Universidade Federal do Paraná, Departamento de Informática

CI-202 - Métodos Numéricos, Prof. Cássio Soares Carvalho

Lista de exercícios (2)

1 Para cada função abaixo encontre uma raiz real aplicando os seguintes métodos: bissecção; posição falsa; Newton-Raphson; secante. Considere uma precisão $\epsilon = 1 * 10^{-3}$. Use 5 casas decimais.

$$f(x) = e^x + x - 5$$
 $I = [1, 2]$
 $f(x) = cos(x) - x^3 + 1$ $I = [1, 2]$
 $f(x) = x + ln(x)$ $I = [0.5, 1]$

2 Para cada função abaixo encontre uma raiz real aplicando os seguintes métodos: bissecção; posição falsa; ponto fixo; Newton-Raphson; secante. Considere uma precisão $\epsilon = 1 * 10^{-3}$. Use 5 casas decimais.

$$f(x) = sen(x) + x - 2$$
 $I = [1, 2]$
 $f(x) = x^2 - cos(x)$ $I = [-1, -0.5], I = [0.5, 1]$

- 3 Calcular $\sqrt{5}$ utilizando o método de Newton-Raphson e Secante. Considere 5 casas decimais e uma precisão $\epsilon=1*10^{-4}$.
- 4 O valor de π pode ser obtido através da resolução das equações abaixo. Para cada uma delas, aplique o método de Newton-Rapson com $x_0 = 3$ e $\epsilon = 1 * 10^{-4}$. Compare os resultados.

$$f(x) = sen(x) = 0$$

$$f(x) = cos(x) + 1 = 0$$

- **5** Calcular a raiz de f(x) = 20x + cos(x) contida no intervalo [-1,0], considerando $\epsilon = 1*10^{-4}$. Aplique o método de Newton-Raphson, usando 5 casas decimais e arredondamento.
- 6 Uma bola é arremessada para cima com velocidade inicial $v_0 = 30m/s$ a partir de uma altura $x_0 = 5m$ em um local onde a aceleração da gravidade é $g = -9, 8m/s^2$. Sabe-se que $h(t) = x_0 + v_0 t + 0.5gt^2$, calcule o tempo gasto para a bola tocar o solo pelo método da posição falsa com $\epsilon = 1 * 10^{-3}$ e I = [6, 7].