
Teste de Software Estrutural ou 
“Caixa­Branca”

Disciplina de Engenharia de Software
prof. Andrey Ricardo Pimentel

andreyrp@hotmail.com



Contexto da Aula

● Introdução a ES
● Qualidade
● Métricas de Software
● Planejamento do Projeto
● Análise e Projeto ­ UML
● Testes

– Técnicas de testes
● Teste funcional
● Teste estrutural
● Teste erro

– Estratégias de testes

● Manutenção
● Gerenciamento da 

Configuração
● Engenharia Reversa e 

Reengenharia
● Reuso de Software
● Desenvolvimento Web
● ES e Software Livre  



Tópicos

● Introdução
● Teste Estrutural
● Teste de Caminho Básico
● Teste de Estrutura de Controle
● Conclusões
● Exercícios



Introdução

● Teste de software é o processo de executar 
programas com o objetivo de encontrar defeitos

● Qualidade de software é a satisfação dos requisitos 
funcionais, de desempenho e normas de 
desempenho explicitamente declaradas

● É uma atividade essencial para se garantir a 
qualidade do software

● É uma das últimas atividades que fará a revisão do 
produto.



Introdução

● Falhas em sistemas críticos:
– Therac 25
– Ariane 5 (erro em uma conversão de ponto flutuante de 

64 bits para inteiro de 16 bits)
– Titan IV e Titan IV b
– Boeing 757 na Colombia

● Teste de software gasta 40% do esforço
● Objetivos do teste: Revelar erros ainda não 

descobertos



Introdução

● Características de um bom teste:
– Um bom teste tem alta probabilidade de encontrar um 

erro
– Um bom teste não é redundante
– Um bom teste não deve ser muito simples nem muito 

complexo
● Técnicas de teste: 

– Funcional (caixa preta)
– Estrutural (caixa branca)
– Baseada em erros 



Teste Estrutural ou Caixa Branca

● É um método de projeto de testes que usa a 
estrutura de controle do projeto procedimental 
para derivar casos de teste (Pressman, 2006)

● Baseia­se num minucioso exame dos detalhes 
procedimentais

● Caminhos lógicos do do software são testados
● Não é viável testar todos os caminhos lógicos de 

um programa (teste exaustivo)



Teste Exaustivo

● Programa Pascal com 100 linhas e dois ciclos 
aninhados que executam entre 1 e 20 vezes cada 
um dependendo do dado da entrada.

● Dentro do ciclo interior 4 construções se­então­
senão.

● 1014  caminhos possíveis de execução
● Se cada caso de teste for executado por um 

processador “mágico” de testes em 1 mseg
● 3170 anos para completar os testes.



Teste de Caminho Básico

● Técnica de teste de caixa branca 
● McCabe (1976)
● Conjunto Básico de caminhos de execução
● Os casos de teste derivados para executar os 

caminhos básicos tem a garantia de executar cada 
instrução pelo menos uma vez



Casos de Teste

● Um caso de teste é composto de um dado de 
entrada (dado de teste) e de uma saída esperada

● Um bom caso de teste é aquele que tem alta 
probabilidade de revelar um defeito ainda não 
descoberto



Casos de Teste

● Os casos de teste no teste estrutural devem:
– Garantir que todos os caminhos independentes de um 

módulo tenham sido exercitados pelo menos uma vez
– Exercitem todas as decisões lógicas em seus lados 

verdadeiro e falso
– Executem todos os ciclos nos seus limites e dentro de 

seus intervalos operacionais
– Exercitem as estruturas de dados internas



Notação Grafo de Fluxo

● O grafo de fluxo mostra o fluxo de controle 
● Nós representam um ou mais processos
● Arestas representam o fluxo de controle
● Regiões do grafo são áreas limitadas pelas arestas 

e nós (incluindo a área fora do grafo)



Notação Grafo de Fluxo



Notação Grafo de Fluxo
Derivando o grafo de fluxo a partir de um fluxograma 



Notação Grafo de Fluxo
Derivando o grafo de fluxo a partir de PDL 



Notação Grafo de Fluxo
Representando condições complexas em grafo de fluxo 



Caminhos Independentes

● Caminhos 
independentes:
(1)1­11
(2)1­2­3­4­5­10­1­11
(3)1­2­3­6­8­9­10­1­11
(4)1­2­3­6­7­9­10­1­11

O caminho:
1­2­3­4­5­10­1­2­3­6­8­

6­10­1­11
Não é independente 



Complexidade Ciclomática

● Como saber quantos caminho procurar?
● Complexidade Ciclomática
● O número de regiões do grafo de fluxo 

corresponde à complexidade ciclomática
● V(G) = E – N + 2

– E : número de ramos do grafo
– N : numero de nós do grafo

● V(G) = P + 1
– P : número de nós predicados do grafo 

● Nó predicado é o que tem duas ou mais arestas 
saindo dele



Derivação de Casos de Teste

● Usando o projeto ou código como base, desenhe o 
grafo de fluxo correspondente

● Determine a complexidade ciclomática do grafo de 
fluxo correspondente

● Determine um conjunto base de caminhos 
linearmente independentes

● Prepare os casos de teste que vão forçar a 
execução de cada caminho do conjunto.



Exemplo

● Derivar os casos de 
teste para um 
programa que 
calcula a média das 
entradas válidas, 
usando o método do 
caminho básico.





Exemplo

● Passo 1: Desenhe o 
grafo de fluxo 
correspondente.



Exemplo

● Passo 2: Calcule a complexidade ciclomática.
● V(G) = 6 regiões
● V(G) = 17 arestas – 13 nós + 2 = 6
● V(G) = 5 nós predicados + 1 = 6



Exemplo

● Passo 3: Determine um conjunto base de caminhos 
independentes.

● Caminho 1: 1­2­10­11­13
● Caminho 2: 1­2­10­12­13
● Caminho 3: 1­2­3­10­11­13
● Caminho 4: 1­2­3­4­5­8­9­2...
● Caminho 5: 1­2­3­4­5­6­8­9­2...
● Caminho 6: 1­2­3­4­5­6­7­8­9­2...



Exemplo

● Passo 4: Prepare os casos de teste que vão forçar a 
execução de cada caminho

● O caminho 1 só pode ser testado como parte dos 
caminhos 4, 5 e 6

● Caminho 2: valor (i) = ­999; resultados esperados: 
média = ­999 e os outros valores com os valores 
iniciais.

● Caminho 6: valor (i) = entrada válida; resultados 
esperados: média correta baseada em n valores e 
totais apropriados.



Teste de Estrutura de Controle

● O teste do caminho básico é simples e eficaz, mas 
nem sempre é suficiente.

● Outras variações:
– Teste de condição
– Teste de fluxo de dados
– Teste de ciclo



Teste de Condição

● Método de projeto de teste que exercita as 
condições booleanas de um módulo de programa

● Condição Simples: 
– E1 <operador relacional>E2

● Condição Composta:
– Operadores Booleanos E, OU e NÃO

● O método de teste de condição focaliza o teste de 
cada condição para garantir que não contém erros



Teste de Fluxo de Dados
● Seleciona caminhos de teste de acordo com as 

definições e dos usos das variáveis do programa 
(potenciais usos)
– DEF(S) = {X | comando S contém definição de X}
– USO(S) = {X | comando S contém uso de X}

● Cadeia DU (definição­uso)
– A definição de X no comando S é viva no comando S' 

se existir um caminho entre S e S' sem outra definição 
de X

– Cadeia DU de X: [X, S, S']
● Cada cadeia DU deve ser coberta pelo menos uma 

vez



Teste de Ciclos

● Focaliza a validade das construções dos ciclos
● Ciclos: simples, concatenados, aninhados e 

desestruturados.
● Testes para Ciclos simples:

– Pule o ciclo completamente
– Apenas uma passagem pelo ciclo
– Duas passagens
– m passagens pelo ciclo, onde m < n
– n – 1, n, n+1 passagens



Teste de Ciclos

● Testes para Ciclos aninhados:
– Comece no ciclo mais interno, outros ciclos nos 

valores mínimos
– Teste o ciclo mais interno com os outros ciclos nos 

valore mínimos, incluindo valores fora do intervalo e 
excluídos

– Trabalhe em direção ao exterior passando para o ciclo 
seguinte com os ciclos externos em valores mínimos e 
os internos em valores típicos

– Continue até que todos os ciclos tenham sido testados



Exemplo
● Programa que calcula o fatorial de um número
● Planejar os testes de ciclo para este programa.



Ferramentas Automatizadas 

● PokeTool (UNICAMP)
– Testes 

● PROTEUM e PROTEUM/IM (USP)



Exercícios

● Construa os seguintes algoritmos e projete os 
casos de teste usando a técnica do caminho 
mínimo e o teste de ciclo.
– Um algoritmo que lê um número e imprime a lista dos 

seus divisores
– Um algoritmo que lê dois números e calcula o máximo 

divisor comum pelo método de Euclides.
– Um algoritmo que lê as 4 notas de um aluno e diga se 

ele passou por média, está em final ou reprovou.



Conclusões

● Métodos Estruturais se baseiam na estrutura de 
controle do programa

● Técnica de caminho básico
– Grafo de fluxo
– Caminhos independentes
– Complexidade ciclomática

● Técnica de estrutura de controle
– Teste de condição
– Teste de fluxo de dados
– Teste de ciclo



Conclusões

● Funções ou métodos mais simples podem ser 
testados com métodos funcionais (caixa preta) 
enquanto que funções ou métodos mais complexos 
podem ser melhor testados com métodos 
estruturais (caixa branca)



Referências

● Pressman, R. S. Engenharia de Sofware, 6a. ed. 
McGraw Hill, 2006

● Barbosa, E.; Maldonado, J.C.; Vincenzi, A.; 
Delamaro, M.; Souza, S.; Jino, M.. Introdução ao 
teste de Software. Curso ministrado no XIV 
congresso da SBES, 2000.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

