addressed

Currently, our ability to reason about software cost is considerably stronger than
our ability to reason about software benefits, about such benefit sources as development
cycle time, delivered quality, synergies among concurrent and sequential projects, and
real options, including strategic opportunities. The trends toward software-based systems
discussed above make it clear that the ability to reason about both costs and benefits,
sometimes in sophisticated terms, and under such difficulties as uncertainty, incomplete
information, and competition, will be a critical success factor for future enterprises.

A good example is Rapid Application Development (RAD). As discussed above,
the US PITAC Report [PITAC, 1999] accurately states that the information technology
(IT) industry focuses on rapidly bringing products to market. However, most software
cost and schedule estimation models are calibrated to a minimal cost strategy. Each has
an estimation model similar to a classic schedule estimation rule of thumb:

Calendar Months = 3 * 3√(Person-Months).

Thus, if one has a 27 person-month project, the most cost-efficient schedule
would be 3 * 3√(27) = 9 months, with an average staff size of 3 people. However, this

model captures only the direct cost of the resources required to develop the project. It
completely fails to account for the opportunity cost of delay in shipping a product into a
competitive marketplace, which, today, is often decisive.

Sullivan et al. [Sullivan et al., 99] have explained that a product can be viewed as
a real option on a market, like an option on a stock. Shipping the product to market is the
analog of the decision the exercise the option. The entry of a competitor into a market,
taking away a share of the cash flow stream that could otherwise be exploited, is the
analog of a sharp, discrete drop in the stock price, i.e., of a dividend. It is known that for
stocks that do not pay dividends, waiting is optimal; but waiting to own a stock that pays
dividends (or to enter a market that is subject to competition) incurs an opportunity cost:
only the owner of the stock (market) gets the dividend. Thus, dividends (threats of
competitive entry) create incentives to exercise early. Here we have a rigorous
economic explanation for time-to-market pressure. Understanding such issues is critical
to optimal software design decision making, where design decisions include such
decisions as that to Òship code.Ó

If time-to-market is critical, a solution more attractive than that suggested by the
rule of thumb above would involve an average of 5.2 people for 5.2 months, or even 6
people for 4.5 months. The earlier work assumes a non-competitive environment,
reflecting its orientation to government contracts and classical batch-processing business
systems. The recent COCOMO II model [Boehm et al., 2000] has an emerging extension
called CORADMO to support reasoning about rapid schedules for smaller projects.

Not only are better software development estimation models needed, but also they
need to be integrated with counterpart models in business operational mission domains,
in order to reason about tradeoffs between software development time, function, quality,
and the ability to create value. Of particular importance is the need for work on software
economics to move from static notions of (usually uncertain) cost and benefit to dynamic
and strategic concepts of value creation through flexible decision making under highly
demanding circumstances over time. These needs are discussed further below.

III. Software Economics Roadmap

Our roadmap for the next major phase of research in software economics begins
with the goal: to develop fundamental knowledge that will enable significant, measurable
increase in the value created over time by software and information technology projects,
products, portfolios and the industry. Although the goal is obvious at one level, there are
subtleties. For example, present business value is often created by investing in options to
exploit potential future markets. In a business context, contingent payoffs can have
significant, sometimes great present value, even though the potential benefits have not yet
been realized. In defining the end objective, it is important to bear in mind that although

Significantly and
measurably greater

value created by
SW/IT projects,

programs, portfolios
and industry

Market structures
more favorable to
Increased SW/IT

productivity

Better tactical and
strategic SW/IT
product, process
portfolio design
decision-making

Better SW/IT
project/portfolio

status, valuation,
& risk assessment

decision aids

Better SW/IT
system/portfolio
business-case,
payoff modeling

Better
macroeconomic
data and models

Better national-
level strategic IT
decision-making

(R&D, policy)Better models of
sources of value

in SW/IT including
options, synergies

& competition

Better SW/IT
project cost &

schedule mgmt.
tracking

Better models for
estimating SW/IT
costs & schedule

Better SW/IT
project benefits

realization mgmt.
tracking

Better data for
estimating SW/

IT benefits

Better models for
estimating SW/IT

benefits

Better Software
Engineering
Education

Better models of
links from SW/IT
product, process
& portfolio design
to benefits created

Better data for
estimating SW/

IT costs &
schedule

Better monitoring,
dynamic analysis of

SW/IT products,
processes,

portfolios and
environments

Figure 1: Roadmap for research in software engineering economics.

value creation is the goal, value itself can be a complex and subtle quantity. In particular,
it is not equivalent to benefits realized, or even benefits realized net of cost, in general.

Working backwards from the end objective, we identify a network of important
intermediate outcomes. The roadmap in Figure 1 illustrates these intermediate outcomes,
dependence relationships among them, and important feedback paths by which models
and analysis methods will be improved over time. The lower left part of the diagram
captures tactical concerns, such as improving cost estimation for software projects, while
the upper part captures strategic concerns, such as reasoning about real options and
synergies between project and program elements of larger portfolios.

A. Making Decisions that are Better for Value Creation

The goal of our roadmap is supported by a key intermediate outcome: designers at
all levels must make design decisions that are better for value added than those they make
today. Design decisions are of the essence in product and process design, the structure
and dynamic management of larger programs, the distribution of programs in a portfolio
of strategic initiatives, to national policy on software. Better decision-making is the key
enabler of greater value added.

Design decision-making depends in turn on a set of other advances. First, the
design space within which designers operate needs to be sufficiently rich. To some
extent, the design space is determined by the technology market structure: what firms
exist and what they produce. That structure, is influenced, in turn by a number of factors,
including but not limited to national-level strategic decision-making, e.g., on long-term
R&D investment policy, on anti-trust, and so forth. The market structure determines the
materials that are produced that designers can then employ, and their properties.

Second, as a field we need to understand better the links between technical design
mechanisms (e.g., architecture), context, and value creation, both to enable better
education, and to enable better decision-making in any given situation. An improved
understanding of these links depends in turn on developing better models of the sources
of value that are available to be exploited by software designers in the first place (e.g.,
that in uncertain markets, real options can acquire significant value).

Third, people involved in decision-making have to be educated in how to employ
technical means more effectively to create value. In particular, they personally need to
have a better understanding of the sources of value to be exploited and the links between
technical decisions and the capture of value.

Fourth, dynamic monitoring and control mechanisms are needed to better guide
decision-makers through the design space in search of value added over time. These
mechanisms have to be based on models of links between technical design and value and
on system-specific models and databases that capture system status, valuation, risk, and
so on: not solely as functions of endogenous parameters, such as software development
cost drivers, but also of any relevant exogenous parameters, such as the price of memory,
competitor behavior, macroeconomic conditions, etc. These system-specific models are
based on better cost and payoff models and estimation and tracking capabilities, at the
center of which is a business-case model for a given project, program or portfolio. We
now discuss some of the central elements of this roadmap in more detail.

B. Richer Design Spaces

The space in which software designers operate today is inadequate. One of the
important reasons for this is that the structures of the markets within which software
development occurs are still fairly primitive in comparison to the market structures that
support other industries. We are less able to build systems from specialized, efficiently
produced, and aggressively priced third-party components than is possible in many other
fields. We are also less able to use markets to manage risk through warranties, liability
insurance, etc., than is common in most fields. The inability to manage risk by the use of
modern market-based mechanisms is a major hindrance to efficient production.

C. Links Between Technical Parameters and Value Creation

Software design involves both technical and managerial decisions. The use of
formal methods or the shape of an architecture are technical issues. The continuation or a
change in a program in light of new information is managerial. The two are not entirely
separable. The selection of a life-cycle model is a technical decision about the
managerial framework for a system. Moreover, even where software engineering is
concerned with technical issues, the connection of technical decisions to value creation is
what matters.

The promotion of ParnasÕs concept of information hiding modules, for example,
is based on the following rationale: most of the life-cycle cost of a software system is
expended in change [Leintz & Swanson, 1980]. For a system to create value, the cost of
an increment should be proportional to the benefits delivered; but if a system has not
been well designed for change, the costs will be disproportionate to the benefits
[Parnas72]. Information hiding modularity is a key to design for change.

Design for change is thus promoted as a value-maximizing strategy provided one
can anticipate changes correctly. While this is a powerful heuristic, we lack adequate
models of the connections between the such technical concept and value creation under
given circumstances. What is the relationship between information hiding modularity
and design interval? Should one design for change if doing so takes any additional time
in an extremely competitive marketplace in which speed to market is a make-or-break
issue? I.e., is information hiding obligatory if the opportunity cost of delay might be
enormous? How does the payoff from changing the system relate to the cost of enabling
the change? What role does the timing of the change play? What if it is not likely to
occur until far in the future? What if the change cannot be anticipated with certainty, but
only with some degree of likelihood? What if the change is somewhat unlikely to be
needed but in the case that it is needed, the payoff would be great [Sullivan et al., 1999]?
Value-optimal technical design choices depends on many such factors.

Similarly, early advocates of the aggressive use of formal methods promoted them
on the grounds that software could not be made adequately reliable using only informal
and ad hoc methods, but only through the application of formal methods. Some thought
that systems that could not be proven right should not be built. The implied hypothesis
(all too often promoted as fact) was that using formal methods was optimal for value, if
only because value simply could not be created, net of cost and risk, otherwise.

Subsequent experience has shown that hypothesis to have been wildly incorrect.
In particular, it has turned out to be possible to create tremendous value without formal
methods. Some early advocates have admitted that and have posed interesting questions
about why things turned out this way. One answer is that the assumed links were based
on a view of software products as relatively unchanging.

We are not saying that formal methods cannot add value. They obviously can in
some circumstances: e.g., for high-volume, unchanging artifacts, such as automotive
steering-gear firmware. We still do not understand adequately the economic parameters
under which investments in the use of formal methods create value. Recent work, e.g., of
Praxis, Inc., is improving our understanding. Serious attempts to support limited but
significant formal methods in industrial, object-oriented design modeling frameworks,
such the Catalysis variant of UML [DÕSouza & Wills, 1999], should provide additional
information over time.

D. Links Between Software Economics and Strategic Policy

Understanding technology-to-value links is critical to making smart choices, not
only at the tactical project level, but also in strategic policy-making: e.g., in deciding
whether to promote certain results as having demonstrated value creation capabilities
today, and in selecting research activities having significant potential to achieve long-
term, strategic value creation objectives. Whereas software engineering is about making
smart choices about the use of software product and process technologies to create value,
software engineering research policy is about making smart choices about how to change
the software engineering design space so as to enable greater value creation over time.

The question of who decides precisely what form of value research is to seek, and
what value the public is getting for its investment in research and development, is a deep
question in public policy. Without trying to answer it here we make several observations.

First, that the prevailing definition of the value to be created by public investment
in research has changed in significant ways over the last decade. That change is one of
the factors that demands that greater attention now be paid to software economics. During
the Cold War and prior to the globalization of commerce and the explosion of advanced
technology development in the commercial sector, the nationÕs R&D investments were
driven largely by national security concerns. Value creation meant contributing to that
mission. Today, many argue, the concern has shifted to economic competitiveness. R&D
investments in pre-competitive technologies are meant to pay off in design space changes
that enable industries to create and societies to capture greater economic value.

In the United States, a major strategic emphasis has been put on new public
investment in R&D in information technology, with software, broadly construed, a top
priority. This emphasis is justified on several grounds. First, society is coming to rely
on systems that in turn increasingly depend on unreliable, insecure software. Second, our
ability to produce software that is both powerful and easy enough to use to create value
added is inadequate. Third, our capacity to produce the amount of software needed by
industry is inadequate. There are thus two basic dimensions of value in the calls for new
public investments in software R&D: public welfare, and economic prosperity. Realizing
value in these dimensions is as much a concern of the public as profit is for shareholders.

At the level of corporate and national strategic software R&D investment policy,
the question, then, is what portfolio of investmentsÑin larger programs and individual
projectsÑis needed to deliver the returns desired over time at selected risk levels? (Risk
is a measure of the variance on future returns viewed as a random variable.) The returns
will occur in short, intermediate, and long time-frames. How can a portfolio be managed
for maximal value creation in the indicated dimensions? How can the return on resources
investment be evaluated? Should individual projects be evaluated for success or failure?

Individual projects are risky. There is often too little information to value them
precisely. Rather, funding a project can be seen as producing an option to make a follow-
on investment in the next stage, contingent on success. Over time, as research generates
new information, the option value fluctuates. At the end of the phase a decision is made
on whether to exercise the option to invest in the next phase. Declining to invest is not a
signal that the researcher failed or that the initial investment was misguided, only that in
light of the best current information, it would not be optimal to invest in the next phase.

The staged investment approach permits concepts to be dropped or changed if
they turn out not to work, or to be promoted through increasing levels of commitment.
The corporation or society benefit when a transition to profitable production is made and
where the profits more than compensate for the investment in the research portfolio.

It is critical to individual research efforts not be judged as a matter of
policyÑprospectively or retrospectivelyÑin terms of potential or actual contribution to
value realized by the society or corporation. That would drive all research to the short
term. The return-on-investment calculation should occur at the program and portfolio
level. For example, foundation funding for what was seen at the time as far-out research
in biology catalyzed the green revolution. The program ran about fifteen years. Not
every project within such a program succeeds, nor do most successful projects directly
ameliorate hunger. Rather, successful projects contribute to a complex of intermediate
results leads to end results that, when transitioned into production, ultimately produce the
benefits for society. The return is weighed against the investment in the overall program.

For basic research in software it is similarly essential to insist that individual
projects not be evaluated solely in terms of actual or potential direct payoff to society or
business. At the same time, one must insist that strategic programs show payoffs over
sufficiently long time frames. Individual projects can be evaluated prospectively or in
terms of their potential to contributed intermediate results that could further a strategic
program, and retrospectively in terms of whether they did so. One must be determined to
redirect or abandon software research programs if they do not deliver realized benefits to
a corporation or society over sufficient periods. Software economics thus includes the
economics of investments in creating new knowledge about how to produce software.

Finally, strategy is multi-dimensional. Realizing the benefits of investments in
the creation of knowledge through basic research is unlikely if too few people are taught
about it. The education of software and information technology designers who occupy
technical and business positions will play a significant role in realizing economic benefits
of research in software, in general, and of research in software economics, in particular.
Garnering the benefits of better design spaces and software technologies and investment
models depends on knowledgeable professional experts using them effectively.

E. Better Monitoring & Control for Dynamic Investment Management

Software-intensive systems design generally occurs in a situation of uncertainty
and limited knowledge. Designers are confronted with uncertainties and incomplete
knowledge of competitor behavior, technology development, properties of products,
macro-economic conditions, the status of larger projects within which a given activity is
embedded. Conditions change and new information is gained continuously. The benefits
that were envisioned at the beginning of such a project often turn out to be not the ones
that are ultimately realized, nor are the paths by which such activities progress the ones
that were planned. Rather, complex projects take complex, unforeseen paths. The search
for value in spaces that are at best only partially known are necessary dynamic if the are
to be most effective.

Beyond a better understanding of software design as a decision-making process, a
better design space in which to operate, a better understanding of the context-dependent
linkages between technical properties and value creation, and better educated decision-
makers, software designers need mechanisms to help them navigate complex situations in
a manner dynamically responsive to new information and changing conditions. We need
models for both the systems being developed and for sophisticated decision processes
that support dynamic monitoring and control of complex software development activities.
Dynamic management of investment activities in the face of significant uncertainties and
gaps in knowledge is critical at levels from the single project to corporate and national
software R&D investment policy.

Multiple models of several kinds will be used at once in any complex program.
Models will be needed to guide and to support monitoring and control in the areas of
product (e.g., architecture, verification), process (e.g., overall lifecycle), property (e.g.,
dependability), costs (e.g., for staff, materials, overhead), risk (e.g., lawsuits, liability
judgements, failure due to technical or managerial difficulties), opportunities (e.g., to
improve a product, to extend it to exploit new markets or other sources of value, or to
follow with a synergistic new function), major programs (e.g., the dependencies among
projects that determine ultimate success), corporate or national portfolios (constituent
projects and how they support strategic objectives), uncertainty (e.g., project risks within
programs and co-variance properties), markets (resources, needs, competition), etc.

Models at all of these levels are relevant to technical software design decision-
making. Product architectural design decisions, for example, are critical to determining
strategic opportunities and in mitigating technical and other risks. Such models and
associated dynamic decision processes should be developed, integrated into software
design activities, and related to our existing software design decision criteria. To enable
the use of such models in practice, tool and environment support will often be needed.

IV. Improving Software Economics Within an Enterprise

The lower portion of the roadmap in Figure 1 summarizes a closed-loop feedback
process for improving software economics within an enterprise. It involves using better
data to produce better estimates of the likely costs and benefits involved in creating,
sustaining, and employing a portfolio of software and information technology assets.
These estimates can be used to initiate a dynamic management process in which progress

toward achieving benefits is tracked with respect to expenditure of costs, and corrective
action is applied when shortfalls or new opportunities arise. This tracking also results in
more relevant and up-to-date data for improving the cost and benefit estimation models
for use in the next round of the firmÕs initiatives. In this section, we discuss three key
components of this process: modeling costs, benefits, and value; tracking and managing
for value; design for lifecycle value.

A. Modeling Costs, Benefits, and Value

Modeling Software Development Cost, Schedule, and Quality

In Section II.C, we discussed several software cost estimation models, and
indicated that each had at least passed a market test for value by remaining economically
viable over at least a decade. Their relative accuracy remains a difficult question to
answer, as data on software cost, schedule, and quality is far from uniformly defined. A
significant step forward was made with the core software metric definitions developed in
[SEI, 1992], but there is still about a ±15% range of variation between projects and
organizations due to the counting rules for data. Example sources of variation are the job
classifications considered to be directly charging to a software project, the way an
organization counts overtime, and the rules for distinguishing a defect from a feature.

This has led to a situation in which models calibrated to a single organizationÕs
consistently collected data are more accurate than general-purpose cost-schedule-quality
estimation models. Some particularly good examples of this in the software quality and
reliability estimation area have been AT&T/Lucent [Musa et al., 1987], IBM [Chillarege,
1992], Hewlett Packard [Grady, 1992], the NASA/CSC/U. of Maryland Software
Engineering Lab [McGarry et al, 1994, and Advanced Information Services [Ferguson et
al., 1999].

The proliferation of new processes and new technologies is another source of
variation that limits the predictive accuracy of estimation models. For example, it
required 161 carefully-collected data points for the calibration of COCOMO II [Boehm et
al., 2000] to reach the same level of predictive accuracy (within 30% of the actuals, 75%
of the time) that was reached by the original COCOMO model [Boehm, 1981] with 63
carefully-collected Waterfall-model data points [Chulani et al., 1999].

Alternative software estimation approaches have been developed, such as
expertise-based, dynamics-based, case-based, and neural net models; see [Boehm &
Sullivan, 1999] for further details. Neural net and case-based models are still relatively
immature. Dynamic models are particularly good for reasoning about development
schedule and about adaptation to in-process change [Abdel-Hamid & Madnick, 1991;
Madachy, 1996], but are hard to calibrate. Expertise-based methods are good for
addressing new or rapidly changing situations, but are inefficient for performing
extensive tradeoff or sensitivity analyses. All of the approaches share the difficulties of
coping with imprecise data and with changing technologies and processes.

The Elusive Nature of Software Estimation Accuracy

In principle, one would expect that an organization could converge uniformly
toward perfection in understanding its software applications and accurately estimating
their cost, schedule, and quality. However, as the organization better understands its
applications, it is also able to develop better software development methods and
technology. This is good for productivity and quality, but it makes the previous
estimation models somewhat obsolete. This phenomenon is summarized in Figure 2.

As the organizationÕs applications become more precedented, its productivity
increases and its estimation error decreases. However, at some point, its domain
knowledge will be sufficient to develop and apply reusable components. These will
enable a significant new boost in productivity, but will also increase estimation error until
the estimation models have enough data to be recalibrated to the new situation. As
indicated in Figure 2, a similar scenario plays itself out as increased domain
understanding enables the use of commercial-off-the-shelf (COTS) components and very
high level languages (VHLL). A further estimation challenge arises when the
organization becomes sufficiently mature to develop systems of systems which may have
evolved within different domains.

Modeling Benefits and Value

We were careful not to put any units on the ÒproductivityÓ scale in Figure 2.
Measuring software productivity has been a difficult and controversial topic for a long
time. Great debates have been held on whether source lines of code or function points
are better for measuring productivity per person-month. Basically, if your organization

Prece-
dented

Component-
based

COTS VHLL
System of
Systems

Unprece-
dented

Estimation
Error

Relative
Productivity

Time, Domain Understanding

Figure 2. Productivity and Estimation Accuracy Trends

has the option of developing software at different language levels (assembly language,
3GL, 4GL), function points will be preferable for measuring productivity gains, as they
are insensitive to the extra work required to produce the same product in a lower-level
language. (However, for the same reason, source lines of code will be preferable for
estimating software costs.) If your organization develops all its software at the same
language level, either is equally effective.

However, it is not clear that either size measure is a good proxy for bottom-line
organizational productivity. One problem is behavioral, and can be summarized in the
acronym WYMIWYG (what you measure is what you get). In a classic experiment,
Weinberg gave the same programming assignment to several individuals, and asked each
to optimize a different characteristic (completion speed, number of source statements,
amount of memory used, program clarity, and output clarity). Each individual finished
first (or in one case, tied for first) on the characteristic they were asked to optimize
[Weinberg-Schulman, 1974]. The individual asked to optimize completion speed did so,
but finished last in program clarity, fourth in number of statements and memory used, and
third in output clarity. A thorough treatment of this and other risks of Òmeasurement
dysfunctionÓ is provided in [Austin, 1996].

The second problem is that it is not clear that program size in any dimension is a
good proxy for organizational productivity or value added. The popular design heuristic
KISS (keep it simple, stupid) would certainly indicate otherwise in many situations. This
leads us again to the challenge of modeling the benefits and value of creating a software
product.

In contrast to methods for modeling software costs, effective methods for
modeling software benefits tend to be highly domain-specific. The benefits of fast
response time will be both modeled and valued differently between a stock exchange, an
automobile factory, and a farm, just because of the differences in time value of
information in the three domains.

General Benefit-Modeling Techniques

However, there are more general techniques for modeling the contribution of a
software product to an organizationÕs benefits. These frequently take the form of a causal
chain linking the organizationÕs goals and objectives to the development or acquisition of
software. Examples are Quality Function Deployment [Eureka & Ryan, 1988], Goal-
Question-Metric [Basili et al., 1994], and the military Strategy-to-Task approach.

A significant recent advance in this are is the Results Chain used in the DMR
Benefits Realization Approach (DMR-BRA) [Thorp, 1998]. As shown in Figure 3, it
establishes a framework linking Initiatives which consume resources (e.g., implement a
new order entry system for sales) to Contributions (not delivered systems, but their
effects on existing operations) and Outcomes, which may lead either to further
contributions or to added value (e.g., increased sales). A particularly important
contribution of the Results Chain is the link to Assumptions, which condition the
realization of the Outcomes. Thus, in Figure 3, if order to delivery time turns out not to
be an important buying criterion for the product being sold, the reduced time to deliver
the product will not result in increased sales.

This framework is valuable not only for evaluating the net value or return on investment
of alternative initiatives, but also in tracking the progress both in delivering systems and
contributions, and in satisfying the assumptions and realizing desired value. We will
return to the Benefits Realization Approach in Section C below.

Modeling Value: Relating Benefits to Costs

In some cases, where benefits are measured in terms of cost avoidance and the
situation is not highly dynamic, one can effectively apply net present value techniques. A
good example in the software domain deals with investments in software product lines
and reusable components. Several useful models of software reuse economics have been
developed, including effects of present value [Cruickshank & Gaffney, 1993] and also
reusable component half-life [Malan & Wentzel, 1993]. An excellent compendium of
economic factors in software reuse is [Poulin, 1997].

Even with software reuse, however, the primary value realized may not be in cost
avoidance but rather in reduced time to market, in which case the value model must
account for the differential benefit flows of earlier or later market penetration. Some
organizations in established competitive marketplaces (e.g., telecommunications
products) have quite sophisticated (and generally proprietary) models of the sensitivity of
market share to time of market introduction. In other domains, such as entrepreneurial

ContributionContribution

Figure 3. Benefits Realization Approach Results Chain

INITIATIVE OUTCOME
 OUTCOME

Order to delivery time is
an important buying criterion ASSUMPTION

Implement a new order
entry system

Reduce time to process order

Reduced order processing cycle
(intermediate outcome)

Increased sales

Reduce time to deliver product

new ventures, models relating market share to time of market introduction are generally
more difficult to formulate.

Another major challenge in modeling costs, benefits, and value is the need to deal
with uncertainty and risk. Example sources of uncertainty are market demand, need
priorities of critical stakeholders or early adopters, macro-economic conditions (e.g.,
shrinking markets in Asia or Latin America), technology unknowns, competitor
unknowns, and supply scarcities. These uncertainties have spawned an additional sector
of the economy which performs consumer surveys, market projections, technology
evaluations, etc., and sells them to organizations willing to buy information to reduce
risk.

B. Tracking and Managing for Value

A good indicator of the current status and trends in models for software project
tracking and managing is provided by the related key practices in the Software
Engineering Institute (SEI) Capability Maturity Model for software Version 1.1 [SEI,
1993; Paulk et al., 1995], and in the recent draft CMM-Integrated-Systems/Software
Engineering (CMMI-SE/SW) Version 0.2b [SEI, 1999].

In the software CMM Version 1.1, the basic Key Process Area, situated at Level
2, is called Software Project Tracking and Oversight. It has 13 Activities-Performed
elements, which include tracking to and updating a documented plan; reviewing and
controlling commitments; tracking and taking necessary corrective actions with respect to
software size, effort, cost, computer resources, schedule, and risks; recording data; and
performing formal and periodic internal project reviews.

This framework is a sound implementation of the fundamental project
management feedback process of monitoring progress and resource expenditures with
respect to plans; and of performing corrective actions, including appropriate plan
revisions, where necessary. It is relatively advanced with respect to risk management.
However, it is very narrowly focused on the software artifacts to be produced, and not
much on their contribution to achieving benefits or organizational goals.

The corresponding Level 2 process in the CMMI-SE/SW is called Project
Monitoring and Control. Its implementation of the fundamental project management
feedback process is roughly the same, including the emphasis on risk management, which
is also a separate Process Area in the CMMI-SE/SW. It is more system-oriented, in that
the product and task attributes to be monitored and controlled include such attributes as
size, complexity, weight, form, fit, and function. However, except for possible broad
interpretations of Òform, fit, and function,Ó it is also very narrowly focused on the
artifacts to be produced, and not much on their contribution to achieving benefits or
organizational goals.

Both the software CMM and the CMMI-SE/SW have Level 4 Process Areas
which relate more to customer and organizational needs and goals. Both use a relatively
advanced definition of ÒqualityÓ with respect to such traditional measures of software
quality as delivered defect density. In the software CMM, a primary activity involves
understanding the quality needs of the organization, customer, and user, exemplified by
the use of surveys and product evaluations. In the CMMI-SE/SW, particular quality

needs are additionally exemplified such as functionality, reliability, maintainablility,
usability, cycle time, predictability, timeliness, and accuracy. It also emphasizes
traceability to not only to requirements but also to business objectives, customer
discussions, and market surveys.

Again, these are quite advanced in their focus on customer needs and business
objectives, but their primary focus remains on tracking and managing the execution of the
project rather than on the value it will presumably deliver. Concepts such as a business
case which validates the economic feasibility of the project, and which serves as a basis
for tracking the continuing validity of assumptions underlying the projectÕs business case
are not explicitly mentioned. In practice, the usual Òearned valueÓ system used to track
progress vs. expenditures uses the budgets for the project tasks to be performed as the
value to be earned, rather than the expected business value associated with the productÕs
operational implementation.

In the context of our previous discussions of value creation via information
technology, the current normative tracking and managing practices as exemplified by the
CMMÕs leave open a number of opportunities for improvement. These include
improvements in the nature of the achievements to be monitored and controlled, and
improvements in the nature of the corrective actions to be performed in case of shortfalls
in the projected achievements.

Improvements in the nature of the achievements to be monitored and controlled
have been discussed in the context of dynamic investment management in Section III.E,
and will be discussed further in Section V. A particularly attractive initial improvement
to address is the application of business-value concepts to traditional earned value
systems. One approach would be to use the project's business case analysis as the basis of
accumulating projected business value, rather than the current measure of success in
terms of task-achievement based value.

Improvements in the nature of corrective actions can involve reorganization of the
project's process and the system's architecture to best support adaptation to dynamic
business objectives. If an entrepreneurial startup's primary objective, for example, is to
demonstrate a competitive agent-based electronic commerce system at COMDEX in 9
months, the driving constraint is the inflexible date of COMDEX in 9 months.

An appropriate reorganization of the process and architecture involves using a
Schedule as Independent Variable (SAIV) process model, in which product features are
dropped in order to meet the 9-month schedule. This requires two additional key steps.
One is to continuously update the priorities of the features, so that no time is lost in
deciding what to drop. The other is to organize the architecture to make it easy to drop
the lower-priority features. Attempting to succeed at SAIV without having provided
these necessary preconditions for successful corrective action has compromised the
success of a number of entrepreneurial startups.

C. Design for Lifecycle Value

Developing a software system or portfolio of systems is an ongoing activity of
design decision-making that extends across multiple organizational and product
granularity levels and through time. The software economics viewpoint on this activity

has two basic parts. Foremost is the idea that the objective of the software design activity
is to create surplus value. The goal is not to achieve verifiability, evolvability, safety,
quality, usability, reusability, reliability, satisfaction of a formal specification, possession
of a mathematical semantics, or any other technical property, per se. Technical properties
are critical to creating value, but they are the means, not the ends. The guiding objective
for software engineering is design for value added.

The second part of the economics viewpoint tries to answer the question, How
does one do design for value? One of the most important answers is that one should
understand software development as a capital investment activity, and look for real
improvements by modeling, analyzing, and managing it as such. We take active
investment management as a key part of an approach to achieving the value creation
objective. By active investment management, we mean structuring a mix of products,
processes, projects, and portfolios, and operational targets to enable ongoing creation and
exploitation of favorable investment opportunities, of synergies among concurrent
projects, and among sequential projects.

Much work has been done in economicsÑespecially financeÑto develop tools
for reasoning about value creation through intelligent, dynamic capital investment
decision-making. Relevant issues include how present and future costs and benefits are
made commensurable; how risk and risk tolerance can be characterized, measured,
managed and factored into valuations; how present value can be created in the form of
strategic opportunities for future gain; how efficient capital structures that promote speed
and variety in innovation can be fostered; and so on.

Important recent work has focused especially on the dynamic management of real
investments under uncertainty. Examples include modular product design to create
options to upgrade at the module level, should better components be developed; the
phased design of projects to create options for abandonment should conditions become
unfavorable, or for follow-on investments should they turn out favorably; and
preservation of options to invest on more favorable terms in the future created by
delaying investment decisions.

At the same time, the software engineering field has pushed our understanding of
relationships between product and process structure and value in the face of complexity,
uncertainty, and competition, albeit in an ad hoc and informal manner. In fact, some of
the seminal work in software engineering has even been picked up by finance
researchers. Recent research on economic drivers of the evolution of the computer
industry, for example, point to information hiding modularity as embodied in open
architectures as being fundamental [Baldwin & Clark, 1999]. It is thus natural for
software engineering researchers to seek out analogies and correspondences between
capital investment concepts and software design in an attempt to leverage knowledge
from finance to substantially improve productivity in the software domain.

Value-Driven Design

While the finance concepts of cost and benefit are well known, a sophisticated
economic perspective raises issues that are not typically addressed adequately in software
development projects today. Advances are possible when a more sophisticated economic

viewpoint leads to the consideration of complex sources of value, and the means by
which value creation can be improved. By exploiting modern finance concepts, software
engineers can develop a better understanding of such issues as the following:

• the present value of future payoffs that might or might not be attained

• the value of new information that reduces uncertainty about unknown states of nature

• the value of risk reduction with all other factors, including expected payoffs, the same

• the present value of options whose payoffs depend on how exogenous uncertainties
are resolved, including options to enter new markets if market conditions become
favorable; to make follow-on investments if exploratory phases produce favorable
results; to abandon money-losing investments for abandonment payoffs; to ship a
product early or just to be able to make a credible threat of doing so

• how desired risk-return characteristics can be attained through diversified portfolios
of assets, provided that the assets have somewhat independent returns

• the non-linear-in-size value of networks [Shapiro & Varian, 1999].

• the opportunity cost of investing early in the face of uncertainty, and of investing late
in the face of possible drops in asset values, as might result from competitive entry
into a market

If these concepts are to be exploited by software engineers, then it is important to
relate them to terms and decision criteria that software engineers understand. Important
software engineering decision-making heuristics include the following:

• information hiding modularity

• architecture first development

• incremental software development

• always having a working system

• risk-based spiral development models

• the value of delaying design decisions

• components and product-line architectures

Modularity and architecture, in particular, have strategic value in establishing
valuable options: to improve a system one part at a time as new or revised parts are
delivered; to create variants to address new or changed markets; and to develop variants
quickly. Phased project structures, as promoted most especially by the spiral
development model and its variants, create valuable options in the form of intermediate
decision points. ItÕs far less costly to abandon a relationship before becoming engaged
than after, before getting married than after, before having children than after. The value
maximizing decision is to cut oneÕs losses early as soon as it is clear that a project is not
going to succeed. A structure within which that is both possible and legitimized in a
value-enhancing structure.

Relating software design concepts to value-based analogs opens up considerations
that have significant potential to inform software development, especially in the strategic
dimension. Rather than thinking of design as an anticipatory activity that succeeds if one
anticipates correctly and that fails if not, for example, one can reason about the increased
present value of a design that has flexibility to accommodate changes that might or might
not occur. The designer succeeds if the value of the system is increased (net of cost and
risk) by the decision to include flexibility that has a clear although uncertain potential to
produce a future payoff.

Investing in the Anticipation of Change

Although the distinction is subtle, it is important. Among other things, it
emphasizes the need for the designer to manage the ever-changing valuations of the
elements of a software development portfolio to optimize for value. If an ÒanticipatedÓ
change does not occur, then the value of the system decreases because the flexibility no
longer holds the potential for a future payoff. The value of the system decreases because
of the change in external circumstances. When such a change is significant enough, the
design situation in the small or even in the large might need to be reconsidered. The
ongoing valuation of oneÕs assets, the monitoring of conditions that affect those
valuations, and adjustments in the asset mix and operational objectives are the keys to an
active investment management approach to software design decision-making.

At the corporate level, this puts a premium on investments that enable software
designers to better anticipate change. Examples are evaluation of emerging technologies
(CORBA, COM, object management systems, agent management systems), and product
usage trend analysis.

Of course, there is no silver bullet. Software design is and will continue to be an
exceedingly demanding activity. Although financial concepts of value and management
for value added can contribute to software design, they are no panacea. The complexity
of the activity ensures that there is no simple formula. Many factors have to be brought
together at once for software or software-enabled systems to deliver the benefits that, net
of their costs, produce a surplus that is then distributed among the stakeholders to make
everyone better off. Complexity ensures that there are many ways that things can go
wrong to undercut the attainment of benefits. Ensuring that all of the required factors are
aligned will remain a challenge of the first order.

V. Emerging Value-Driven Design and Development Approaches

The second key issue with respect to optimizing for value, then, is to understand
the entire set of conditions that must be conjoined for benefits to be realized. Timely and
economical production of a product having the properties needed to satisfy a need is of
the essence, of course. What sets of conditions must be orchestrated for the successful
delivery of a value-creating product? What failure modes threaten such an efforts?
Design approaches that are now emerging from industry and from academic research
laboratories are beginning to tackle these question head-on, with an emphasis on the
value creation through a comprehensive approach to ensuring the realization of defined
benefits.

Two such efforts are Model-Based (System) Architecting and Software
Engineering (MBASE) [Boehm & Port, 1999] and the Òbenefits realizationÓ approach of
Thorp and DMR Consulting [Thorp, 1998]. The focus of each is on achieving the
conjunction of conditions necessary for defined benefits to be realized. We discuss each
approach in turn. We compare and contrast them with each other. Then we put them in
the broader context of active investment management. We then discuss what some of the
challenges might be in reorganizing existing enterprises to follow such approaches.

MBASE/USC

The Model based System Architecting and Software Engineering approach
[Boehm & Port, 1998] is driven by the view that a narrow focus on technical aspects of
system architecture is far from enough to promote successful outcomes. Instead, the
approach advocates a holistic treatment of all of the key issues, in four basic dimensions,
that must be addressed for success to occur.

The product dimension addresses issues such as domain model, architecture,
requirements, and code. The process dimension involves tasks, activities, milestones.
The property dimension involves cost, schedule, and performance properties. The
success dimension addresses what each stakeholder needs, e.g., in terms of business
cases, satisfaction of legal requirements, or in less formal terms. The basic idea is that in
each of the dimensions, activities and expectations are guided by models, and that these
models must be mutually consistent for a project to succeed.

The central axiom of the MBASE approach is that success depends on the
contributions of multiple self-interested partiesÑstakeholdersÑand that for the required
set of contributions to materialize, all stakeholders must be satisfied that the process will
satisfy their success criteria. It becomes critical to understand the success models of each
success-critical stakeholder and to manage the activity to sustain each stakeholderÕs
expectation of success. Recognizing conflicts among success models, reconciling them,
and managing expectations emerge as key challenges.

More generally, the approach recognizes that one of the key sources of problems
in complex projects is in the misalignment or incompatibility of models. The approach
thus emphasizes the need to bring the models into harmony so that they reinforce each
other. Stakeholder success models along with application domain models drive choices
of property, process and product models. The approach provides guidance for identifying
and resolving conflicts, and heuristics for promoting the coherence of the multiple
models. As clashes among success criteria are resolved, for example, the consistent set of
criteria are embodied in product models, e.g., in the system specification.

The next important concept is that the elaboration of a harmonious set of models
cannot occur either sequentially or in a single Òbig bang.Ó Things change and people
cannot foresee all issues that will arise in a complex development effort. The MBASE
approach thus emphasizes the use of an approach in which models are elaborated and
made ever more mutually reinforcing over time in an iterative fashion. The Win-Win
spiral model is employed in an attempt to ensure that the ultimate objectivesÑeach
stakeholderÕs desire for the satisfaction of its success criteriaÑis continually accounted
for in the evolving set of models. As conditions evolve over time, success criteria,

requirements, processes, and other model elements are adjusted in an attempt to keep the
effort on track.

The MBASE approach recognizes that conditions change and that early visions
might or might not succeed. Thus it incorporates as a key element in the iterative
development process a three major anchor point milestones: life cycle objectives (LCO),
life cycle architecture (LCA), and initial operational capability (IOC). These milestones
represent fundamental stakeholder life cycle commitment points analogous to the real-life
commitment points of getting engaged, getting married, and having your first child. The
Anchor Point milestones define constituent elements and associated reviews and pass/fail
conditions. LCO and LCA include as essential content an Operational Concept
Definition, Requirements Definition, Architecture Definition, Life Cycle Plan, Key
Prototypes, and Feasibility Rationale, Architecture Review Board reviews and their
Feasibility Rationale-based pass-fail criteria. The IOC milestone addresses the
deliverables for software, personnel, and facility preparation, and it includes a Transition
Readiness Review, a Release Readiness Review, and their associated pass-fail criteria.

These final MBASE core invariant is that the design and content of MBASE
artifacts and activities should be driven by considerations of risk management. The
rationale is that risk criterion is the best way for a project to determine the adequacy of
specifying, prototyping, reusing, testing, documenting, reviewing, and so on, and that the
failure to apply this criterion threatens the ability of a project to achieve critical success
conditions and that effort will be wasted on unnecessary or dysfunctional activities.

DMR/Thorpe.

Thorpe traces the evolution of the application of information technology from
automation of routine work, through information management to its primary role today:
enabling profound transformations in business structures and functions. His primary
thesis is that the expected benefits of information technology generally are not being
realized today because (1) realizing the benefits of information-technology-enabled
business transformation can require coordinated change across an entire organization, not
just the installation of a new information technology component; and (2) managers
continue to behave as if they were still in the old world of work automation or
information management, when simply installing computers and software was perhaps
adequate to realize benefits.

In particular, Thorpe emphasizes the need for manager to consider four key
issues. The first is the linkages between information technology investments and
business strategy on one hand and changes needed elsewhere in the organization (e.g.,
training) on the other that are required to realize benefits. The second is reach: the extent
to which an IT-enabled change impacts on the organization, both in the range of business
units and functions affected and in the depth of changes required. Understanding and
managing the impacts of such changes, e.g., on involved stakeholders, is seen to be
critical. The third issue is people: that many people must commit to a given
transformational change, and that can require significant engineering of attitudes, etc.
The fourth issue is time: that the time frame within which a change is made is critical to
success, but hard to predict in advance, and it is not infinitely flexible, as organizations

can absorb change at a finite rate. Thorpe also emphasizes that the parameters in these
dimensions will themselves change over time.

The Thorpe/DMR benefits realization approach is based on several premises:
first, technology alone is insufficient to produce benefits; second, early visions of benefits
are rarely realized, but rather the benefits that are ultimately achieved are based on a
dynamic, somewhat unpredictable process of benefits pursuit over time; and third,
realizing benefits requires a continuous process of envisioning the benefits desired,
implementing, and dynamically adjusting course in light of new information.

The first point drives a change in perspective from traditional engineering, based
on a cycle of design-develop-test-deliver, to an end-to-end view of technology-intensive
development: from concept to cash. In other words, the approach is holistic and focused
on realizing value, rather than focusing just on technical issues, per se. It recognizes that
the strategic value of information technology is increasing exponentially, but that as its
impacts cut deeper and ever more broadly across organizations, and as the costs of
information technology continue to drop, the fraction of the cost of IT-enabled change
attributable to IT itself continues to dwindle.

At an investment structuring level, the Thorpe/DMR approach is based on several
concepts. The first is that the emphasis has to shift from stand-alone projects, for which
the goal is the delivery of a discrete capability (e.g., a software system), to multi-project
programs, for which the goal is to produce benefits at the organizational level. A project
might deliver a computer, but it takes a program to put a person on the moon. The
second idea is that an organization should take a disciplined approach to designing
portfolios of programs in order to realize given benefits while managing risk and return.
The programs in these portfolios, as suggested above, will combine investments in
information technology with other initiatives as necessary to achieve defined business
objectives. The third core concept is that a full cycle governance approach be taken to
managing the portfolio and its constituent programs. This idea combines active, full life
cycle management with the notion of a phased and incremental investment approach
based on well defined stage gates. Stage gates are major evaluation and decision points
for programs that enable reevaluation of changes in the state of a program and its
environment, and decisions about whether to change course, e.g., to abandon, redirect, or
reinforce a program.

In terms of management, per se, the Thorpe/DMR approach requires what he calls
activist accountability, relevant measurement, and proactive management of change.
Activist accountability means that a senior business manager owns each program and is
accountable for the realization of its benefits. An important corollary is that the
information technology group cannot reasonably be held accountable for realizing
business benefits of IT-enabled change. It does not have the ability or authority and scope
of control to coordinate all of the elements needed to realize benefits at the organizational
level; so it must not be given such responsibility, either. The measurement issue stresses
that the tracking of performance parameters related not just to costs but to benefits is
critical. Costs are tangible; performance measures that reflect the realization of benefits
are harder to find. The third issue is proactive management of change. This issue goes to
the question of implementing a benefits realization approach or any of the major IT-
enabled changes within it, in an organization not already set up for such changes. Senior

leadership is seen to be essential is managing change across the dimensions of linkages,
reach, people and time.

Synthesis.

The MBASE and Thorp/DMR approaches overlap considerably in the concerns
that they address. First and foremost, both take a holistic view of design, acknowledging
that many factors at one have to be addressed for design investments to pay off. They
both take phased approaches to scaling up commitments only as they scale down risks.
They achieve this through phased investment structures with defined milestones. The
DMR approach emphasizes strategy, risk engineering, and the creation and management
of synergies and real options more strongly than MBASE. On the other hand, MBASE is
significantly stronger in addressing particular issues that arise in the context of complex
software components of software-intensive system projects.

VI. Research Challenges

A broad set of research challenges is arising in software economics. Software
economics has always been an important problem, but the major economic discontinuities
created by software and information technology itself are now pushing it to the top of the
research agenda. Second, the problems are of real scientific and technological interest.
Design activities are guided by Òforce fieldsÓ [Baldwin & Clark, 1999]. The proper force
field for software engineering, as for any utilitarian design and engineering discipline, is
value: measured in terms that count for the enterprise investing resources. A science of
design, which is, after all, what we seek as a basis for software engineering, will have to
account for the influence of that field. Third, the practical significance of advances, or of
the failure to make them, is high. Fourth, it appears possible to make significant progress
through a comprehensive program in research and education in software economics.

A research program will include several key elements. At the highest level, we
need to learn how to think about and manage software development as an investment
activity the ultimate objective of which is to obtain maximum value for the resources
invested. Reasoning about how to manage investment activities to maximize value is
becoming very sophisticated, and many kinds of enterprises are borrowing from the
advances that are being made, including philanthropic foundations, as discussed at the
beginning of this paper. As Brooks observed in regard to software, it is easier to buy than
to build. Perhaps that is also true for important concepts and structures for organizing
complex investment activities. In other words, there might be much to gained simply by
borrowing from other fields and by adapting existing knowledge to the software context.

Software development is an extraordinarily complex activity, so it should not be
astonishing to find that significant adaptation is necessary in some cases. In the first step,
other fields, such as finance and strategy, can help to inform software design. In return,
software design and engineering can return the favor. The work of Baldwin and Clarke
in finance, and in developing a theory of the evolution of the computer industry, in
particular, bears the indelible mark of ParnasÕs seminal concept of information hiding.
The software engineering field can provide value in return.

In particular, we emphasize that strategy in value creation is now much better
understood and appreciated than it was thirty years ago. Strategy involves coordinated

and dynamically managed investments in multiple, interrelated areas with specific value
creation objectives. In addition to direct payoffs and realized benefits, value is created
through the clever design and exploitation of synergies among concurrent and serial
investments and through the creation and dynamic management of real options. It is now
understood that in business, for example, much of the present value of some enterprises is
in the form of options that they hold to profit from possible future opportunities [Myers,
1977], and that a fundamental strategy for increasing value is therefore to invest in both
the creation of such options, and in the capabilities that are necessary to exercise them if
it becomes favorable to do so. Capabilities extend all the way to culture. An enterprise
can do better than its competitors, for example, if its culture accepts project abandonment
in light of unfavorable new information as a positive-value action.

Beyond the management activities of any individual enterprise, there is the larger
question of how best to improve the design space in which they operate. Traditional
software engineering research plays a vital role, of course, in providing new and better
technologies and processes; but innovative research on what is necessary to achieve a
transformation of the industry structure is also needed. Understanding how to create
more liquid markets in software risk is one potentially important step.

Within the enterprise, there are interesting questions about how best to allocate
scarce resources at the ÒmicroÓ level. Many activities contribute to the development of a
software product. They all compete for resources. The value added is in part a complex
function of the distribution of resources over those activities. Getting a sense of what that
function is overall, and for particular life-cycle activity, such as verification, is important.
Of course, the function will vary from one context to another, just as cost functions do.

To support all of these activities, new models and associated analysis methods for
reasoning about the value of investments in software technical assets, including design
aspects of software processes, products, projects, programs and portfolios. Supporting
tools and environments will then be needed to make the models useful for engineers in
practice.

Finally, understanding how to integrate such advances into industrial software
development processes would be an essential to the realization of the benefits enable by
investments in such research. It is not enough to produce disembodied models. Recent
advances represented in the MBASE and DMR approaches provide indications that we
are now at a stage where we can envision achieving such an integration effectively over
time.

VII. Education

Finally, we will note, briefly, that the research cannot have the desired value-
enhancing impact without a coordinated investment in education. At a minimum, a
traditional course in engineering economics would help to give software engineers a
rudimentary background in finance.

Other engineering disciplines consider such an engineering economics course to
be an essential part of their respective bodies of knowledge. Recent attempts to define
bodies of knowledge and related curricula for software engineering, by contrast, under-
emphasize the engineering economics of software. For example, it might be embedded in

software engineering management, typically in the form of attention to cost, schedule and
risk estimation and management.

Furthermore, we envision a holistic treatment of economics throughout the body
of knowledge. Rather than presenting information hiding an independent concept (it
makes software easier to change in ways that you anticipate), it could be perhaps be
better justified in economic terms. Not every concept in software engineering succumbs
directly to an economic analysis, of course. Giving students a visceral understanding of
how to design for value in the face of uncertainty, incomplete knowledge and competition
through clever product, process and portfolio design is a significant challenge that is not
likely to be met by a curriculum that separates economic thinking from design and other
aspects of development, and that leaves the treatment of economics with traditional cost
and schedule estimation models and risk management concepts.

VIII. Conclusions

The software field exists because processed information has value. If people were
not willing to pay for software development in the expectation of enhanced value, all of
us in the software field would be out of jobs.

Given that we live in and benefit from this value-determined situation, it is in our
enlightened self-interest to increase our understanding of and ability to deal with the
economic aspects of software and its development.

The results chain of initiatives, contributions, and outcomes in Figure 1 is indeed
a roadmap for how we can progress from our current barely-coping stage of software
economics mastery to a world in which more informed software and information
technology decisions lead to much greater value creation and quality of life for all of us.

However, as with other results chains, we must be careful to ensure that the
assumptions underlying the achievement of the outcomes are valid. The biggest
assumption underlying the roadmap in Figure 1 is that there are enough people with a
sufficient understanding of both software and economic phenomena to enable the
contributions and outcomes to be realized.

As we have discussed, one step in this direction is to enable more software people
to emerge from an economics-unaware logical Flatland and better deal with the economic
aspects of software. But this is not enough. There are also a lot of people living in other
Flatlands, in which they may do well at marketing or finance, but have an insufficient
understanding of software phenomenology to function well at creating value via software.

By improving and propagating our understanding of software phenomenology and
its economic aspects, we can evolve to where we can all live in a fully-dimensional world
spanning software and economic phenomenology, and advance our abilities to generate
value via information technology many-fold.

Acknowledgements

We acknowledge the contributions of the participants and organizers of the First
Workshop on Economics-Driven Software Engineering Research for valuable discussions

and for suggesting some of the important issues that we discuss in this paper. This work
was supported in part by the National Science Foundation under grant CCR-9804078.
Mary Shaw emphasized the need to consider the issue of markets in risk for software.
Somesh Jha has discussed with us his investigations into a portfolio analysis approach to
allocating resources to activities in software projects. Elizabeth Teisberg has provided
valuable feedback to Sullivan on the topic of real options.

Bibliography

 [Abdel-Hamid & Madnick, 1991]. T.Abdel-Hamid and S. Madnick, Software Project
Dynamics, Prentice Hall, 1991.

[Amram & Kulatilaka, 1999]. M. Amram and N. Kalutilaka, , Real Options, Harvard
Business School Press, Cambridge, Mass., 1999.

[Arrow, 1962]. K.J. Arrow, ÒEconomic Welfare and the Allocation of Resources for
Invention,Ó in The Rate and Direction of Inventive Activity: Economic and Social
Factors, NBER, Princeton University Press, 1962, pp. 609-626.

[Austin, 1996]. R. Austin, Measuring and Managing Performance in Organizations,
Dorset House, 1996.

[Axelrod, 1985]. R. Axelrod, The Evolution of Cooperation, Basic Books, 1985.

[Baldwin & Clark, 1999]. Baldwin, C. and K. Clark, Design Rules: The Power of
Modularity, MIT Press, 1999.

[Basili et al., 1994]. V. Basili, C. Caldeira, and H. D. Rombach, ÒGoal Question Metric
Paradigm,Ó in J. Marciniak (ed.), Encyclopedia of Software Engineering, John Wiley
and Sons, 1994, pp. 528-532.

 [Boehm, 1981]. B.W. Boehm, Software Engineering Economics, (Upper Saddle River,
New Jersey: Prentice Hall PTR), 1981.

 [Boehm 1988]. B.W. Boehm. A spiral model of software development and enhancement.
IEEE Computer, pages 61-72, May 1988.

[Boehm et al., 1998] Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy,
R., "Using the WinWin Spiral Model: A Case Study", IEEE Computer, July 1998, pp. 33-
44.

 [Boehm & Ross, 1989]. B. Boehm and R. Ross. Theory-W software project
management: principles and examples. IEEE Transactions on Software Engineering,
15(7):902-916, July 1989.

[Boehm & Port, 1999]. Boehm, B. and Port D., "Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them," Software Engineering Notes, Association for
Computing Machinery, pp. 36-48, January 1999. See also http://sunset.usc.edu/MBASE.

[Boehm-Sullivan, 1999]. B. Boehm and K. Sullivan, ÒSoftware Economics: Status and
Prospects,Ó Information and Software Technology, 1999 (to appear).

[Boehm et al., 2000]. B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E.
Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with

COCOMO II, Prentice Hall, 2000 (to appear).

[Brealey & Myers, 1996]. R.A. Brealey and S.C. Myers, Principles of Corporate
Finance, 5th edition, McGraw Hill, 1996.

[Business Week, 1999]. ÒSoftware Hell,Ó Business Week, December 6, 1999, pp. 104-
118.

[Carmel et al., 1993]. E. Carmel, R. Whitaker, and J. George, ÒPD and Joint Application
Design: A Transatlantic Comparison,Ó Communications of the ACM, June 1993, pp.
40-48.

[Chillarege et al., 1992]. R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,
B. Ray, and M. Wong, ÒOrthogonal Defect Classification Ð A Concept for In-Process
Measurements, IEEE Trans. Software Engr., November 1992.

[Chulani et al., 1999]. S. Chulani, B. Boehm, and B. Steece, ÒCalibrating Software Cost
Models Using Bayesian Analysis,Ó IEEE Trans. Software Engr., July-August 1999,
pp. 573-583.

 [Collins & Porras, 1997] J.C. Collins and J.I. Porras, Built to Last: Successful Habits of
Visionary Companies, Harper Business, 1997.

[Collins et al., 1994]. W. R. Collins, K.W. Miller, B.J. Spielman and P. Wherry, ÒHow
good is good enough?: an ethical analysis of software construction and use,Ó
Communications of the ACM, vol. 37, no. 1, January, 1994, pp. 81 Ð 91.

[Cruickshank & Gaffney, 1993]. R. Cruickshank and J. Gaffney, ÒAn Economics Model
of Software Reuse,Ó in T. Gulledge and W. Hutzler (ed.), Analytical Methods in
Software Engineering Economics, Springer-Verlag, 1993, pp. 99-137.

[Cusumano & Selby, 1995]. M.A. Cusumano and RW. Selby, Microsoft Secrets, (New
York, New York: The Free Press), 1995.

 [Dixit & Pindyck, 1994]. A.K. Dixit and R.S. Pindyck, Investment Under Uncertainty,
(Princeton, New Jersey: Princeton University Press), 1994.

[DÕSouza & Wills, 1999]. D.F. DÕSouza and A.C. Wills, Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison Wesley, Reading, Mass.,
1999.

[Egyed & Boehm, 1998]. A.F. Egyed and B.W. Boehm, ÒTelecooperation experience
with the win-win system, Proceedings of the IFIP World Computer Conference,
September 1998.

[Eureka-Ryan, 1988]. W. Eureka and N. Ryan, The Customer-Driven Company:
Managerial Perspectives on QFD, ASI Press, 1988.

 [Ferguson et al., 1999]. P. Ferguson, G. Leman, P. Perini, S. Renner, and G. Seshagiri,
ÒSoftware Process Improvement Works!Ó CMU/SEI-99-TR-026, November 1999.

[Freiman-Park, 1979]. F.R. Freiman and R.E. Park, ÒPRICE Software Model-Version 3:
An Overview,Ó Proceedings, IEEE/PINY Workshop on Quantitative Software Models,
IEEE Catalog No. TH0067-9, October 1979, pp. 32-44.

[Garlan et al., 1995]. David Garlan, Robert Allen, and John Ockerbloom. Architectural

mismatch: Why reuse is so hard. IEEE Software, 12(6):17-26, November 1995.

[Gotlieb, 1985]. C.C.Gotlieb, The Economics of Computers: Costs, Benefits, Policies,
and Strategies, Prentice Hall, 1985.

[Grady, 1992]. R. Grady, Practical Software Metrics for Project Management and
Process Improvement, Prentice Hall, 1992.

[Haimes, 1998] Y.Y. Haimes, Risk Modeling, Assessment, and Management, Wiley,
1998.

[Hammond et al., 1999]. J.S. Hammond, R.L. Keeney and H. Raiffa, Smart Choices: A
Practical Guide to Making Better Decisions,Ó Harvard Business School Press, 1999.

[Hitch-McKean, 1960]. C.J. Hitch and R.N. McKean, The Economics of Defense in the
Nuclear Age, Harvard University Press, 1960.

[Jacobson et al., 1997]. I. Jacobson, M.L. Griss, and P. Jonsson, Software Reuse,
Addison Wesley, 1997.

[Jensen, 1983]. R.W. Jensen, ÒAn Improved Macrolevel Software Development
Resource Estimation Model,Ó Proceedings, ISPA 1983, April, 1983, pp.88-92.

[Jones, 1986]. C. Jones, Programming Productivity, McGraw Hill, 1986.

[Keeney & Raiffa, 1993]. R.L. Keeney and H. Raiffa, Decisions with Multiple
Objectives: Preferences and Value Tradeoffs, (Cambridge England: Cambridge
University Press), 1993.

[Kleijnen, 1980]. J.P.C. Kleijnen, Computers and Profits: Quantifying Financial Benefits
of Information, Addison Wesley, 1980.

[Knight et al., 2000] J.C. Knight, K.J. Sullivan, M. Elder, ÒSurvivability Architectures,Ó
(to appear), Proceedings of DARPA Information Survivability Conference and
Exposition (DISCEX), January 25Ñ27, 2000.

[Lientz & Swanson, 1980]. B.P. Lientz and E.B. Swanson, Software Maintenance
Management, Addison-Wesley, Reading, Mass., 1980.

[Lim, 1998]. W.C. Lim, Managing Software Reuse, Prentice Hall, 1998.

[Madachy, 1996]. R. Madachy, ÒSystem Dynamics Modeling of an Inspection Process,Ó
Proceedings, ICSE 18, March 1996, pp. 376-386. [Malan-Wentzel, 1993]. R. Malan
and K. Wentzel, ÒEconomics of Software Reuse Revisited,Ó Proceedings, 3rd Irvine
Software Symposium, UC Irvine, April 1993, pp. 109-121.

[Machlup, 1962]. F. Machlup, The Production and Distribution of Knowledge, Princeton
University Press, 1962.

[Malan-Wentzel, 1993]. R. Malan and K. Wentzel, ÒEconomics of Software Reuse
Revisited,Ó Proceedings, 3rd Irvine Software Symposium, UC Irvine, April 1993, pp.
109-121.

[Marschak, 1974]. J. Marschak, Economic Information, Decision, and Prediction, 3 vol.
(1974).

[Marschak-Radner, 1972]. J. Marschak and R. Radner, Economic Theory of Teams, Yale

University Press, 1972.

[McGarry et al., 1994]. F. McGarry, R. Pajerski, G. Page, S. Waligora, V. Basili, and M.
Zelkowitz, ÒSoftware Process Improvement in the NASA Software Engineering
Laboratory,Ó CMU/SEI-94-TR-22, December 1994.

[Musa et al., 1987]. J. Musa, A. Iannino, and K. Okumoto, Software Reliability,
McGraw Hill, 1987.

[Myers, 1977] Myers, S., 1977, ÒDeterminants of corporate borrowingÓ, Journal of
Financial Economics, 5, pp. 147Ð75.

[Nelson, 1966]. E.A. Nelson, Management Handbook for the Estimation of Computer
Programming Costs, AD A-648750, Systems Development Corp., October 31, 1966.

 [Parnas, 1972] D.C. Parnas, ÒOn the criteria to be used in decomposing systems into
modulesÓ, Communications of the Association of Computing Machinery, 15(12) pp.
1053Ð58.

[Parnas, 1979]. D.C. Parnas, ÒDesigning Software for Ease of Extension and
Contraction,Ó IEEE-TSE, March 1979, pp.128-137.

[Paulk et al., 1995]. Addison-Wesley, CMM book.

[Phister, 1979]. M. Phister, Jr., Data Processing Technology and Economics, Digital
Press, 1979.

[PITAC, 1999]. PresidentÕs Information Technology Advisory Committee, Report to the
President, Information Technology Research: Investing in Our Future, February 24,
1999.

[Poulin, 1997]. J.S. Poulin, Measuring Software Reuse: Principles, Practices and
Economic Models, (Reading, Massachusetts: Addison Wesley), 1997.

[Porter & Kramer, 1999]. M.E. Porter and M.R. Kramer, ÒPhilanthropyÕs new agenda:
creating value,Ó Harvard Business Review, November-December, 1999, pp. 121Ð130.

[Putnam, 1978]. L.H. Putnam, ÒA General Empirical Solution to the Macro Software
Sizing and Estimating Problem, IEEE-TSE, July 1978, pp. 345-361.

[Raiffa, 1968]. Howard Raiffa. "Decision Analysis: Introductory Lectures on Choices
Under Uncertainty." McGraw-Hill, Inc.: New York, 1968.

[Rawles, 1971]. J. Rawles, A Theory of Justice, Belknap, 1999 (revised edition).

[Reifer, 1997]. D.J. Reifer, Practical Software Reuse, John Wiley and Sons, 1997.

[Rimel, 1999]. R.W. Rimel, ÒStrategic Philanthropy: PerÕs approach to matching needs
with resources,Ó Health Affairs, vol. 18, no. 3, May-June, 1999, pp. 228Ð233.

[Royce, 1998]. W. Royce, Software Project Management: A Unified Management,
(Reading, Massachusetts: Addison-Wesley), 1998.

[Rubin, 1985]. H.A. Rubin, ÒA Comparison of Cost Estimation Tools,Ó Proceedings,
ICSE 8, August 1985, pp.174-180.

[SEI, 1992]. Software Engineering Institute, ÒDefining and Using Software Measures,Ó

CMU/SEI-92-TR, -11, -19, -20, -21, -21, -22, -23, -25, 1992.

[SEI, 1993]. Software Engineering Institute, CMM for Software, Version 1.1, SEI-93-
TR-24 and Ð25, 1993.

[SEI, 1999]. Software Engineering Institute, Capability Maturity
ModelÑIntegratedÑSystems/Software Engineering, Version 0.2b, September, 1999
(http://www.sei.cmu.edu/cmm/cmmi).

[Shapiro & Varian, 1999]. Shapiro and H.R. Varian, Information Rules: A Strategic
Guide to the Network Economy, (Cambridge, Massachusetts: Harvard University
Press), 1999.

[Sharpe, 1969]. W.F. Sharpe, The Economics of Computers, Columbia University Press,
1969.

[Shaw & Garlan, 1996]. M. Shaw and D. Garlan, Software Architecture, Prentice
Hall,1996.

[Simon, 1988]. H.A.Simon, The Sciences of the Artificial, MIT Press, 1988.

[Stigler, 1961]. G.J. Stigler, ÒThe Economics of Information,Ó Journal of Political
Economy, vol.69, pp. 213-225.

[Strassman, 1997]. P.A. Strassman, The Squandered Computer, (New Canaan,
Connecticut: The Information Economics Press), 1997.

[Sullivan et al., 1999]. K.J. Sullivan, P. Chalasani, S. Jha and V. Sazawal, ÒSoftware
Design as an Investment Activity: A Real Options Perspective,Ó Real Options and
Business Strategy: Applications to Decision Making, L. Trigeorgis, ed., (London,
England: Risk Books), 1999, pp. 215Ñ261.

[Sullivan et al., 1999b]. K.J. Sullivan, J.C. Knight, X. Du and S. Geist, ÒInformation
Survivability Control Systems,Ó Proceedings of the 21st International Conference on
Software Engineering, pp. 184--193, May 1999.

[Teisberg, 1995]. E.O. Teisberg, ÒMethods for evaluating capital investment decisions
under uncertainty,Ó in Real Options in Capital Investment: Models, Strategies, and
Applications, L. Trigeorgis, ed., (Westport, Connecticut: Praeger), 1995.

[Thorp, 1998]. J. Thorp and DMRÕs Center for Strategic Leadership, The Information
Paradox: Realizing the Benefits of Information Technology, McGraw-Hill, 1998.

[Trigeorgis, 1995]. Real Options in Capital Investment: Models, Strategies, and
Applications, L. Trigeorgis, ed., (Westport, Connecticut: Praeger), 1995.

[Trigeorgis, 1997]. L. Trigeorgis, Real Options: Managerial Flexibility and Strategy in
Resource Allocation, (Cambridge, Massachusetts: MIT Press), 1997.

 [Weinberg-Schulman, 1974]. G. Weinberg and E. Schulman, ÒGoals and Performance in
Computer Programming, Human Factors, 1974 (16) 1, pp. 70-77.

