Aprendizado de Máquinas

Objetivo

 A área de aprendizado de máquina preocupa-se em construir programas que automaticamente melhorem seu desempenho com a experiência.

Conceito

 AM estuda métodos computacionais para adquirir novos conhecimentos, novas habilidades e novos meios de organizar o conhecimento já existentes.

O que é aprendizado

- Ganhar conhecimento, habilidades aprendendo, por instrução ou experiência
- Modificação do comportamento pela experiência
- Uma maquina aprende quando muda sua estrutura de programa ou dados de tal maneira que espera-se melhorarias de sua performance no futuro.

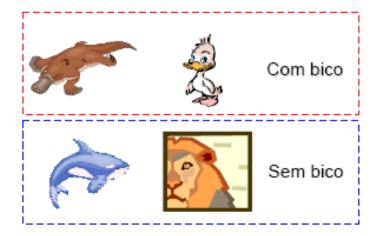
Definição

 Um programa de computador aprende da experiência E com referência a algum tipo de tarefa T e medida de performance P. Se sua performance na tarefa T, medida por P, melhora com a experiência E.

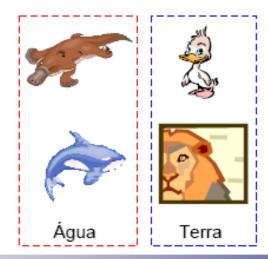
■Dado um conjunto de objetos, colocar os objetos em grupos baseados na similaridade entre eles

4

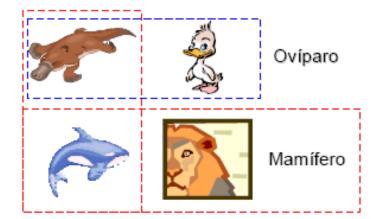
■Dado um conjunto de objetos, colocar os objetos em grupos baseados na similaridade entre eles



■Dado um conjunto de objetos, colocar os objetos em grupos baseados na similaridade entre eles



■Dado um conjunto de objetos, colocar os objetos em grupos baseados na similaridade entre eles



■Dados pares (x,f(x)), inferir f

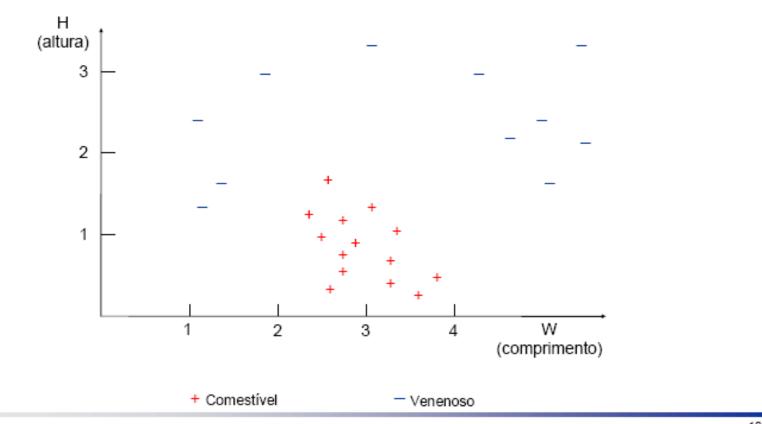
Х	f(x)
1	1
2	4
3	9
4	16
5	?

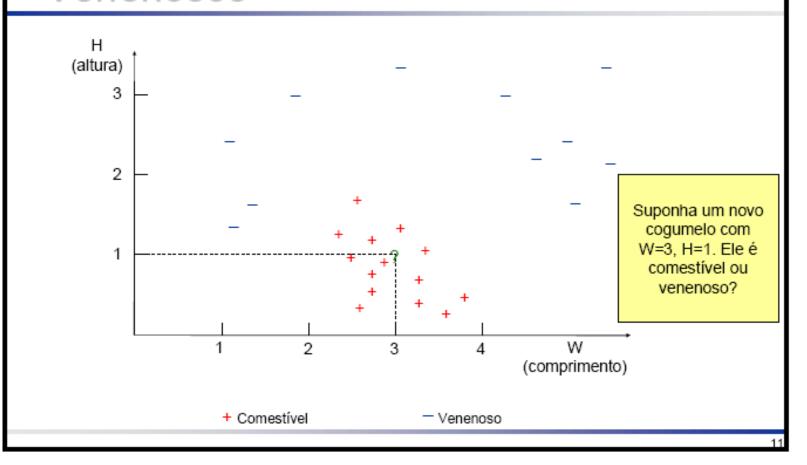
Dada uma amostra finita, é freqüentemente impossível determinar a verdadeira função f.

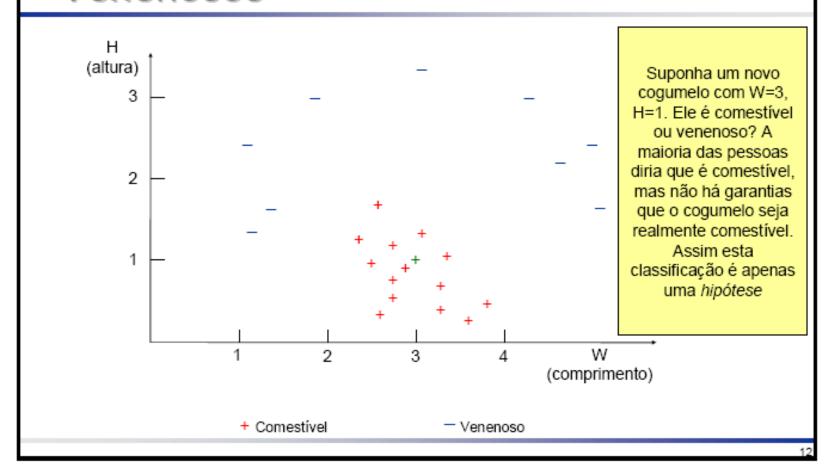
Abordagem: Encontre um padrão (*hipótese*) nos exemplos de treinamento e assuma que o padrão se repita para casos futuros também

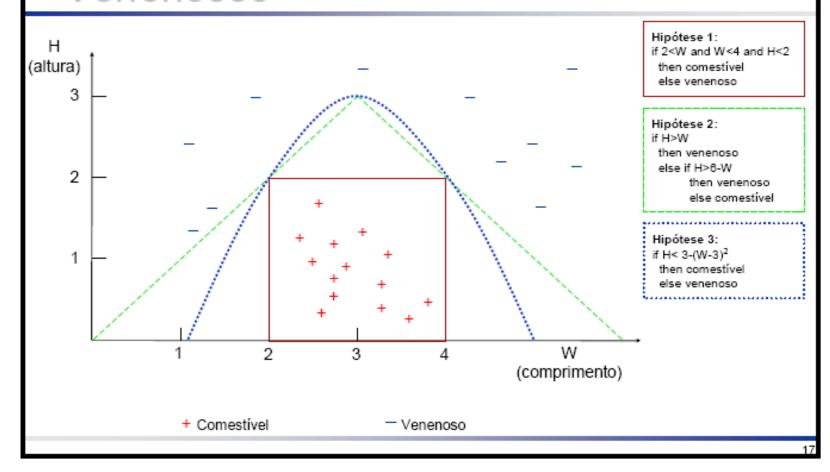
Exemplo	X ₁	X ₂	X_3	X_4	Υ
E ₁	0	1	1	0	0
E ₂	0	0	0	0	0
E ₃	0	0	1	1	1
E ₄	1	0	0	1	1
E ₅	0	1	1	0	0
E ₆	1	1	0	0	0
E ₇	0	1	0	1	0

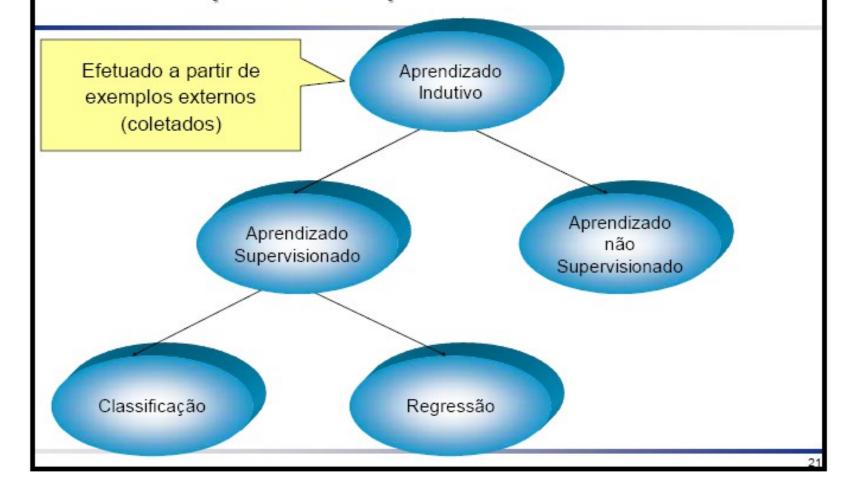
ç

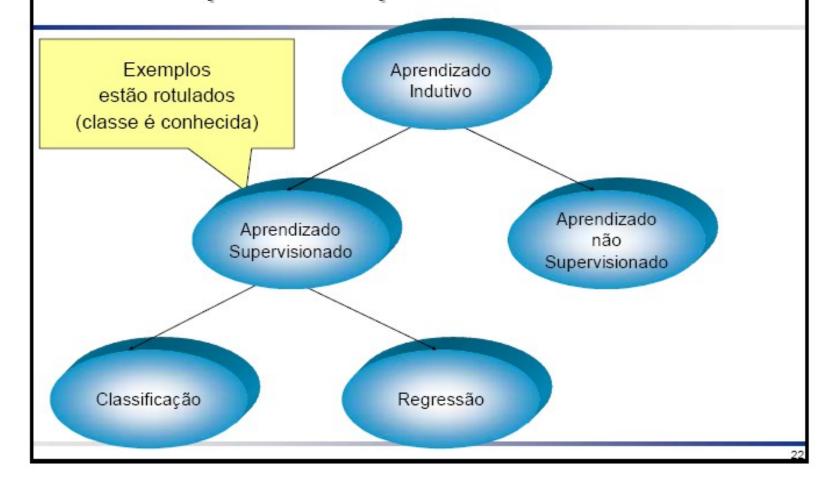










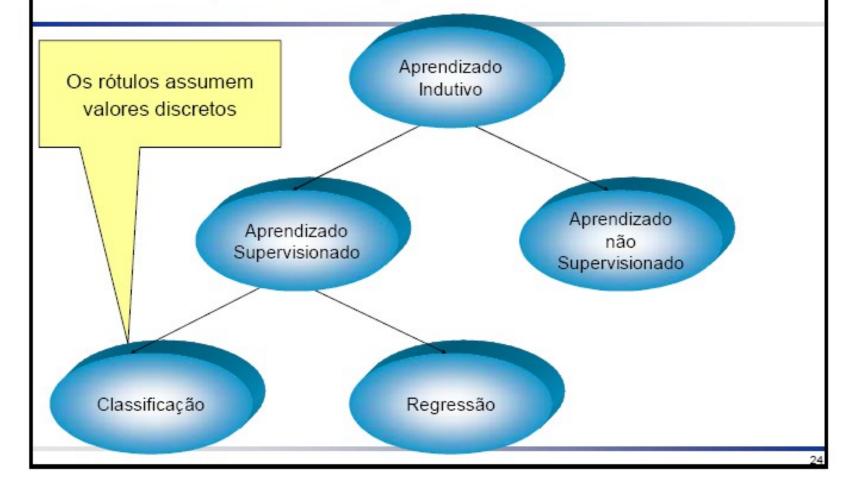


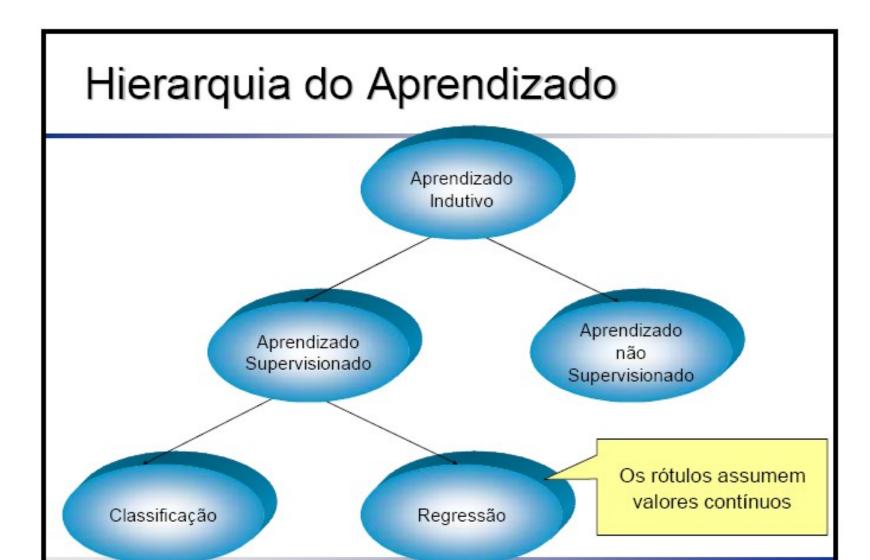
Hierarquia do Aprendizado Exemplos não rotulados Aprendizado Indutivo (não existe classe associada) Aprendizado Aprendizado não Supervisionado Supervisionado

Regressão

Classificação

22





AS x AnS

- Aprendizado Supervisionado
 - Compreender o relacionamento entre os atributos e a classe
 - Predizer a classe de novos exemplos o melhor possível
- Aprendizado Não Supervisionado
 - Encontrar representações úteis dos exemplos, tais como:
 - Encontrar agrupamentos (clusters)
 - Redução da dimensão
 - Encontrar as causas ou as fontes ocultas dos exemplos
 - Modelar a densidade dos exemplos

Tarefa de Classificação

- Cada exemplo pertence a uma classe prédefinida
- Cada exemplo consiste de:
 - Um atributo classe
 - Um conjunto de atributos preditores
- O objetivo é predizer a classe do exemplo dado seus valores de atributos preditores.

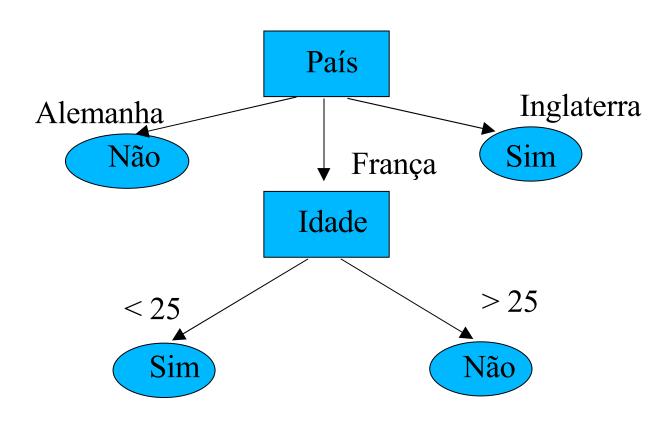
Exemplo: Extraído de Freitas & Lavington 98

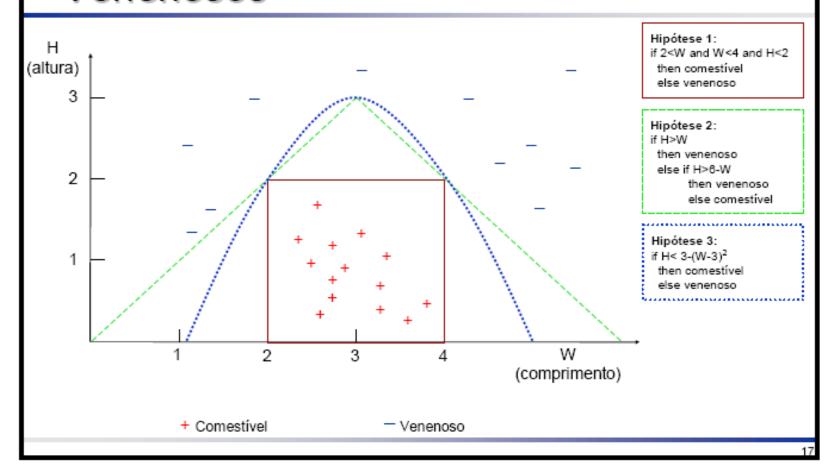
- Uma editora internacional publica o livro "Guia de Restaurantes Franceses na Inglaterra" em 3 países: Inglaterra, França e Alemanha.
- A editora tem um banco de dados sobre clientes nesses 3 países, e deseja saber quais clientes são mais prováveis compradores do livro (para fins de mala direta direcionada).
 - Atributo meta: comprar (sim/não)
- Para coletar mais dados: enviar material de propaganda para uma amostra de clientes, registrando se cada cliente que recebeu a propaganda comprou ou não o livro.

Exemplo de Classificação

Sexo	País	Idade	Compra
М	França	25	Sim
М	Inglaterra	21	Sim
F	França	23	Sim
F	Inglaterra	34	Sim
F	França	30	Não
М	Alemanha	21	Não
М	Alemanha	20	Não
F	Alemanha	18	Não
F	França	34	Não
М	França	55	Não

Árvores de Decisão





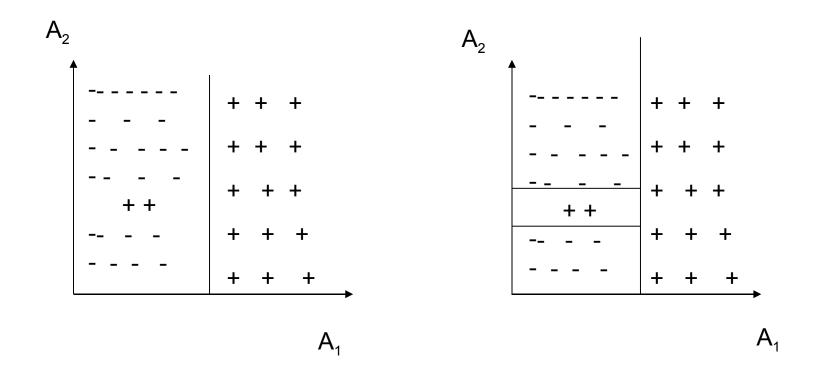
Terminologia

- Exemplo, um objeto, um caso, um registro, um tupla
- Atributo, variável, feature, característica
- Conjunto de treinamento, conjunto de teste
 - Aprendizado
 - Avaliação

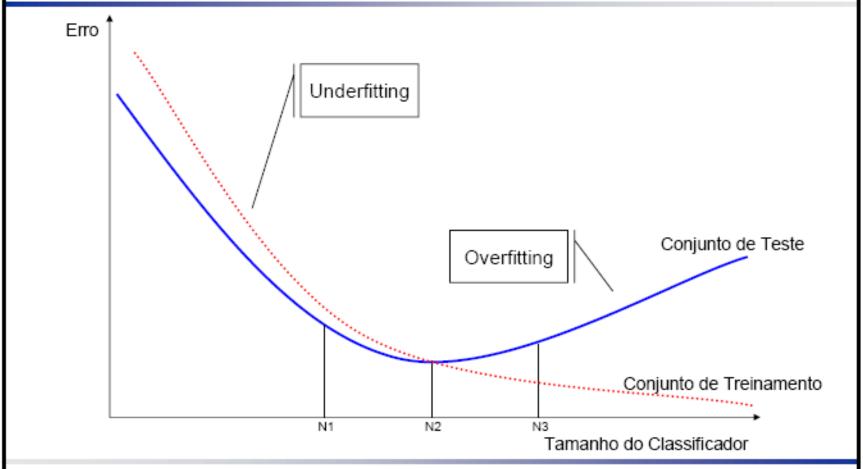
Hipótese do Aprendizado Indutivo

- A tarefa é não deterministica
- Qualquer hipótese que aproxime bem o conceito alvo num conjunto de treinamento, suficientemente grande, aproximara o conceito alvo para exemplos não observados.

Overfitting e Underfitting (sobre-especialização)

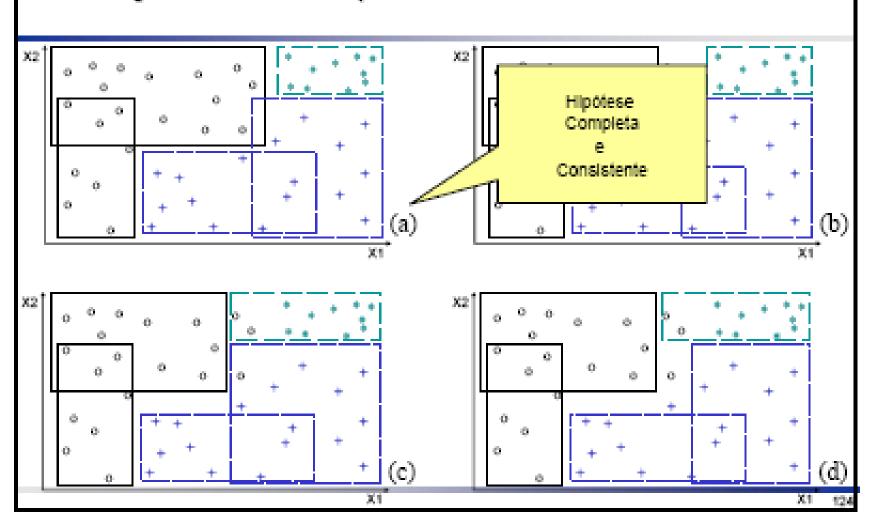


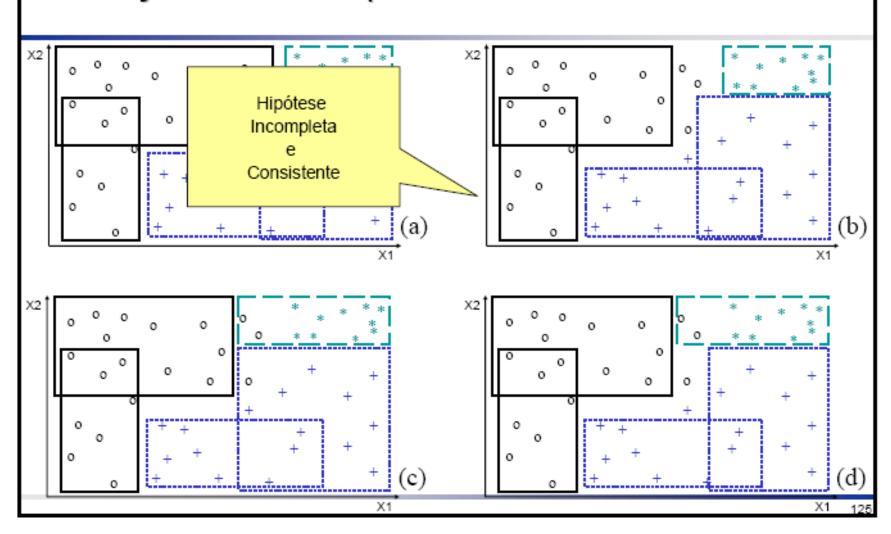
Relação entre o Tamanho do Classificador e o Erro

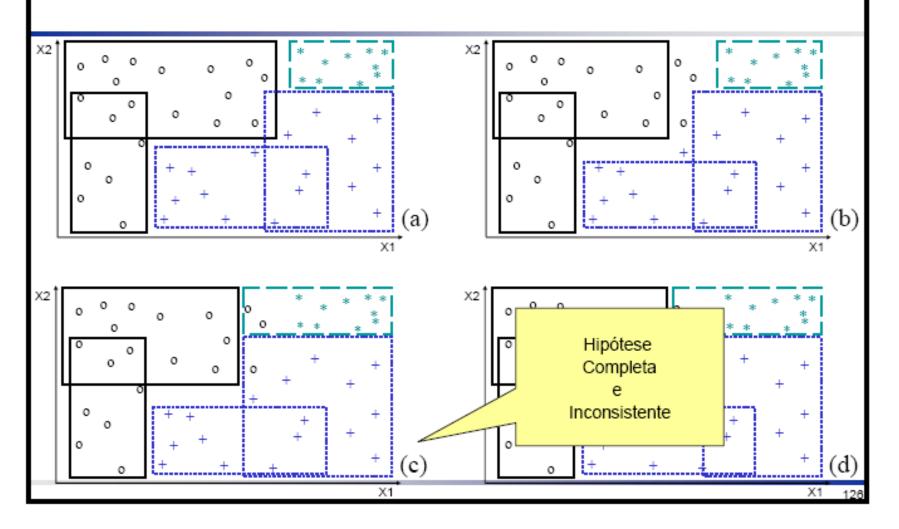


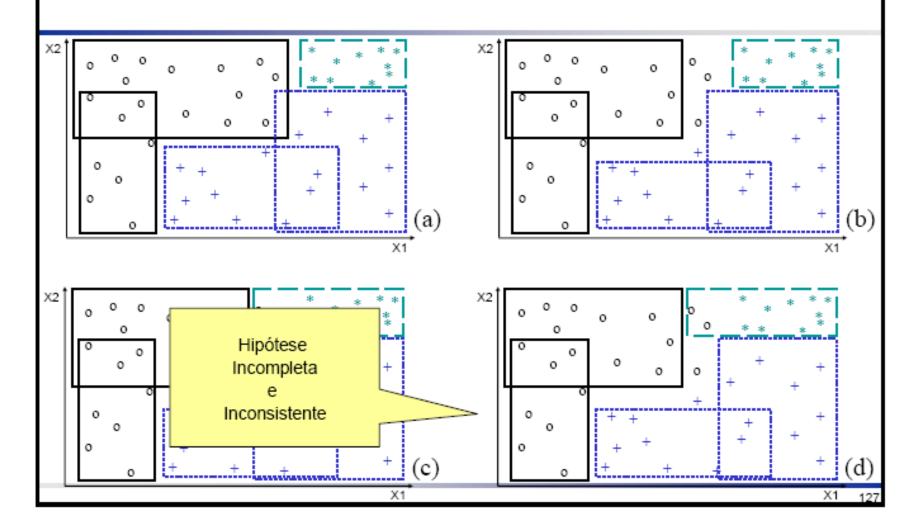
Consistência e Completude

- Depois de induzida, uma hipótese pode ser avaliada sobre
- consistência, se classifica corretamente os exemplos
- completude, se classifica todos os exemplos









Medindo a qualidade da predição

- Precisão, compreensível e interessante
- Acuracia = classificados corretamente /total de exemplos
- Erro = 1-Acuracia

Matriz de Confusão

 A matriz de confusão de uma hipótese h oferece uma medida efetiva do modelo de classificação, ao mostrar o número de classificações corretas versus as classificações preditas para cada classe, sobre um conjunto de exemplos T

Matriz de Confusão

$$M(C_{i}, C_{j}) = \sum_{\{\forall (x,y) \in T: y = C_{i}\}} h(x) = C_{j}$$

Classe	predita C_1 predita $C_2 \cdots$ predita C_1
	$M(C_1,C_1)$ $M(C_1,C_2)$ \cdots $M(C_1,C_k)$
verdadeira C_2	$M(C_2, C_1) M(C_2, C_2) \cdots M(C_2, C_k)$
:	i i '. i
verdadeira C_k	$M(C_k, C_1) M(C_k, C_2) \cdots M(C_k, C_k)$

Matriz de Confusão

- O número de acertos, para cada classe, se localiza na diagonal principal M(Ci,Ci) da matriz
- Os demais elementos M(Ci,Cj), para i ≠ j, representam erros na classificação
- A matriz de confusão de um classificador ideal possui todos esses elementos iguais a zero uma vez que ele não comete erros

Matriz de Confusão para 2 Classes

Classe	prodita C	prodita C	Taxa de Erro	Taxa de Erro
Classe	predita C ₊ predita C ₋		da Classe	Total
verdadeira C_+	T_{P}	F_N	$\frac{F_N}{T_P + F_N}$	$\frac{F_p + F_N}{n}$
verdadeira C_	F_{p}	T_N	$\frac{F_P}{F_P + T_N}$	

T_P = Verdadeiro Positivo (True Positive)

F_N = Falso Negativo (False Negative)

F_P = Falso Positivo (False Positive)

T_N = Verdadeiro Negativo (True Negative)

$$n = (T_P + F_N + F_P + T_N)$$

Métricas Derivadas da Matriz de Confusão para 2 Classes

Confiabilidade positiva

$$\operatorname{prel}(h) = \frac{T_P}{T_P + F_P}$$

Confiabilidade negativa

$$nrel(h) = \frac{T_N}{T_N + F_N}$$

Suporte

$$\sup(h) = \frac{T_P}{n}$$

Sensitividade

$$\operatorname{sens}(h) = \frac{T_P}{T_P + F_N}$$

Especificidade

$$\operatorname{spec}(h) = \frac{T_N}{F_P + T_N}$$

Precisão total

$$tacc(h) = \frac{T_P + T_N}{n}$$

Cobertura

$$cov(h) = \frac{T_P + F_P}{n}$$

Prevalência de Classe

- Um ponto muito importante em AM refere-se ao desbalanceamento de classes em um conjunto de exemplos
- Por exemplo, suponha um conjunto de exemplos T ∞m a seguinte distribuição de classes dist(C1, C2, C3) = (99.00%, 0.25%, 0.75%), com prevalência da classe C1
- Um classificador simples que classifique sempre novos exemplos como pertencentes à classe majoritária C1 teria uma precisão de 99,00% (maj-err(T) = 1,00%)
- Isto pode ser indesejável quando as classes minoritárias são aquelas que possuem uma informação muito importante, por exemplo, supondo C1: paciente normal, C2: paciente com doença A e C3: paciente com doença B

Prevalência de Classe

- É importante estar ciente, quando se trabalha com conjuntos de exemplos desbalanceados, que é desejável utilizar uma medida de desempenho diferente da precisão
- Isto deve-se ao fato que a maioria dos sistemas de aprendizado é projetada para otimizar a precisão
- Com isso, normalmente os algoritmos apresentam um desempenho ruim se o conjunto de treinamento encontra-se fortemente desbalanceado, pois os classificadores induzidos tendem a ser altamente precisos nos exemplos da classe majoritária, mas freqüentemente classificam incorretamente exemplos das classes minoritárias
- Algumas técnicas foram desenvolvidas para lidar com esse problema, tais como a introdução de custos de classificação incorreta (explicada mais adiante), a remoção de exemplos redundantes ou prejudiciais ou ainda a detecção de exemplos de borda e com ruído

Custos de Erros

- Medir adequadamente o desempenho de classificadores, através da taxa de erro (ou precisão) assume um papel importante em AM, uma vez que o objetivo consiste em construir classificadores com baixa taxa de erro em novos exemplos
- Entretanto, ainda considerando o problema anterior contendo duas classes, se o custo de ter falsos positivos e falsos negativos não é o mesmo, então outras medidas de desempenho devem ser usadas
- Uma alternativa natural, quando cada tipo de classificação incorreta possui um custo diferente ou mesmo quando existe prevalência de dasses, consiste em associar um custo para cada tipo de erro

Custos de Erros

- O custo cost(Ci,Cj) é um número que representa uma penalidade aplicada quando o classificador faz um erro ao rotular exemplos, cuja classe verdadeira é Ci, como pertencentes à classe Cj, onde i,j = 1, 2, ..., k e k é o número de classes
- Assim, cost(Ci,Ci) = 0, uma vez que não constitui um erro e cost(Ci,Cj) > 0, i ≠ j
- Em geral, os indutores assumem que cost(Ci,Cj)=1, i≠j, caso esses valores não sejam definidos explicitamente

Complexo

É uma conjunção de disjunções dos atributos de teste, na forma:

X_i op valor

onde X_i é um atributo, *op* é um operador relacional e valor é constante válida para o atributo X_i

- Exemplos
 - Sexo = Masculino
 - Idade >= 20
 - Sexo = Feminino and Idade < 90

Regra

- Uma regra assume a forma if L then R que é equivalente a L → R ≡ R ← L ≡ R :- L
- ■Normalmente, as partes esquerda L e direita R são complexos sem atributos comuns entre eles, ou seja
 - atributos(L) ∩ atributos(R) = Ø
- □A parte esquerda L é denominada condição, premissa, antecedente, cauda ou corpo da regra
- □ A parte direita R é denominada conclusão ou cabeça da regra

Regra de Classificação

- Uma regra de classificação assume a forma restrita de uma regra
 - if L then classe = C_i
- ■ou simplesmente
 - if L then C_i
- □onde C_i pertence ao conjunto de k valores de classe {C₁, C₂, ..., C_k}
- □A parte esquerda L é um complexo

Regra de Associação

- Uma regra de associação assume que não existe uma definição explícita de classe e qualquer atributo (ou atributos) pode ser usado como parte da conclusão da regra
- ■Exemplo
 - if X₃='S' and X₅ > 2 then X₁='N' and X₂<1

Cobertura

□ Seja regra L → R

- Exemplos que satisfazem a parte L da regra são cobertos pela regra (ou a regra dispara para esses exemplos)
- Exemplos que satisfazem tanto a condição L como a conclusão R são cobertos corretamente pela regra
- Exemplos satisfazendo a condição L mas não a conclusão R são cobertos incorretamente pela regra
- Exemplos que n\u00e3o satisfazem a condi\u00e7\u00e3o L n\u00e3o s\u00e3o cobertos pela regra

Exemplos satisfazendo	são		
٦L	Não cobertos pela regra		
L	Cobertos pela regra		
L∧R	Cobertos corretamente pela regra		
L∧¬R	Cobertos incorretamente pela regra		

Cobertura: Exemplo

 \square if X_1 = a and X_2 = s then classe = +

	Atributos				
Exemplo	X ₁	X ₂	X ₃	Classe	Cobertura
E ₁	а	S	2	+	Coberto (corretamente)
E ₂	а	s	1	-	Coberto (incorretamente)
E ₃	b	n	1	+	Não coberto
E_4	b	s	2	-	Não coberto
E ₅	С	n	2	*	Não coberto

Estimação da Acuracia

- 2/3 treinamento, 1/3 teste
- Validação cruzada
 - K conjuntos exclusivos e exaustivos
 - O algoritmo é executado k vezes
 - Estratificação
 - Mesmo conjunto de classes em cada conjunto

Bias Indutivo

- Qualquer critério, implícito ou explicito, utilizado para decidir entre uma hipótese e outra, sem ser a consistência com os dados.
 - Bias de representação,
 - Bias de preferência.

Linguagens de Descrição

- Lógica de ordem zero ou Proposicional
 - O objeto é representado e descrito em termos de conjunções, disjunções e negações de constantes booleanas que representam um campo
 - Ex:

```
fêmea ∧ adulta → pode_ter_filhos
```

- ■Lógica de atributos
 - Notação equivalente à LP, mas os atributos são tratados como variáveis
 - Ex:

```
sexo=fêmea ∧ idade=adulta → classe=pode_ter_filhos
ou
sexo(fêmea) ∧ idade(adulta) → classe(pode_ter_filhos)
```

Linguagens de Descrição

- Lógica de 1ª ordem ou Relacional
 - Pode representar objetos como predicados que especificam propriedades ou relações
 - Cláusulas de Horn são um exemplo
 - Ex:

```
macho(X) \land progenitor(Z,X) \land progenitor(Z,Y) \rightarrow irmão(X,Y)
ou
irmão(X,Y) \leftarrow macho(X) \land progenitor(Z,X) \land progenitor(Z,Y)
ou
irmão(X,Y) :- macho(X), progenitor(Z,X), progenitor(Z,Y)
```

- Lógica de 2ª ordem
 - Extensão da lógica de primeira ordem, em que os predicados podem ser considerados como variáveis
 - Ex:

$$P_1(X,Y) := P_2(X), P_3(Z,X), P_4(Z,Y)$$

pode ser instanciado com:

irmão(X,Y):- macho(X), progenitor(Z,X), progenitor(Z,Y)

Funções Matemáticas

Bias de Preferência

- Como o algoritmo prefere uma hipótese frente a outra.
- Qualidade da regra
- A estratégia utilizada para gerar novas regras a partir da atual.

Occam's Razor

- Entidades não devem ser multiplicadas sem necessidade
- Entre todas as hipóteses consistentes com a evidencia, a mais simples é a mais provável de ser verdadeira.

O principio de mínimo comprimento de descrição (MDL)

- Heurística
 - Comprimento da hipótese
 - Comprimento dos dados, o comprimento dos dados quando codificado usando a hipótese como preditor
 - O comprimento do termo de codificação das instancias que são exeções