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Introdução

● Teste de software é o processo de executar 
programas com o objetivo de encontrar defeitos

● Qualidade de software é a satisfação dos requisitos 
funcionais, de desempenho e normas de 
desempenho explicitamente declaradas

● É uma atividade essencial para se garantir a 
qualidade do software

● É uma das últimas atividades que fará a revisão do 
produto.



Introdução

● Falhas em sistemas críticos:
– Therac 25
– Ariane 5 (erro em uma conversão de ponto flutuante de 

64 bits para inteiro de 16 bits)
– Titan IV e Titan IV b
– Boeing 757 na Colombia

● Teste de software gasta 40% do esforço
● Objetivos do teste: Revelar erros ainda não 

descobertos



Introdução

● Características de um bom teste:
– Um bom teste tem alta probabilidade de encontrar um 

erro
– Um bom teste não é redundante
– Um bom teste não deve ser muito simples nem muito 

complexo
● Técnicas de teste: 

– Funcional (caixa preta)
– Estrutural (caixa branca)
– Baseada em erros 



Teste Estrutural ou Caixa Branca

● É um método de projeto de testes que usa a 
estrutura de controle do projeto procedimental 
para derivar casos de teste (Pressman, 2006)

● Baseia­se num minucioso exame dos detalhes 
procedimentais

● Caminhos lógicos do do software são testados
● Não é viável testar todos os caminhos lógicos de 

um programa (teste exaustivo)



Teste Exaustivo

● Programa Pascal com 100 linhas e dois ciclos 
aninhados que executam entre 1 e 20 vezes cada 
um dependendo do dado da entrada.

● Dentro do ciclo interior 4 construções se­então­
senão.

● 1014  caminhos possíveis de execução
● Se cada caso de teste for executado por um 

processador “mágico” de testes em 1 mseg
● 3170 anos para completar os testes.



Teste de Caminho Básico

● Técnica de teste de caixa branca 
● McCabe (1976)
● Conjunto Básico de caminhos de execução
● Os casos de teste derivados para executar os 

caminhos básicos tem a garantia de executar cada 
instrução pelo menos uma vez



Casos de Teste

● Um caso de teste é composto de um dado de 
entrada (dado de teste) e de uma saída esperada

● Um bom caso de teste é aquele que tem alta 
probabilidade de revelar um defeito ainda não 
descoberto



Casos de Teste

● Os casos de teste no teste estrutural devem:
– Garantir que todos os caminhos independentes de um 

módulo tenham sido exercitados pelo menos uma vez
– Exercitem todas as decisões lógicas em seus lados 

verdadeiro e falso
– Executem todos os ciclos nos seus limites e dentro de 

seus intervalos operacionais
– Exercitem as estruturas de dados internas



Notação Grafo de Fluxo

● O grafo de fluxo mostra o fluxo de controle 
● Nós representam um ou mais processos
● Arestas representam o fluxo de controle
● Regiões do grafo são áreas limitadas pelas arestas 

e nós (incluindo a área fora do grafo)



Notação Grafo de Fluxo



Notação Grafo de Fluxo
Derivando o grafo de fluxo a partir de um fluxograma 



Notação Grafo de Fluxo
Derivando o grafo de fluxo a partir de PDL 



Notação Grafo de Fluxo
Representando condições complexas em grafo de fluxo 



Caminhos Independentes

● Caminhos 
independentes:
(1)1­11
(2)1­2­3­4­5­10­1­11
(3)1­2­3­6­8­9­10­1­11
(4)1­2­3­6­7­9­10­1­11

O caminho:
1­2­3­4­5­10­1­2­3­6­8­

6­10­1­11
Não é independente 



Complexidade Ciclomática

● Como saber quantos caminho procurar?
● Complexidade Ciclomática
● O número de regiões do grafo de fluxo 

corresponde à complexidade ciclomática
● V(G) = E – N + 2

– E : número de ramos do grafo
– N : numero de nós do grafo

● V(G) = P + 1
– P : número de nós predicados do grafo 

● Nó predicado é o que tem duas ou mais arestas 
saindo dele



Derivação de Casos de Teste

● Usando o projeto ou código como base, desenhe o 
grafo de fluxo correspondente

● Determine a complexidade ciclomática do grafo de 
fluxo correspondente

● Determine um conjunto base de caminhos 
linearmente independentes

● Prepare os casos de teste que vão forçar a 
execução de cada caminho do conjunto.



Exemplo

● Derivar os casos de 
teste para um 
programa que 
calcula a média das 
entradas válidas, 
usando o método do 
caminho básico.





Exemplo

● Passo 1: Desenhe o 
grafo de fluxo 
correspondente.



Exemplo

● Passo 2: Calcule a complexidade ciclomática.
● V(G) = 6 regiões
● V(G) = 17 arestas – 13 nós + 2 = 6
● V(G) = 5 nós predicados + 1 = 6



Exemplo

● Passo 3: Determine um conjunto base de caminhos 
independentes.

● Caminho 1: 1­2­10­11­13
● Caminho 2: 1­2­10­12­13
● Caminho 3: 1­2­3­10­11­13
● Caminho 4: 1­2­3­4­5­8­9­2...
● Caminho 5: 1­2­3­4­5­6­8­9­2...
● Caminho 6: 1­2­3­4­5­6­7­8­9­2...



Exemplo

● Passo 4: Prepare os casos de teste que vão forçar a 
execução de cada caminho

● O caminho 1 só pode ser testado como parte dos 
caminhos 4, 5 e 6

● Caminho 2: valor (i) = ­999; resultados esperados: 
média = ­999 e os outros valores com os valores 
iniciais.

● Caminho 6: valor (i) = entrada válida; resultados 
esperados: média correta baseada em n valores e 
totais apropriados.



Teste de Estrutura de Controle

● O teste do caminho básico é simples e eficaz, mas 
nem sempre é suficiente.

● Outras variações:
– Teste de condição
– Teste de fluxo de dados
– Teste de ciclo



Teste de Condição

● Método de projeto de teste que exercita as 
condições booleanas de um módulo de programa

● Condição Simples: 
– E1 <operador relacional>E2

● Condição Composta:
– Operadores Booleanos E, OU e NÃO

● O método de teste de condição focaliza o teste de 
cada condição para garantir que não contém erros



Teste de Fluxo de Dados
● Seleciona caminhos de teste de acordo com as 

definições e dos usos das variáveis do programa 
(potenciais usos)
– DEF(S) = {X | comando S contém definição de X}
– USO(S) = {X | comando S contém uso de X}

● Cadeia DU (definição­uso)
– A definição de X no comando S é viva no comando S' 

se existir um caminho entre S e S' sem outra definição 
de X

– Cadeia DU de X: [X, S, S']
● Cada cadeia DU deve ser coberta pelo menos uma 

vez



Teste de Ciclos

● Focaliza a validade das construções dos ciclos
● Ciclos: simples, concatenados, aninhados e 

desestruturados.
● Testes para Ciclos simples:

– Pule o ciclo completamente
– Apenas uma passagem pelo ciclo
– Duas passagens
– m passagens pelo ciclo, onde m < n
– n – 1, n, n+1 passagens



Teste de Ciclos

● Testes para Ciclos aninhados:
– Comece no ciclo mais interno, outros ciclos nos 

valores mínimos
– Teste o ciclo mais interno com os outros ciclos nos 

valore mínimos, incluindo valores fora do intervalo e 
excluídos

– Trabalhe em direção ao exterior passando para o ciclo 
seguinte com os ciclos externos em valores mínimos e 
os internos em valores típicos

– Continue até que todos os ciclos tenham sido testados



Exemplo
● Programa que calcula o fatorial de um número
● Planejar os testes de ciclo para este programa.



Ferramentas Automatizadas 

● PokeTool (UNICAMP)
– Testes 

● PROTEUM e PROTEUM/IM (USP)



Exercícios

● Construa os seguintes algoritmos e projete os 
casos de teste usando a técnica do caminho 
mínimo e o teste de ciclo.
– Um algoritmo que lê um número e imprime a lista dos 

seus divisores
– Um algoritmo que lê dois números e calcula o máximo 

divisor comum pelo método de Euclides.
– Um algoritmo que lê as 4 notas de um aluno e diga se 

ele passou por média, está em final ou reprovou.



Conclusões

● Métodos Estruturais se baseiam na estrutura de 
controle do programa

● Técnica de caminho básico
– Grafo de fluxo
– Caminhos independentes
– Complexidade ciclomática

● Técnica de estrutura de controle
– Teste de condição
– Teste de fluxo de dados
– Teste de ciclo



Conclusões

● Funções ou métodos mais simples podem ser 
testados com métodos funcionais (caixa preta) 
enquanto que funções ou métodos mais complexos 
podem ser melhor testados com métodos 
estruturais (caixa branca)
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